任家兵1,
马心灵1, 3,
龙光强1,
鲁耀2,
汤利1,,
1.云南农业大学资源与环境学院 昆明 650201
2.云南省农业科学院农业环境资源研究所 昆明 650205
3.文山学院三七学院 文山 663000
基金项目: 国家重点研发计划2017YFD02002007
国家自然科学基金项目41361065
国家自然科学基金项目31760615
云南省科技计划重点项目2015FA022
详细信息
作者简介:耿川雄, 主要从事养分资源高效利用研究。E-mail:1007234769@qq.com
通讯作者:汤利, 主要从事农业资源与环境等方面的研究。E-mail:ltang@ynau.edu.cn
中图分类号:S162计量
文章访问数:614
HTML全文浏览量:8
PDF下载量:359
被引次数:0
出版历程
收稿日期:2019-09-27
录用日期:2019-10-30
刊出日期:2020-02-01
Yield improvement and greenhouse effect of different intercropping systems based on life cycle assessment
GENG Chuanxiong1, 2,,REN Jiabing1,
MA Xinling1, 3,
LONG Guangqiang1,
LU Yao2,
TANG Li1,,
1. College of Resources and Environmental Sciences, Yunnan Agricultural University, Kunming 650201, China
2. Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
3. School of Sanqi, Wenshan University, Wenshan 663000, China
Funds: the National Key Research and Development Program of China2017YFD02002007
the National Natural Science Foundation of China41361065
the National Natural Science Foundation of China31760615
the Key Projects of Yunnan Science and Technology Plan2015FA022
More Information
Corresponding author:TANG Li, E-mail:ltang@ynau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了探究间作体系对农田生态系统温室效应和产量优势的影响,本文选用小麦/蚕豆和玉米/马铃薯间作种植体系,通过为期2年的田间小区试验,采用生命周期评价法(LCA),以小麦/蚕豆间作和小麦单作、玉米/马铃薯间作和玉米单作为研究对象,以生产1 000 kg作物为评价的功能单元,建立农资系统和农作系统生命周期资源消耗以及温室气体排放清单,研究了不同种植体系的作物产量、全球增温潜势和能源消耗等指标的差异。结果表明:与单作小麦相比,间作小麦两年的产量分别增加18.04%和39.94%;与单作玉米相比,间作玉米的产量分别增加2.65%和23.16%;小麦/蚕豆间作系统两年平均增幅高于玉米/马铃薯间作系统。小麦/蚕豆间作的土地当量比两年均大于1,玉米/马铃薯间作的土地当量比仅有1年大于1。与单作小麦相比,两年间作小麦的全球变暖潜值分别降低15.28%和28.53%,能源消耗分别减少15.29%和28.53%;与单作玉米相比,间作玉米的全球变暖潜值分别降低2.61%和19.05%,能源消耗分别减少2.61%和18.83%。小麦/蚕豆间作的间作产量优势优于玉米/马铃薯,但玉米/马铃薯间作的增温潜势低于小麦/蚕豆间作。合理间作具有显著增产效应,同时可以降低温室效应以及能源消耗,以更低环境代价获得作物高产高效。
关键词:间作/
生命周期评价法(LCA)/
温室效应/
玉米/马铃薯/
小麦/蚕豆/
产量优势
Abstract:Global warming has become the most pressing problem affecting the ecological environment, and the greenhouse gases (N2O, CH4, and CO2) produced due to agricultural practices are one of the factors that cannot be neglected. Establishing different planting models and production management measures, reducing energy consumption and greenhouse gas emissions in the farmland ecosystems, and achieving high yields and efficiency in an environment friendly manner are important safety strategies for sustainable agricultural development. In this study, the effects of intercropping systems on greenhouse gas emission and yields were explored in the farm ecosystems for the wheat/faba bean and corn/potato intercropping systems. Two years of research using the life cycle assessment (LCA) method has produced data that compare the differences in crop yield, global warming potential, and energy consumption in the intercropping and monocropping systems. The wheat/faba bean intercropping and wheat monocropping system as well as the corn/potato intercropping and maize monocropping systems were used as research objectives and a production unit of 1 000 kg was evaluated as the functional unit. The agricultural capital system, life cycle resource consumption, and greenhouse gas emission inventory for agricultural resources systems and farming systems under different planting models were established; and monocropping and intercropping environmental impact assessments was conducted. The results showed that compared to the yield of monocropped wheat, the yield of intercropped wheat increased by 18.04% and 39.94%, respectively, in 2014 and 2015. Besides, the global warming potential of intercropped wheat decreased by 15.28% and 28.53%, while the energy consumption decreased by 15.29% and 28.53%, respectively, in 2014 and 2015. Furthermore, compared with monocropped maize, the yield of intercropped maize increased by 2.65% and 23.16%, whereas the global warming potential of intercropped maize decreased by 2.61% and 19.05%, respectively, in 2014 and 2015. In addition, energy consumption decreased by 2.61% and 18.83%, respectively, in 2014 and 2015. Compared with monocropping, reasonable intercropping significantly increased the crop yield while reducing greenhouse gas emissions and energy consumption. This aided in protecting the environment while reducing energy consumption, and achieving a high yield and efficiency of crops at a lower environmental cost.
Key words:Intercropping/
Life Cycle Assessment (LCA)/
Greenhouse effect/
Maize/potato/
Wheat/faba bean/
Yield improvement
HTML全文

图12014年和2015年单作小麦、与蚕豆间作小麦和单作玉米、与马铃薯间作玉米的产量
不同小写字母表示单作、间作产量在5%水平差异显著。
Figure1.Yields of wheat monocropped and intercropped with faba bean, and maize monocropped and intercropped with potato in 2014 and 2015
Different lowercase letters mean significant differences between monocropped and intercropped crops at 0.05 level. IW: intercropped wheat; MW: monocropped wheat; IM: intercropped maize; MM: monocropped maize.


图22014年和2015年小麦/蚕豆间作系统(a)和玉米/马铃薯(b)间作体系的土地当量比(LER)
Figure2.Land equivalent ratios (LER) of wheat/faba bean intercropping system (a) and maize/potato intercropping system (b) in 2014 and 2015


图32014年和2015年小麦/蚕豆和玉米/马铃薯间作体系的全球增温潜势
不同小写字母表示单作、间作在5%水平差异显著。
Figure3.Global warming potentials of wheat/faba bean and maize/potato intercropping systems in 2014 and 2015
Different lowercase letters mean significant differences between monocropping and intercropping systems at 0.05 level. MW: monocropped wheat; IW: intercropped wheat; MM: monocropped maize; IM: intercropped maize.

表12014年和2015年小麦、玉米单、间作体系物质投入产出表
Table1.Input-output inventory of intercropped and monocropped wheat and maize in 2014 and 2015
物质投入-产出 Input-output inventory | 单作小麦 Monocropped wheat | 与蚕豆间作的小麦 Wheat intercropped with faba bean | 单作玉米 Monocropped maize | 与马铃薯间作的玉米 Maize intercropped with potato | ||||||||
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | |||||
投入 Input | N (kg·hm-2) | 180 | 180 | 180 | 180 | 250 | 250 | 250 | 250 | |||
P2O5 (kg·hm-2) | 90 | 90 | 90 | 90 | 75 | 75 | 75 | 75 | ||||
K2O (kg·hm-2) | 90 | 90 | 90 | 90 | 125 | 125 | 125 | 125 | ||||
灌溉水 Irrigation water (m3·hm-2) | 1 200 | 1 500 | 1 200 | 1 500 | 425 | 400 | 425 | 400 | ||||
电力Electricity (kW·h·hm-2) | 525 | 575 | 525 | 575 | 175 | 150 | 175 | 150 | ||||
柴油Diesel oil (kg·hm-2) | 17 | 5 | 17 | 5 | 17 | 19 | 17 | 19 | ||||
产出 Output | 籽粒产量 Grain yield (kg·hm-2) | 4 154.0 | 5 242.4 | 5 813.4 | 6 188.2 | 11 690.0 | 11 475.2 | 14 397.5 | 11 780.2 |

表2农资系统(化肥生产)的温室气体排放量及能源消耗
Table2.Greenhouse gases emissions and energy depletion of agricultural materials system (fertilizers production)
化肥Fertilizer | CO (g·kg-1) | NOx (g·kg-1) | CO2 (g·kg-1) | CH4 (g·kg-1) | N2O (g·kg-1) | 能源消耗Energy depletion (MJ·kg-1) |
N | 4.255 | 35.400 | 10 125.56 | 0.241 | 0.173 | 92.924 |
P2O5 | 0.870 | 4.620 | 1 496.49 | 0.021 | 0.018 | 20.958 |
K2O | 0.805 | 6.208 | 973.20 | 0.044 | 0.027 | 13.130 |

表32014年和2015年小麦、玉米单、间作体系农资系统清单
Table3.Inventory of agricultural materials subsystem for intercropped and monocropped wheat and maize in 2014 and 2015
因子 Factor | 单作小麦 Monocropped wheat | 与蚕豆间作的小麦 Wheat intercropped with faba bean | 单作玉米 Monocropped maize | 与马铃薯间作的玉米 Maize intercropped with potato | |||||||
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | ||||
能源消耗Energy depletion (MJ) | 4 765.083 9 | 4 105.101 1 | 3 405.538 5 | 3 477.198 7 | 2 262.554 4 | 2 304.865 0 | 1 836.320 2 | 2 244.659 0 | |||
CO (kg·t-1) | 0.220 8 | 0.174 9 | 0.157 8 | 0.148 2 | 0.105 2 | 0.107 2 | 0.085 4 | 0.104 4 | |||
NOx(kg·t-1) | 1.768 5 | 1.401 5 | 1.263 9 | 1.187 2 | 0.853 2 | 0.869 2 | 0.692 5 | 0.846 5 | |||
CO2 (kg·t-1) | 492.258 7 | 390.116 3 | 351.819 4 | 330.461 8 | 236.596 7 | 241.021 1 | 192.023 8 | 234.722 7 | |||
CH4 (kg·t-1) | 0.011 9 | 0.009 4 | 0.008 5 | 0.008 0 | 0.005 8 | 0.005 9 | 0.004 7 | 0.005 7 | |||
N2O (kg·t-1) | 0.008 5 | 0.006 7 | 0.006 1 | 0.005 7 | 0.004 1 | 0.004 2 | 0.003 3 | 0.004 1 |

表4农作系统的温室气体排放量及能源消耗
Table4.Greenhouse gases emissions and energy depletion of farming system
能源Energy | CO (g) | NOx (g) | CO2 (g) | CH4 (g) | N2O (g) | 能源消耗Energy depletion (MJ) |
柴油Diesel oil (kg) | 0.772 | 1.789 | 690.691 | 0.645 | 0.121 | — |
电力Electricity (kW·h) | 0.01 | — | 1 767.83 | 13.68 | — | 3.596 |

表52014年和2015年小麦、玉米单作和间作体系农作系统清单
Table5.Inventory of farming subsystem for intercropping and monocropping systems of wheat and maize in 2014 and 2015
因子 Factor | 单作小麦 Monocropped wheat | 与蚕豆间作的小麦 Wheat intercropped with faba bean | 单作玉米 Monocropped maize | 与马铃薯间作的玉米 Maize intercropped with potato | |||||||
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | ||||
能源消耗Energy depletion (MJ) | 454.462 5 | 394.420 8 | 324.754 8 | 334.135 9 | 53.832 3 | 47.005 7 | 43.709 0 | 45.788 7 | |||
CO (kg·t-1) | 0.004 4 | 0.001 8 | 0.003 2 | 0.001 6 | 0.001 3 | 0.001 4 | 0.001 0 | 0.001 4 | |||
NOx (kg·t-1) | 0.796 9 | 0.680 9 | 0.569 4 | 0.576 9 | 0.125 9 | 0.116 3 | 0.102 2 | 0.113 3 | |||
CO2 (kg·t-1) | 226.243 3 | 194.551 8 | 161.669 5 | 164.826 2 | 27.465 9 | 24.252 1 | 22.294 1 | 23.616 5 | |||
CH4 (kg·t-1) | 1.731 5 | 1.501 0 | 1.237 3 | 1.271 7 | 0.205 7 | 0.179 9 | 0.167 0 | 0.175 2 | |||
N2O (kg·t-1) | 0.793 4 | 0.628 5 | 0.567 1 | 0.532 4 | 0.391 6 | 0.399 0 | 0.317 8 | 0.388 5 |

表62014年和2015年小麦、玉米单作和间作体系的能源消耗
Table6.Energy depletion of intercropped and monocropped wheat and maize in 2014 and 2015?
年份 Year | 单作小麦 Monocropped wheat | 与蚕豆间作的小麦 Wheat intercropped with faba bean | 单作玉米 Monocropped maize | 与马铃薯间作的玉米 Maize intercropped with potato |
2014 | 5 219.5±273.0a | 3 730.3±222.6b | 2 316.4±260.5a | 1 880.0±156.2b |
2015 | 4 499.5±144.7a | 3 811.3±84.2b | 2 351.9±243.9a | 2 290.4±115.5a |
不同小写字母表示单作、间作在0.05水平差异显著。Different lowercase letters mean significant differences between monocropped and intercropped crops at 0.05 level. |

表72014年和2015年小麦/蚕豆和玉米/马铃薯间作体系能源消耗和全球增温潜势生命周期加权分析结果
Table7.Weighting of life cycle assessment (LCA) of energy consumption and global warming potential of wheat/faba bean and maize/potato intercropping systems in 2014 and 2015
年份 Year | 作物 Crop | 能源消耗(权重后影响指数) Energy consumption (weighed impact index) | 全球增温潜势(权重后影响指数) Global warming potential (weighed impact index) | |||
单作Monocropping | 间作Intercropping | 单作Monocropping | 间作Intercropping | |||
2014 | 小麦Wheat | 0.002 0a | 0.001 4b | 0.027 09a | 0.019 36b | |
玉米Maize | 0.000 9a | 0.000 7a | 0.010 00a | 0.008 11b | ||
2015 | 小麦Wheat | 0.001 7a | 0.001 5b | 0.022 05a | 0.019 50a | |
玉米Maize | 0.000 9a | 0.000 9a | 0.010 04a | 0.009 78a | ||
不同小写字母表示单作、间作体系在5%水平差异显著。Different lowercase letters mean significant differences between monocropping and intercropping systems at 0.05 level. |

表82014年和2015年小麦/蚕豆和玉米/马铃薯间作体系生命周期环境影响减缓潜力
Table8.Potentials of mitigating environmental impact of life cycle assessment (LCA) of wheat/faba bean and maize/potato intercropping systems in 2014 and 2015?
环境影响因子 Environmental impacting factor | 2014 | 2015 | |||
间作小麦 Monocropping wheat | 间作玉米 Monocropping maize | 间作小麦 Intercropping wheat | 间作玉米 Intercropping maize | ||
能源消耗Energy depletion | 27.04±2.9 | 20.08±1.7 | 22.12±8.5 | 2.84±0.3 | |
全球增温潜势Global warming potential | 29.08±0.8 | 21.95±4.3 | 11.89±0.5 | 4.68±2.9 |

参考文献
[1] | VITOUSEK P M, MOONEY H A, Lubchenco J, et al. Human domination of earth's ecosystems[J]. Science, 1997, 277(5325):494-499 doi: 10.1126/science.277.5325.494 |
[2] | RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O):the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949):123-125 doi: 10.1126/science.1176985 |
[3] | YANG Y S, SHENG G H, LU G H. The suggestion for application LCA in the agriculture in China[J]. Soft Science, 2003, (5):7-11 |
[4] | CEDERBERG C, MATTSSON B. Life cycle assessment of milk production-a comparison of conventional and organic farming[J]. Journal of Cleaner Production, 2000, 8(1):49-60 doi: 10.1016/S0959-6526(99)00311-X |
[5] | 梁龙, 陈源泉, 高旺盛, 等.华北平原冬小麦-夏玉米种植系统生命周期环境影响评价[J].农业环境科学学报, 2009, 28(8):1773-1776 doi: 10.3321/j.issn:1672-2043.2009.08.038 LIANG L, CHEN Y Q, GAO W S, et al. Life cycle environmental impact assessment in winter wheat-summer maize system in North China Plain[J]. Journal of Agro-Environment Science, 2009, 28(8):1773-1776 doi: 10.3321/j.issn:1672-2043.2009.08.038 |
[6] | MEISTERLING K, SAMARAS C, SCHWEIZER V. Decisions to reduce greenhouse gases from agriculture and product transport:LCA case study of organic and conventional wheat[J]. Journal of Cleaner Production, 2009, 17(2):222-230 doi: 10.1016/j.jclepro.2008.04.009 |
[7] | 王明新, 夏训峰, 刘建国, 等.太湖地区高产水稻生命周期评价[J].农业环境科学学报, 2009, 28(2):420-424 doi: 10.3321/j.issn:1672-2043.2009.02.036 WANG M X, XIA X F, LIU J G, et al. Life cycle assessment of high-yielding rice in Taihu Region[J]. Journal of Agro-Environment Science, 2009, 28(2):420-424 doi: 10.3321/j.issn:1672-2043.2009.02.036 |
[8] | ZHANG F S, SHEN J B, ZHANG J L, et al. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity:Implications for China[J]. Advances in Agronomy, 2010, (10):1-32 http://cn.bing.com/academic/profile?id=b3102188254bf7871df53b6c2b305859&encoded=0&v=paper_preview&mkt=zh-cn |
[9] | 肖靖秀, 汤利, 郑毅.氮肥用量对油菜//蚕豆间作系统作物产量及养分吸收的影响[J].植物营养与肥料学报, 2011, 17(6):1468-1473 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201106025.htm XIAO J X, TANG L, ZHENG Y. Effects of N fertilization on yield and nutrient absorption in rape and faba bean intercropping system[J]. Plant Nutrition and Fertilizer Science, 2011, 17(6):1468-1473 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201106025.htm |
[10] | 周龙, 吕玉, 朱启林, 等.施氮与间作对玉米和马铃薯钾吸收与分配的影响[J].植物营养与肥料学报, 2016, 22(6):1485-1493 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201606006 ZHOU L, LYU Y, ZHU Q L, et al. Effects of N application on potassium absorption and distribution of maize and potato in intercropping system[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6):1485-1493 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201606006 |
[11] | 董艳, 董坤, 杨智仙, 等.间作减轻蚕豆枯萎病的微生物和生理机制[J].应用生态学报, 2016, 27(6):1984-1992 http://d.old.wanfangdata.com.cn/Periodical/yystxb201606034 DONG Y, DONG K, YANG Z X, et al. Microbial and physiological mechanisms for alleviating Fusarium wilt of faba bean in intercropping system[J]. Chinese Journal of Applied Ecology, 2016, 27(6):1984-1992 http://d.old.wanfangdata.com.cn/Periodical/yystxb201606034 |
[12] | 吕玉, 周龙, 龙光强, 等.不同氮水平下间作对玉米土壤硝化势和氨氧化微生物数量的影响[J].环境科学, 2016, 37(8):3229-3236 http://d.old.wanfangdata.com.cn/Periodical/hjkx201608052 LYU Y, ZHOU L, LONG G Q, et al. Effect of different nitrogen rates on the nitrification potential and abundance of ammonia-oxidizer in intercropping maize soils[J]. Environmental Science, 2016, 37(8):3229-3236 http://d.old.wanfangdata.com.cn/Periodical/hjkx201608052 |
[13] | LITHOURGIDIS A S, DORDAS C A, DAMALAS C A, et al. Annual intercrops:an alternative pathway for sustainable agriculture[J]. Australian Journal of Crop Science, 2011, 5(4):396-410 http://cn.bing.com/academic/profile?id=b4ff18399743892621f790d2dd7f8d54&encoded=0&v=paper_preview&mkt=zh-cn |
[14] | 黄坚雄, 隋鹏, 高旺盛, 等.华北平原玉米‖大豆间作农田温室气体排放及系统净温室效应评价[J].中国农业大学学报, 2015, 20(4):66-74 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201504009 HUANG J X, SUI P, GAO W S, et al. Effect of maize-soybean intercropping on greenhouse gas emission and the assessment of net greenhouse gas balance in North China Plain[J]. Journal of China Agricultural University, 2015, 20(4):66-74 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201504009 |
[15] | 章莹, 王建武, 王蕾, 等.减量施氮与大豆间作对蔗田土壤温室气体排放的影响[J].中国生态农业学报, 2013, 21(11):1318-1327 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20131102&flag=1 ZHANG Y, WANG J W, WANG L, et al. Effect of low nitrogen application and soybean intercrop on soil greenhouse gas emission of sugarcane field[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11):1318-1327 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20131102&flag=1 |
[16] | 王宇蕴, 任家兵, 郑毅, 等.间作小麦根际和土体磷养分的动态变化[J].云南农业大学学报, 2011, 26(6):851-855 doi: 10.3969/j.issn.1004-390X(n).2011.06.021 WANG Y Y, REN J B, ZHENG Y, et al. Dynamics of available phosphorus in rhizosphere and bulk soil of wheat under intercropping[J]. Journal of Yunnan Agricultural University, 2011, 26(6):851-855 doi: 10.3969/j.issn.1004-390X(n).2011.06.021 |
[17] | 梁龙.基于LCA的循环农业环境影响评价方法探讨与实证研究[D].北京: 中国农业大学, 2009 LIANG L. Environmental impact assessment of circular agriculture based on life cycle assessment: Methods and case studies[D]. Beijing: China Agricultural University, 2009 |
[18] | CARDINALE B J, WRIGHT J P, CADOTTE M W, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46):18123-18128 doi: 10.1073/pnas.0709069104 |
[19] | 陈新平, 张福锁.小麦-玉米轮作体系养分资源综合管理理论与实践[M].北京:中国农业大学出版社, 2006:203-205 CHEN X P, ZHANG F S. Theory and Practice of Nutrient Resources Integrated Management of Wheat-Maize Rotation System[M]. Beijing:China Agricultural University Press, 2006:203-205 |
[20] | MOSIER A, KROEZE C, NEVISON C, et al. Closing the global N2O budget:nitrous oxide emissions through the agricultural nitrogen cycle[J]. Nutrient Cycling in Agroecosystems, 1998, 52(2/3):225-248 doi: 10.1023/A:1009740530221 |
[21] | GHANBARI A, DAHMARDEH M, SIAHSAR B A, et al. Effect of maize (Zea mays L.)-cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment[J]. Journal of Food, Agriculture and Environment, 2010, 8(1):102-108 |
[22] | ECHARTE L, MAGGIORA A D, CERRUDO D, et al. Yield response to plant density of maize and sunflower intercropped with soybean[J]. Field Crops Research, 2011, 121(3):423-429 doi: 10.1016/j.fcr.2011.01.011 |
[23] | 王宇蕴, 郑毅, 汤利.不同抗性小麦品种与蚕豆间作对小麦根际速效养分含量的影响[J].土壤通报, 2012, 43(2):466-471 http://www.cnki.com.cn/Article/CJFDTotal-TRTB201202038.htm WANG Y Y, ZHENG Y, TANG L. Effects of intercropping with different resistant wheat varieties and faba bean on available nutrient content in the rhizosphere[J]. Chinese Journal of Soil Science, 2012, 43(2):466-471 http://www.cnki.com.cn/Article/CJFDTotal-TRTB201202038.htm |
[24] | 肖靖秀, 汤利, 郑毅, 等.大麦/蚕豆间作条件下供氮水平对作物产量和大麦氮吸收累积的影响[J].麦类作物学报, 2011, 31(3):499-503 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201103020 XIAO J X, TANG L, ZHENG Y, et al. Effects of N level on yield of crops, N absorption and accumulation of barley in barley and faba bean intercropping system[J]. Journal of Triticeae Crops, 2011, 31(3):499-503 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201103020 |
[25] | EBWONGU M, ADIPALA E, SSEKABEMBE C K, et al. Effect of intercropping maize and solanum potato on yield of the component crops in Central Uganda[J]. African Crop Science Journal, 2001, 9(1):83-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0261b2958662c0347ce215d139f1abc |
[26] | 覃潇敏, 郑毅, 汤利, 等.玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J].作物学报, 2015, 41(6):919-928 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201506010 QIN X M, ZHENG Y, TANG L, et al. Effects of maize and potato intercropping on rhizosphere microbial community structure and diversity[J]. Acta Agronomica Sinica, 2015, 41(6):919-928 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201506010 |
[27] | 黄承建, 赵思毅, 王季春, 等.马铃薯/玉米不同行数比套作对马铃薯光合特性和产量的影响[J].中国生态农业学报, 2012, 20(11):1443-1450 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121105&flag=1 HUANG C J, ZHAO S Y, WANG J C, et al. Photosynthetic characteristics and yield of potato in potato/maize intercropping systems with different row number ratios[J]. Chinese Journal of Eco-Agriculture, 2012, 20(11):1443-1450 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121105&flag=1 |
[28] | 翟胜, 高宝玉, 王巨媛, 等.农田土壤温室气体产生机制及影响因素研究进展[J].生态环境, 2008, 17(6):2488-2493 doi: 10.3969/j.issn.1674-5906.2008.06.070 ZHAI S, GAO B Y, WANG J Y, et al. Mechanism and impact factors of greenhouse gases generation from farmland[J]. Ecology and Environment, 2008, 17(6):2488-2493 doi: 10.3969/j.issn.1674-5906.2008.06.070 |
[29] | 国家发展和改革委员会.中华人民共和国气候变化初始国家信息通报[M].北京:中国计划出版社, 2004 National Development and Reform Commission. People's Republic of China Initial National Communication on Climate Change[M]. Beijing:China Planning Press, 2004 |
[30] | 张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4):966-975 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110441&flag=1 ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4):966-975 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110441&flag=1 |
[31] | DYER L, OELBERMANN M, ECHARTE L. Soil carbon dioxide and nitrous oxide emissions during the growing season from temperate maize-soybean intercrops[J]. Journal of Plant Nutrient and Soil Science, 2012, 175:394-400 doi: 10.1002/jpln.201100167 |
[32] | 刘辉娟.施氮对玉米间作豌豆农田温室气体排放的影响及机制[D].兰州: 甘肃农业大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10733-1012034432.htm LIU H J. The effect and mechanism of Nitrogen on farmland greenhouse gas emissions of corn interplanting peas[D]. Lanzhou: Gansu Agricultural University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10733-1012034432.htm |
[33] | QIN A Z, HUANG G B, CHAI Q, et al. Grain yield and soil respiratory response to intercropping systems on arid land[J]. Field Crops Research, 2013, 144:1-10 doi: 10.1016/j.fcr.2012.12.005 |