删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

干旱胁迫对玉米物候及产量组成的影响及模拟研究

本站小编 Free考研考试/2022-01-01

米娜1,,
张玉书1,
蔡福1,
纪瑞鹏1,,,
方缘2,
张淑杰1,
陈妮娜1
1.中国气象局沈阳大气环境研究所/辽宁省农业气象灾害重点实验室 沈阳 110166
2.中国气象局气象干部培训学院辽宁分院 沈阳 110166
基金项目: 辽宁省自然科学基金指导计划20180551169
辽宁省科学技术厅农业攻关及成果产业化项目2014210003
国家自然科学基金面上项目41975149
国家自然科学基金面上项目41775110
中央级公益性科研院所基本科研业务费项目2018SYIAEHZ1
中央级公益性科研院所基本科研业务费项目2018SYIAEZD1

详细信息
作者简介:米娜, 主要研究方向为植物干旱响应与干旱影响评估。E-mail:mina7921@126.com
通讯作者:纪瑞鹏, 研究方向为农业气象灾害评估、农业气候资源利用等。E-mail:jiruipeng@163.com
中图分类号:P49

计量

文章访问数:616
HTML全文浏览量:8
PDF下载量:646
被引次数:0
出版历程

收稿日期:2019-05-23
录用日期:2019-08-11
刊出日期:2019-12-01

Effect of drought stress on maize phenology and yield components and its sim-ulation

MI Na1,,
ZHANG Yushu1,
CAI Fu1,
JI Ruipeng1,,,
FANG Yuan2,
ZHANG Shujie1,
CHEN Nina1
1. Institute of Atmospheric Environment, China Meteorological Administration/Key Laboratory of Agrometeorological Disasters, Liaoning Province, Shenyang 110166, China
2. Meteorological Cadre Training Institute, China Meteorological Administration(Liaoning), Shenyang 110166, China
Funds: the Natural Science Foundation of Liaoning20180551169
the Agricultural Research and Achievements Industrialization Project of Liaoning Province2014210003
the National Natural Science Foundation of China41975149
the National Natural Science Foundation of China41775110
the Central Public-Interest Scientific Institution Basal Research Fund of China2018SYIAEHZ1
the Central Public-Interest Scientific Institution Basal Research Fund of China2018SYIAEZD1

More Information
Corresponding author:JI Ruipeng, E-mail:jiruipeng@163.com


摘要
HTML全文
(6)(2)
参考文献(40)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了研究产量关键期干旱胁迫对玉米物候及产量和产量组成的影响,评估作物生长模型对干旱胁迫下玉米物候和产量模拟的效果,基于锦州农业气象试验站2011-2015年分期播种试验玉米产量和产量组成观测资料,尤其是2014年和2015年天然干旱胁迫试验数据和2015年玉米开花、吐丝物候加密观测资料,分析了产量关键期干旱胁迫对玉米物候及产量和产量组成的影响,评估了CERES-Maize模型对不同降水年型玉米产量和产量组成的模拟效果,提出了模型改进的方向。结果表明,2014年和2015年辽宁省西部地区在玉米开花期前后经历了较严重的干旱胁迫过程,干旱胁迫导致玉米吐丝延迟程度大于开花,90%以上的植株能到达开花阶段,但仅有45%~88%的植株能到达吐丝阶段,直接影响株籽粒数(不同播期下的玉米株籽粒数相差32%)及最终产量(产量下降33%~78%)。CERES-Maize模型对正常年玉米产量及产量组成的模拟效果较好,对干旱年的模拟效果较差,部分原因在于模型在模拟玉米物候时不对开花和吐丝期加以区别,只考虑了温度对花期的影响,而没有考虑干旱胁迫下玉米因开花-吐丝间隔增大、雌穗发育异常、物候期推迟而造成的减产作用。因此,玉米产量关键期干旱胁迫直接影响玉米物候(开花-吐丝期),进而影响玉米穗粒数及最终产量;为提高干旱胁迫下作物模型的模拟评估能力,亟待开展干旱胁迫下基于冠层吐丝动态的玉米产量模拟研究。
Abstract:Drought is one of the main limiting factors for maize production in Northeast China, and drought stress is particularly severe during the seeding and flowering stages of the crop. The occurrence of drought around anthesis affects the temporal separation of male (anthesis) and female (silking) floral maturity (referred to as the anthesis-silking interval, ASI), which leads to a reduction in maize kernel numbers. To examine the effect of drought stress during the "yield critical period" on maize phenology, yield and yield components as well as to assess the modeling results of phenology and yield simulated by a crop growth model under drought stress, a field experiment was conducted. Sowing was performed on different dates at 10-day intervals beginning from April 20 over a 5-year period (2011-2015). Observation data of maize yield and yield components, particularly phonology and yield data in the drought years of 2014 and 2015 were used to analyze the effect of drought stress on maize phenology and yield components. The results of simulation using the CERES-Maize model were assessed in this study. Further improvements for the CERES-Maize model under drought conditions were proposed. The findings revealed that drought during the yield critical period delayed silking much greater than anthesis. More than 90% of the plants reached the anthesis stage, whereas only 45%-88% of the plants reached the silking stage. Drought in 2014 and 2015 reduced the kernel numbers of maize by 32% and maize yield by 33%-78%. Grain yield was significantly (P < 0.001) and positively correlated with the number of kernels per ear. The CERES-Maize model showed good performance (normalized root mean square error (NRMSE) of yield simulation was 6.5% for 2012 and 10.8% for 2013) in the normal years, whereas its performance during the drought years was unsatisfactory (NRMSE of yield simulation was 21.6% for 2014 and 76.5% for 2015), which was attributed partly to the neglect of the longer ASI, failure to reach silking, or delayed phenology, causing a decrease in yield. Above all, drought stress during the yield critical period affected maize phonology (anthesis to silking stage) to some extent, affecting kernel number and grain yield. Thus, it is necessary to study the modeling of maize yield under drought stress based on ASI and silking dynamics by coupling the plant biomass framework.

HTML全文


图1锦州农业气象试验站2014年和2015年的4—9月累积降水量与多年(1981—2010年)平均值的比较
Figure1.Variation of cumulative rainfall during April to September of 2014, 2015 and long-term (from 1981 to 2010) average in Jinzhou Agricultral Ecosystem Research Station


下载: 全尺寸图片幻灯片


图2锦州农业气象试验站玉米生长季土壤相对含水量(0~50 cm, 每10 d测定1次)与2014年和2015年4月20日(A)、4月30日(B)、5月10日(C)、5月20日(D)和5月30日(E)播种的玉米各发育期时间
Figure2.Variation of soil relative water content (0–50 cm depth) during April to September measured manually every 10 days and corresponding growth stages of maize sown on April 20 (A), April 30 (B), May 10 (C), May 20 (D), and May 30 (E) in Jinzhou Agricultural Ecosystem Research Station


下载: 全尺寸图片幻灯片


图32015年不同播期下玉米开花日期(月-日)、开花—吐丝间隔(方框内数据)及吐丝日期(月-日)
括号内数字代表与常年比较发育期的推迟天数。
Figure3.Dates (month-day) of anthesis, silking, and anthesis-silking interval (data in the box) of maize sown in different dates in 2015
Numerals within brackets show the delay days compared to a normal year.


下载: 全尺寸图片幻灯片


图42015年不同播期下玉米抽雄和吐丝植株的百分比
Figure4.Tasselling rates and silking rates of maize sown in different dates in 2015


下载: 全尺寸图片幻灯片


图5正常年(2012—2013年)不同播期玉米产量(a, b)、株籽粒数(c, d)、百粒重(e, f)的模拟值与实测值比较
Figure5.Simulated and measured yield (a, b), grains number per plant (c, d), and 100-grain weight (e, f) of maize sown in different dates in normal years (2012-2013)


下载: 全尺寸图片幻灯片


图6干旱年(2014—2015年)不同播期玉米产量(a, b)、株籽粒数(c, d)、百粒重(e, f)的模拟值与实测值比较
Figure6.Simulated and measured yield (a, b), grains number per plant (c, d), and 100-grain weight (e, f) of maize sown in different dates in drought years (2014-2015)


下载: 全尺寸图片幻灯片

表1CERES-Maize模型中玉米品种‘丹玉39’遗传参数取值
Table1.Genetic parameters and their values for maize cultivar 'Danyu39' in the CERES-Maize model
参数
Parameter
描述
Description
取值
Value
P1 幼苗期积温
Degree days from emergence to the end of juvenile phase (℃·d)
290
P2 光周期参数
Photoperiod sensitivity coefficient
0
P5 籽粒灌浆期积温Degree days from silking to physiological maturity (℃·d) 1 060
G2 单株最大穗粒数
Potential kernel number
680
G5 潜在灌浆速率
Potential kernel growth rate (mg·d-1)
8
PHINT 完成1片叶生长所需积温
Degree days required for a leaf tip to emerge (℃·d)
45


下载: 导出CSV
表2播期对玉米籽粒产量、百粒重和株籽粒数的影响
Table2.Effects of sowing date on yield, 100-grain weight and number of kernels per plant of maize
播种日期(月-日)
Sowing date (month-day)
产量
Yield (kg·hm-2)
百粒重
100-grain weight (g)
株籽粒数
Grains number per plant
2014 2015 2014 2015 2014 2015
04-20 9 546a 3 476c 37.8b 32.4c 595a 260c
04-30 8 278b 3 403c 40.4a 33.4b 494b 242d
05-10 6 897c 3 817b 31.9d 36.5a 515b 248d
05-20 6 572c 4 337a 34.5c 33.5b 444c 307b
05-30 5 581d 4 569a 32.0d 29.0d 407d 374a
同列不同小写字母表示不同播期间在0.05水平差异显著。Differing lowercase letters within a column mean significant differences at 0.05 probability level (LSD).


下载: 导出CSV

参考文献(40)
[1]杨晓晨, 明博, 陶洪斌, 等.中国东北春玉米区干旱时空分布特征及其对产量的影响[J].中国生态农业学报, 2015, 23(6): 758-767 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015612&flag=1
YANG X C, MING B, TAO H B, et al. The spatial distribution characteristics of drought and impacts on yield of spring maize in Northeast China [J]. Chinese Journal of Eco-Agriculture, 2015, 23(6): 758-767 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015612&flag=1
[2]赵宗慈, 罗勇. 21世纪中国东北地区气候变化预估[J].气象与环境学报, 2007, 23(3): 1-4 doi: 10.3969/j.issn.1673-503X.2007.03.001
ZHAO Z C, LUO Y. Projections of climate change over northeastern China for the 21st century [J]. Journal of Meteorology and Environment, 2007, 23(3): 1-4 doi: 10.3969/j.issn.1673-503X.2007.03.001
[3]卢洪健, 莫兴国, 孟德娟, 等.气候变化背景下东北地区气象干旱的时空演变特征[J].地理科学, 2015, 35(8): 1051-1059 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201508016
LU H J, MO X G, MENG D J, et al. Analyzing spatiotemporal patterns of meteorological drought and its responses to climate change across Northeast China[J]. Scientia Geographica Sinica, 2015, 35(8): 1051-1059 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201508016
[4]HUSSAIN H A, MEN S N, HUSSAIN S, et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids[J]. Scientific Reports, 2019, 9: 3890 doi: 10.1038/s41598-019-40362-7
[5]朱思颖和郭高平.保险业参与干旱灾害事件管理研究[J].经济研究导刊, 2018, (30): 86-88 doi: 10.3969/j.issn.1673-291X.2018.30.035
ZHU S Y AND GUO G P. Research on the relationship between insurance industry and drought events management[J]. Economic Research Guide, 2018, (30): 86-88 doi: 10.3969/j.issn.1673-291X.2018.30.035
[6]张国平, 周伟军.作物栽培学[M].杭州:浙江大学出版社, 2001
ZHANG G P, ZHOU W J. Crop Cultivation Science[M]. Hangzhou: Press of Zhejiang University, 2001
[7]EDMEADES G O, DAYNARD T B, The development of plant-to-plant variability in maize at different planting densities[J].Canada Journal of Plant Science, 1979, 59: 561-576 doi: 10.4141/cjps79-095
[8]HALL A J, VILLELA F, TRAPANI N, et al. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize[J]. Field Crops Research, 1982, 5: 349-363 doi: 10.1016/0378-4290(82)90036-3
[9]BORRáS L, VITANTONIO-MAZZINI L N. Maize reproductive development and kernel set under limited plant growth environments[J]. Journal of Experimental Botany, 2018, 69(13): 3235-3243 doi: 10.1093/jxb/erx452
[10]BOLA?OS J, EDMEADES G O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize[J]. Field Crops Research, 1996, 48: 65-80 doi: 10.1016/0378-4290(96)00036-6
[11]李叶蓓, 陶洪斌, 王若男, 等.干旱对玉米穗发育及产量的影响[J].中国生态农业学报, 2015, 23(4): 383-391 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015401&flag=1
LI Y B, TAO H B, WANG R N, et al. Effect of drought on ear development and yield of maize[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 383-391 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015401&flag=1
[12]TURC O, BOUTEILLé M, FUAD-HASSAN A, et al. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize[J]. New Phytologist, 2016, 212(2): 377-388 doi: 10.1111/nph.14053
[13]纪瑞鹏, 车宇胜, 朱永宁, 等.干旱对东北春玉米生长发育和产量的影响[J].应用生态学报, 2012, 23(11): 3021-3026 http://d.old.wanfangdata.com.cn/Periodical/yystxb201211014
JI R P, CHE Y S, ZHU Y N, et al. Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 3021-3026 http://d.old.wanfangdata.com.cn/Periodical/yystxb201211014
[14]OTEGUI M E. Prolificacy and grain yield components in modern Argentinean maize hybrids[J]. Maydica, 1995, 40: 371-376
[15]CHAPMAN S C, EDMEADES G O. Selection improves drought tolerance in tropical maize populations Ⅱ. Direct and correlated responses among secondary traits[J]. Crop Science, 1999, 39: 1315-1324 doi: 10.2135/cropsci1999.3951315x
[16]MI N, CAI F, ZHANG Y S, et al. Differential responses of maize yield to drought at vegetative and reproductive stages[J]. Plant Soil Environment, 2018, 64(6): 260-267 doi: 10.17221/141/2018-PSE
[17]MI N, ZHANG Y S, CAI F, et al. Higher yields of rain-fed maize affected by drought and sowing date in a semi-humid region of North-eastern China[J]. International Journal of Agriculture and Biology, 2019, 22(1): 83-90
[18]BORRáS L, WESTGATE M E, ASTINI J P, et al. Coupling time to silking with plant growth rate in maize[J]. Field Crops Research, 2007, 102: 73-85 doi: 10.1016/j.fcr.2007.02.003
[19]?AKIR R. Effect of water stress at different development stages on vegetative and reproductive growth of corn[J]. Field Crop Research, 2004, 89: 1-16 doi: 10.1016/j.fcr.2004.01.005
[20]米娜, 蔡福, 张玉书, 等.不同生育期持续干旱对玉米的影响及其与减产率的定量关系[J].应用生态学报, 2017, 28(5): 1563-1570 http://d.old.wanfangdata.com.cn/Periodical/yystxb201705020
MI N, CAI, F, ZHANG Y S, et al. Effects of continuous drought during different growth stages on maize and its quantitative relationship with yield loss[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1563-1570 http://d.old.wanfangdata.com.cn/Periodical/yystxb201705020
[21]BORRáS L, GAMBíN B L. Trait dissection of maize kernel weight: Towards integrating hierarchical scales using a plant growth approach[J]. Field Crops Research, 2010, 118: 1-12 doi: 10.1016/j.fcr.2010.04.010
[22]WANG J T, KANG S Z, DU T S, et al. Estimating the upper and lower limits of kernel weight under different water regimes in hybrid maize seed production[J]. Agricultural Water Management, 2019, 213: 128-134 doi: 10.1016/j.agwat.2018.09.014
[23]熊伟, 林而达. CERES-Maize区域应用效果分析[J].中国农业气象, 2009, 30(1): 3-7 doi: 10.3969/j.issn.1000-6362.2009.01.002
XIONG W, LIN E D. Performance of CERES-Maize in regional application[J]. Chinese Journal of Agrometeorology, 2009, 30(1): 3-7 doi: 10.3969/j.issn.1000-6362.2009.01.002
[24]JONES J W, HOOGENBOOM G, PORTER C H, et al. DSSAT cropping system model[J]. European Journal of Agronomy, 2003, 18: 235-265 doi: 10.1016/S1161-0301(02)00107-7
[25]LIZASO J I, BOOTE K J, JONES J W, et al. CSM-IXIM: a new maize simulation model for DSSAT version 4.5[J]. Agronomy Journal, 2011, 103: 766-779 doi: 10.2134/agronj2010.0423
[26]LIZASO J I, RUIZ-RAMOS M, RODRIGUEZ L. Modeling the response of maize phenology, kernel set, and yield components to heat stress and heat shock with CSM-IXIM[J]. Field Crops Research, 2017, 214: 239-252 doi: 10.1016/j.fcr.2017.09.019
[27]JONES C A, KINIRY J R. CERES-Maize: A Simulation Model of Maize Growth and Development[M]. Texas A & M Univ. Press, 1986
[28]TOLLENAAR M, DWYER L M, STEWART D W. Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario[J]. Crop Science. 1992, 32: 432-438 doi: 10.2135/cropsci1992.0011183X003200020030x
[29]DURAND J L, DELUSCA K, BOOTE K, et al. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield[J]. European Journal of Agronomy 2017, doi: 10.1016/j.eja.2017.01.002
[30]米娜, 张玉书, 纪瑞鹏, 等.基于作物模型与最佳季节法的锦州地区玉米最佳播种期分析[J].中国农业气象, 2016, 37(1): 68-76 doi: 10.3969/j.issn.1000-6362.2016.01.009
MI N, ZHANG Y S, JI R P, et al. Analysis on optimum sowing date of maize in Jinzhou using crop growth model and optimum season method[J]. Chinese Journal of Agrometeorology, 2016, 37(1): 68-76 doi: 10.3969/j.issn.1000-6362.2016.01.009
[31]JAMIESON P D, PORTER J R, WILSON D R. A test of the computer simulation model ARC-WHEAT on wheat crops grown in New Zealand[J]. Field Crops Research, 1991, 27: 337-350 doi: 10.1016/0378-4290(91)90040-3
[32]YAO N R, YEBOUA K, KAFROUMA A. Effects of intensity and timing of defoliation and growth, yield components and grain yield in maize[J]. Experimental Agriculture, 1991, 27: 137-144 doi: 10.1017/S0014479700018792
[33]WANG J T, KANG S Z, ZHANG X T, et al. Flowering characteristics and yield of maize inbreds grown for hybrid seed production under deficit irrigation[J]. Crop Science, 2017, 57: 2238-2250 doi: 10.2135/cropsci2016.10.0868
[34]HALL A J, LEMCOFF J H, TRáPANI N. Water stress before and during flowering in maize and its effects on yield, its components, and their determinants[J]. Maydica, 1981, 26: 19-38 http://cn.bing.com/academic/profile?id=217bbf9a0406d50b2c2e9875e935a33e&encoded=0&v=paper_preview&mkt=zh-cn
[35]EDMEADES G O, BAZINGER M, HERNáNDEZ M, et al. Causes for silk delay in a lowland tropical maize population[J]. Crop Science, 1993, 33: 1029-1035 doi: 10.2135/cropsci1993.0011183X003300050031x
[36]ANDRADE F H, VEGA C, UHART S, et al. Kernel number determination in maize[J].Crop Science, 1999, 39: 453-459 doi: 10.2135/cropsci1999.0011183X0039000200026x
[37]OUATTAR S, JONES R J, CROOKSTON R K. Effect of water deficit during grain filling on the pattern of maize kernel growth and development[J]. Crop Science, 1987, 27: 726-730 doi: 10.2135/cropsci1987.0011183X002700040025x
[38]AYDINSAKIR K, ERDAL S, BUYUKTAS D, et al. The influence of regular deficit irrigation applications on water use, yield, and quality components of two corn (Zea mays L.) genotypes [J]. Agricultural Water Management, 2013, 128: 65-71 doi: 10.1016/j.agwat.2013.06.013
[39]HAMMAD H M, AHMAD A, ABBAS F, et al. Water and nitrogen productivity of maize under semiarid environments[J]. Crop Science, 2015, 55: 877-888 doi: 10.2135/cropsci2013.05.0291
[40]王金涛.制种玉米开花特性与籽粒数模拟及节水调质高效灌溉优化决策研究[D].北京: 中国农业大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164469.htm
WANG J T. Modeling flowering characteristics and kernel number and optimizing irrigation scheduling for improving water use efficiency and regulating seed quality in hybrid maize seed production[D]. Beijing: China Agricultural University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164469.htm

相关话题/气象 农业 图片 作物 数据