删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

臭氧胁迫对稻米淀粉热力学特征值影响及其强弱势粒间差异

本站小编 Free考研考试/2022-01-01

章燕柳1,,
穆海蓉1,
邵在胜1,
景立权1,
王余龙1,
杨连新1,,,
王云霞2
1.江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室/江苏省粮食作物现代产业技术协同创新中心/扬州大学 扬州 225009
2.扬州大学环境科学与工程学院 扬州 225009
基金项目: 国家自然科学基金项目31471437
国家自然科学基金项目31371563


详细信息
作者简介:章燕柳, 主要从事大气变化与作物响应的研究。E-mail:861509462@qq.com
通讯作者:杨连新, 主要研究方向为水稻栽培、生理和生态。E-mail:lxyang@yzu.edu.cn
中图分类号:S511.21

计量

文章访问数:393
HTML全文浏览量:5
PDF下载量:257
被引次数:0
出版历程

收稿日期:2019-04-30
录用日期:2019-07-23
刊出日期:2019-12-01

Impact of ozone stress on thermodynamic characteristic values of rice starch and the differences between superior and inferior grains

ZHANG Yanliu1,,
MU Hairong1,
SHAO Zaisheng1,
JING Liquan1,
WANG Yulong1,
YANG Lianxin1,,,
WANG Yunxia2
1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Yangzhou University, Yangzhou 225009, China
2. College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
Funds: the National Natural Science Foundation of China31471437
the National Natural Science Foundation of China31371563


More Information
Corresponding author:YANG Lianxin, E-mail:lxyang@yzu.edu.cn


摘要
HTML全文
(1)(8)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:地表臭氧浓度增高情形下水稻减产,米质呈变劣趋势,但稻米热力学特征值的变化及其与生长季、品种以及籽粒着生部位的关系均不清楚。本研究利用自然光气体熏蒸平台,以8个水稻品种为材料,设置高臭氧浓度为100 nL·L-1,对照浓度为9 nL·L-1。连续两年系统研究了高臭氧浓度熏蒸对成熟稻穗不同部位糙米热力学特性(DSC)的影响。与对照相比,臭氧胁迫使稻米热焓值极显著下降4.15%,但对糊化起始温度、糊化峰值温度、糊化终止温度、DSC曲线峰宽和峰高均无显著影响;2017年度稻米热焓值、糊化峰值温度、糊化起始温度和峰高极显著大于2016年,但DSC曲线峰宽表现相反;稻米所有6个DSC特征值的品种间差异均达极显著水平。从稻穗不同位置看,所有测定参数均表现为稻穗上部>中部>下部,除糊化起始温度外差异均达极显著水平。方差分析表明,臭氧×年度对热焓值、糊化峰值温度和糊化终止温度的影响均达显著或极显著水平,臭氧×品种对糊化峰值温度、糊化终止温度、DSC曲线峰宽和峰高均有极显著影响,而臭氧×部位仅对DSC曲线峰宽有显著影响。以上数据表明,稻米淀粉DSC热力学参数因生长季、供试品种以及籽粒着生部位而异,臭氧胁迫环境下稻穗不同部位稻米的热焓值总体上均呈下降趋势,表现为更易糊化的特点。
关键词:臭氧胁迫/
水稻/
基因型差异/
强弱势粒/
热力学特性(DSC)/
稻米品质
Abstract:As a strong oxidant, ozone pollution not only threatens human health but also negatively affects plant life. Elevated concentrations of ground-level ozone reduces rice yield and tends to deteriorate grain quality traits, including appearance, nutritional value and taste. However, the effect of ozone stress on the thermodynamic characteristics (DSC) of rice starch in respect of growth season, variety, and grain position on a panicle is not well-known. In this study, a glasshouse-type gas fumigation platform was used to examine how ozone stress affected the DSC of rice grains located at different positions on a panicle. Plants of eight rice varieties were exposed to ozone fumigation from the plant tilling stage until plant maturity. Two levels of ozone concentration, 100 nL·L-1 and 9 nL·L-1 were applied to rice plants as ozone stress treatment and control, respectively. At harvest, according to their positions on a panicle, rice grains were separated into three groups:superior grains, inferior grains, and medium grains, according to their position in a panicle-upper part, lower part and middle part of panicle. The DSC values of rice starch from the different groups were measured. The study showed that ozone stress significantly reduced the enthalpy value of brown rice by 4.15% compared with the control, but it had no significant effect on the gelatinization starting temperature, the peak gelatinization temperature, the gelatinization termination temperature, and the peak width and peak height of the DSC curve. In 2017, the enthalpy value, gelatinization peak temperature, gelatinization starting temperature, and peak height of brown rice were significantly higher than the values in 2016. However, the opposite trend was observed for the peak width of the DSC curve. There were significant differences among rice varieties in respect of the DSC characteristic values of rice starch. All the DSC values of grains at different positions on a panicle were in the order of upper part > middle part > lower part, and the differences were statistically significant, apart from the case of the gelatinization starting temperature. Results of ANOVA revealed significant ozone by year interactions for enthalpy value, gelatinization peak temperature, and gelatinization termination temperature, and significant ozone by variety interactions for gelatinization peak temperature, gelatinization termination temperature, and peak width and peak height of the DSC curve. Meanwhile, ANOVA revealed significant ozone by grain position interactions only for the peak width of DSC curve. The findings demonstrated that the DSC thermodynamic parameters of rice grains varied with the growing season, the varieties tested, and the grain position on a panicle. Ozone fumigation during the rice growing season reduced the enthalpy value of grains at different positions on a panicle, which indicated ozone-stressed rice grains are prone to gelatinization.
Key words:Ozone stress/
Rice/
Genotypic variation/
Superior and inferior grains/
Thermodynamic characteristics/
Rice quality

HTML全文


图12016年和2017年度水稻生长季臭氧熏蒸期间每日8 h(9:00—17:00)平均臭氧浓度变化
Ambient:室外环境; C-O3:室内对照; E-O3:高臭氧浓度。
Figure1.Dynamic changes of daily 8 h (9:00-17:00) mean ozone concentration during rice growing season in 2016 and 2017
Ambient: outdoor environment; C-O3: control; E-O3: elevated ozone concentration.


下载: 全尺寸图片幻灯片

表12016—2017年水稻季平台控制情况
Table1.Performance of greenhouse-type gas fumigation chambers during rice growing season in 2016 and 2017
年度
Year
处理
Treatment
臭氧浓度
Ozone concentration (nL·L-1)
AOT40
(μL·L-1·h-1)
温度
Temperature (℃)
湿度
Relative humidity (%)
大气压力
Atmosphere pressure (kPa)
2016 Ambient 49.1 8.5 31.5 61.9 99.7
C-O3 10.3 0.0 31.0 (0.98) 66.0 (0.97) 100.1 (1.00)
E-O3 100.4 (1.00) 33.0 31.0 (0.99) 65.4 (0.98) 99.6 (1.00)
2017 Ambient 60.2 16.9 31.2 55.5 100.0
C-O3 7.6 0.0 30.6 (1.00) 66.2 (0.99) 100.1 (1.00)
E-O3 100.9 (1.00) 36.3 30.6 (0.99) 65.6 (0.99) 99.8 (1.00)
Ambient:室外环境; C-O3:室内对照; E-O3:高臭氧浓度。括号内数据为TAR(target achievement ratio), 即实际测定值/设定目标值; AOT40:大气中O3浓度超过40 nL·L-1时的小时累积效应指数。Ambient: outdoor environment; C-O3: control; E-O3: elevated ozone concentration. Data in the parentheses are TAR (target achievement ratio), which is the ratio of the actual measured value to the target value. AOT40 is accumulated dose over the threshold values of 40 nL·L-1 for 8 hours.


下载: 导出CSV
表2臭氧胁迫对稻米热力学特性(DSC)参数影响的显著性检验(P值)
Table2.ANOVA results of the effect of ozone stress on differential scanning calorimetry (DSC) parameters of rice grains (P value)
ANOVA 热焓值(ΔHgel)
Heat enthalpy
起始温度(To)
Onset temperature
峰值温度(Tp)
Peak temperature
终止温度(Tc)
Conclusion temperature
峰宽
Peak width
峰高
Peak height
臭氧O3 < 0.001 0.138 0.100 0.742 0.328 0.098
年度Year (Y) < 0.001 < 0.001 < 0.001 0.372 < 0.001 < 0.001
品种Variety (V) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
部位Position (P) < 0.001 0.104 < 0.001 < 0.001 < 0.001 0.008
臭氧×年度O3 × Y < 0.001 0.770 < 0.001 0.042 0.877 0.250
臭氧×品种O3 × V 0.695 0.404 < 0.001 < 0.001 < 0.001 0.003
臭氧×部位O3 × P 0.395 0.106 0.869 0.768 < 0.001 0.132
品种×年度V × Y < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.003
品种×部位V × P 0.263 0.118 0.006 0.006 0.069 0.547
部位×年度P × Y 0.004 0.584 0.803 0.414 0.001 0.304
臭氧×年度×品种O3 × Y × V 0.116 0.792 0.018 0.022 0.002 0.006
臭氧×年度×部位O3 × Y × P 0.028 0.287 0.733 0.158 0.329 0.135
臭氧×品种×部位O3 × V × P 0.115 0.151 0.313 0.231 0.001 0.005
品种×年度×部位V × Y × P 0.130 0.027 0.374 0.175 0.001 0.401
臭氧×年度×品种×部位O3 × Y × V × P 0.160 0.005 0.683 0.004 0.384 0.014


下载: 导出CSV
表3臭氧胁迫对稻穗不同部位稻米热焓值的影响
Table3.Effect of ozone stress on heat enthalpy of grains located at different positions of a panicle of different rice varieties J·g-1
品种
Variety
处理
Treatment
2016 2017
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
Y两优900
YLY900
C-O3 8.23±0.26a 7.44±0.41ab 7.10±0.11b 9.10±0.10a 10.21±0.67a 10.20±0.94a
E-O3 7.32±0.06ab 7.03±0.11b 7.06±0.09b 9.92±0.63a 10.21±0.48a 10.06±0.48a
Y两优1998
YLY1998
C-O3 7.81±0.11a 7.55±0.12a 7.58±0.10a 10.33±0.79a 10.92±0.65a 9.55±0.39a
E-O3 7.62±0.18a 6.94±0.06b 6.52±0.13b 10.56±0.68a 9.60±0.35a 10.69±0.71a
甬优538
YY538
C-O3 7.07±0.21a 6.33±0.15bc 6.05±0.08b 9.69±0.32ab 10.22±0.25a 9.61±0.18ab
E-O3 6.89±0.07ab 6.14±0.12b 5.87±0.08c 9.14±0.19b 9.62±0.20ab 9.33±0.58ab
甬优15
YY15
C-O3 7.01±0.04a 6.98±0.11c 7.05±0.12c 10.01±0.61a 9.72±0.66a 9.84±0.56a
E-O3 6.85±0.06ab 6.94±0.10a 6.31±0.22b 9.73±0.89a 9.62±0.49a 9.46±0.42a
南粳9108
NJ9108
C-O3 8.67±0.16a 8.21±0.14b 7.23±0.04c 10.34±0.52a 10.61±0.56a 10.43±0.53a
E-O3 8.38±0.21ab 7.51±0.38bc 6.72±0.14c 10.61±0.43a 9.81±0.20a 10.51±0.50a
武运粳27
WYJ27
C-O3 6.53±0.22ab 6.50±0.32ab 6.66±0.33b 10.08±0.85a 10.14±0.53a 9.25±0.93b
E-O3 5.38±0.07bc 6.33±0.21ab 4.81±0.35c 10.01±0.15ab 11.44±0.54ab 9.43±0.28b
淮稻5号
HD5
C-O3 7.42±0.14a 5.83±0.21ab 6.09±0.24ab 9.08±0.12ab 8.91±0.13a 9.19±0.36ab
E-O3 6.02±0.36ab 5.49±0.31ab 5.31±0.93b 8.73±0.27a 8.72±0.23a 8.72±0.33a
扬稻6号
YD6
C-O3 6.11±0.17ab 6.68±0.39ab 6.97±0.11a 9.19±0.52a 9.60±0.17a 9.32±0.67a
E-O3 5.84±0.18b 6.34±0.09ab 3.77±0.00c 9.65±0.15a 8.77±0.32a 9.65±0.63a
C-O3:对照; E-O3:高臭氧浓度。上部粒、中部粒和下部粒对应的强势粒、中势粒和弱势粒。不同小写字母表示同一品种2个臭氧处理3个部位间差异达0.05显著水平。C-O3: control; E-O3: elevated ozone concentration. The upper part, middle part and lower parts grains correspond to superior, medium and inferior grains, respectively. Different lowercase letters refer to significant differences among two ozone treatments and three grain positions for one variety at 0.05 level.


下载: 导出CSV
表4臭氧胁迫对稻穗不同部位稻米糊化起始温度的影响
Table4.Effect of ozone stress on onset temperature of grains located at different positions of a panicle of different rice varieties
品种
Variety
处理
Treatment
2016 2017
上部粒品种
VarietyUpper part grains
中部粒品种
VarietyMiddle part grains
下部粒品种
VarietyLower part grains
上部粒品种
VarietyUpper part grains
中部粒品种
VarietyMiddle part grains
下部粒品种
VarietyLower part grains
Y两优900
YLY900
C-O3 73.55±0.66a 67.45±0.61b 70.98±1.55ab 75.35±0.31a 74.60±0.62a 74.98±0.92a
E-O3 69.98±1.50ab 69.65±0.77ab 70.85±1.66ab 75.48±0.38a 75.68±0.99a 74.13±0.47a
Y两优1998
YLY1998
C-O3 70.85±1.45a 72.25±2.06a 69.23±1.46a 74.25±0.54ab 71.38±2.87b 76.18±0.30a
E-O3 70.93±1.00a 69.85±0.70a 70.58±1.61a 74.95±0.46ab 76.10±0.62a 73.80±0.38ab
甬优538
YY538
C-O3 64.80±0.31a 63.85±0.40ab 63.98±0.70ab 65.58±0.30a 64.53±0.12ab 64.88±0.17ab
E-O3 63.83±0.43ab 63.03±0.62b 63.25±0.70b 64.10±0.21bc 62.93±0.68c 63.75±0.52bc
甬优15
YY15
C-O3 68.53±0.38b 71.53±0.64a 72.88±0.56a 73.80±0.76ab 72.68±1.29ab 74.80±0.68a
E-O3 70.35±1.49ab 70.35±0.57ab 72.10±0.56a 74.73±0.76a 73.88±0.79ab 71.55±1.06b
南粳9108
NJ9108
C-O3 67.68±0.19ab 67.60±0.25ab 67.30±0.25b 69.10±0.23a 68.55±0.47a 67.83±0.29a
E-O3 68.13±0.19a 67.83±0.22ab 67.38±0.33ab 67.95±0.47a 68.18±0.70a 68.73±0.57a
武运粳27
WYJ27
C-O3 66.95±0.23ab 66.23±0.13abc 64.90±0.55c 69.13±0.28a 68.03±0.21ab 67.35±0.70b
E-O3 67.13±0.17a 66.20±0.25abc 65.55±0.87bc 69.15±0.26a 67.88±0.34b 67.85±0.29b
淮稻5号
HD5
C-O3 64.13±0.98a 64.83±0.69a 65.85±0.44a 66.48±0.56ab 67.28±0.57a 66.43±0.37ab
E-O3 64.75±0.69a 64.93±0.31a 63.95±2.55a 64.65±0.85b 65.90±0.56ab 65.95±0.48ab
扬稻6号
YD6
C-O3 66.13±0.46a 65.85±0.52a 68.05±2.67a 67.75±0.21a 67.40±0.15a 67.80±0.41a
E-O3 67.05±0.17a 66.53±0.25a 66.30±0.00a 67.55±0.50a 67.80±0.17a 66.15±0.50b
C-O3:对照; E-O3:高臭氧浓度。上部粒、中部粒和下部粒对应的强势粒、中势粒和弱势粒。不同小写字母表示同一品种2个臭氧处理3个部位间差异达0.05显著水平。C-O3: control; E-O3: elevated ozone concentration. The upper part, middle part and lower parts grains correspond to superior, medium and inferior grains, respectively. Different lowercase letters refer to significant differences among two ozone treatments and three grain positions for one variety at 0.05 level.


下载: 导出CSV
表5臭氧胁迫对稻穗不同部位稻米糊化峰值温度的影响
Table5.Effect of ozone stress on peak temperature of grains located at different positions of a panicle of different rice varieties
品种
Variety
处理
Treatment
2016 2017
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
Y两优900
YLY900
C-O3 79.70±0.23b 78.50±0.24c 78.33±0.12c 80.08±0.11c 79.93±0.35c 80.25±0.05bc
E-O3 80.83±0.38a 80.25±0.18ab 79.73±0.29b 81.15±0.36a 81.03±0.15ab 80.93±0.38ab
Y两优1998
YLY1998
C-O3 79.45±0.37bcd 79.18±0.50cd 79.03±0.13d 80.70±0.20a 80.30±0.34b 80.53±0.40b
E-O3 80.55±0.19a 79.95±0.17abc 80.13±0.11ab 81.68±0.24ab 80.95±0.27ab 80.83±0.35ab
甬优538
YY538
C-O3 69.45±0.18a 69.08±0.28a 69.03±0.16a 71.40±0.23a 70.95±0.18a 70.88±0.27a
E-O3 69.73±0.21a 69.75±0.24a 69.70±0.16a 69.98±0.39b 69.05±0.43b 69.25±0.19b
甬优15
YY15
C-O3 78.03±0.09a 77.20±0.16b 76.63±0.05b 79.75±0.31a 79.60±0.20a 79.30±0.16a
E-O3 78.48±0.30a 77.93±0.33a 76.83±0.35b 80.10±0.20a 79.80±0.41a 78.00±0.47b
南粳9108
NJ9108
C-O3 73.78±0.11a 73.83±0.12a 73.73±0.15a 75.15±0.12a 73.88±0.18b 73.48±0.21b
E-O3 74.05±0.12a 73.83±0.27a 73.20±0.11b 73.93±0.17b 73.58±0.41b 73.40±0.31b
武运粳27
WYJ27
C-O3 73.93±0.21a 73.15±0.13b 72.28±0.11c 75.45±0.32a 74.63±0.32ab 73.45±0.26c
E-O3 74.00±0.06a 73.23±0.12b 73.28±0.09b 74.98±0.21a 74.00±0.46bc 73.90±0.21bc
淮稻5号
HD5
C-O3 72.08±0.42a 71.60±0.25ab 71.48±0.09ab 72.83±0.58a 72.35±0.38ab 72.18±0.39ab
E-O3 71.13±0.35b 70.88±0.19b 71.10±0.31b 71.23±0.45b 72.00±0.35ab 72.00±0.28ab
扬稻6号
YD6
C-O3 71.43±0.14a 71.65±0.19a 71.65±2.31a 72.78±0.23ab 72.85±0.16ab 72.63±0.28ab
E-O3 72.55±0.28a 71.70±0.11a 72.60±0.00a 72.68±0.17ab 73.10±0.11a 72.33±0.34b
C-O3:对照; E-O3:高臭氧浓度。上部粒、中部粒和下部粒对应的强势粒、中势粒和弱势粒。不同小写字母表示同一品种2个臭氧处理3个部位间差异达0.05显著水平。C-O3: control; E-O3: elevated ozone concentration. The upper part, middle part and lower parts grains correspond to superior, medium and inferior grains, respectively. Different lowercase letters refer to significant differences among two ozone treatments and three grain positions for one variety at 0.05 level.


下载: 导出CSV
表6臭氧胁迫对稻穗不同部位稻米糊化终止温度的影响
Table6.Effect of ozone stress on conclusion temperature of grains located at different positions of a panicle of different rice varieties
品种
Variety
处理
Treatment
2016 2017
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
Y两优900
YLY900
C-O3 85.15±0.38ab 84.48±0.13bc 84.03±0.25c 84.05±0.79c 84.43±0.35bc 85.93±0.35abc
E-O3 85.43±0.59ab 86.10±0.30a 86.08±0.15a 86.90±1.23a 86.83±0.50a 86.33±0.30ab
Y两优1998
YLY1998
C-O3 84.78±0.41b 87.38±1.73a 83.98±0.50b 86.88±0.44a 85.78±0.91b 86.48±0.35ab
E-O3 86.45±0.41ab 86.28±0.28ab 86.15±0.32ab 87.90±0.26ab 86.98±0.63ab 86.23±0.06ab
甬优538
YY538
C-O3 76.50±0.79a 75.28±0.47a 75.68±0.36a 77.20±0.42a 76.08±0.33ab 76.10±0.27ab
E-O3 75.40±0.54a 75.40±0.26a 75.48±0.36a 75.40±0.44bc 73.90±0.47d 74.60±0.39cd
甬优15
YY15
C-O3 84.18±0.19ab 83.08±0.21b 83.85±0.21ab 85.00±0.47a 84.83±0.43a 85.43±0.09a
E-O3 84.38±0.75a 83.93±0.34ab 83.40±0.12ab 85.85±0.36a 85.68±0.80a 84.53±0.61a
南粳9108
NJ9108
C-O3 80.98±0.18ab 81.30±0.11a 80.88±0.78ab 79.95±0.41a 79.13±0.69a 78.68±0.59a
E-O3 81.13±0.21a 80.88±0.37ab 79.78±0.29b 79.25±0.37a 79.00±0.52a 78.78±0.68a
武运粳27
WYJ27
C-O3 81.05±0.20a 79.60±0.15bc 78.33±0.26d 80.85±0.34a 80.00±0.48ab 79.03±0.35bc
E-O3 80.68±0.23ab 79.18±0.71cd 78.15±0.39d 80.08±0.11ab 79.00±0.53bc 78.65±0.53c
淮稻5号
HD5
C-O3 78.65±0.53a 77.30±0.60abc 78.30±0.18ab 78.65±0.52a 77.45±0.55a 77.20±0.42ab
E-O3 78.28±0.49ab 76.50±0.45c 76.93±0.15bc 75.93±0.29b 77.33±0.40ab 77.40±0.53ab
扬稻6号
YD6
C-O3 77.65±0.17ab 77.48±0.31ab 75.30±2.12b 77.85±0.26a 77.98±0.26a 77.90±0.47a
E-O3 78.03±0.47ab 78.18±1.05ab 79.20±0.00a 77.10±0.24a 77.65±0.15a 77.08±0.42a
C-O3:对照; E-O3:高臭氧浓度。上部粒、中部粒和下部粒对应的强势粒、中势粒和弱势粒。不同小写字母表示同一品种2个臭氧处理3个部位间差异达0.05显著水平。C-O3: control; E-O3: elevated ozone concentration. The upper part, middle part and lower parts grains correspond to superior, medium and inferior grains, respectively. Different lowercase letters refer to significant differences among two ozone treatments and three grain positions for one variety at 0.05 level.


下载: 导出CSV
表7臭氧胁迫对稻穗不同部位稻米热力学特性(DSC)曲线峰宽的影响
Table7.Effects of ozone stress on peak width of grains located at different positions of a panicle of different rice varieties
品种
Variety
处理
Treatment
2016 2017
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
Y两优900
YLY900
C-O3 13.30±1.21ab 13.98±0.39ab 12.80±0.29b 12.20±0.36ab 11.38±0.34b 11.85±0.31ab
E-O3 14.23±0.21ab 14.85±0.19a 14.55±0.20ab 12.95±0.39a 12.85±0.32a 12.50±0.45ab
Y两优1998
YLY1998
C-O3 15.28±0.33a 13.75±0.26bc 13.30±0.24c 12.13±0.81ab 11.65±0.31ab 10.90±0.68b
E-O3 14.53±0.56ab 13.85±0.38bc 14.60±0.12ab 12.28±0.45ab 12.53±0.39ab 13.08±0.36a
甬优538
YY538
C-O3 9.18±0.28a 9.20±0.11a 9.53±0.21a 9.18±0.23abc 9.55±0.09a 9.53±0.06ab
E-O3 9.65±0.23a 9.30±0.22a 9.60±0.21a 8.95±0.18c 9.13±0.22abc 9.03±0.09bc
甬优15
YY15
C-O3 15.03±0.29a 13.18±0.82abc 12.08±0.68bc 13.43±0.37a 13.40±0.15a 13.20±0.24ab
E-O3 13.40±0.76abc 13.95±0.19ab 11.63±0.59c 11.88±0.88b 13.65±0.52a 13.70±0.12a
南粳9108
NJ9108
C-O3 10.40±0.21a 9.98±0.32a 10.28±0.38a 9.48±0.10a 9.35±0.09a 8.90±0.24ab
E-O3 10.43±0.13a 9.85±0.31a 9.73±0.19a 8.88±0.23ab 8.58±0.23b 8.40±0.21b
武运粳27
WYJ27
C-O3 11.08±0.10a 10.25±0.13abc 10.00±0.26bc 9.35±0.30a 9.60±0.25a 9.43±0.23a
E-O3 10.63±0.25ab 9.63±0.13c 9.88±0.54bc 8.60±0.41a 8.88±0.39a 8.80±0.32a
淮稻5号
HD5
C-O3 11.33±0.33a 10.03±0.17b 9.55±0.51b 9.30±0.20ab 8.58±0.17c 8.30±0.14c
E-O3 9.83±0.24b 8.93±0.06b 9.75±0.48b 9.78±0.17a 9.20±0.08b 9.13±0.25b
扬稻6号
YD6
C-O3 8.58±0.06ab 9.25±0.19a 6.48±1.79b 7.90±0.11c 8.48±0.09ab 8.45±0.24ab
E-O3 8.83±0.33ab 8.58±0.14ab 9.80±0.00a 8.05±0.06bc 7.78±0.08c 8.53±0.20a
C-O3:对照; E-O3:高臭氧浓度。上部粒、中部粒和下部粒对应的强势粒、中势粒和弱势粒。不同小写字母表示同一品种2个臭氧处理3个部位间差异达0.05显著水平。C-O3: control; E-O3: elevated ozone concentration. The upper part, middle part and lower parts grains correspond to superior, medium and inferior grains, respectively. Different lowercase letters refer to significant differences among two ozone treatments and three grain positions for one variety at 0.05 level.


下载: 导出CSV
表8臭氧胁迫对稻穗不同部位稻米热力学特性(DSC)曲线峰高的影响
Table8.Effects of ozone stress on peak height of grains located at different positions of a panicle of different rice varieties μV·mg-1
品种
Variety
处理
Treatment
2016 2017
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
上部粒
Upper part grains
中部粒
Middle part grains
下部粒
Lower part grains
Y两优900
YLY900
C-O3 0.12±0.01a 0.11±0.01ab 0.11±0.00ab 0.16±0.00a 0.18±0.01a 0.17±0.01a
E-O3 0.10±0.00b 0.10±0.00b 0.11±0.00ab 0.17±0.01a 0.16±0.01a 0.16±0.01a
Y两优1998
YLY1998
C-O3 0.10±0.01b 0.12±0.00a 0.12±0.00a 0.17±0.01ab 0.18±0.01a 0.17±0.01ab
E-O3 0.11±0.01ab 0.10±0.00ab 0.09±0.00b 0.17±0.01ab 0.15±0.01b 0.16±0.00b
甬优538
YY538
C-O3 0.14±0.00a 0.13±0.00bc 0.12±0.00cd 0.19±0.00a 0.19±0.00a 0.18±0.01a
E-O3 0.13±0.00b 0.13±0.00bc 0.12±0.00d 0.18±0.00a 0.18±0.01a 0.19±0.01a
甬优15
YY15
C-O3 0.10±0.00a 0.11±0.00a 0.05±0.03b 0.16±0.01a 0.15±0.01a 0.15±0.01a
E-O3 0.10±0.00a 0.10±0.00a 0.11±0.00a 0.15±0.01a 0.15±0.01a 0.15±0.01a
南粳9108
NJ9108
C-O3 0.15±0.01a 0.14±0.01a 0.13±0.00a 0.20±0.01a 0.20±0.01a 0.20±0.01a
E-O3 0.15±0.01a 0.15±0.01a 0.13±0.00a 0.22±0.01a 0.20±0.01a 0.22±0.01a
武运粳27
WYJ27
C-O3 0.09±0.00a 0.12±0.00a 0.12±0.01b 0.19±0.01bc 0.19±0.01bc 0.17±0.01c
E-O3 0.11±0.00a 0.12±0.00a 0.09±0.00b 0.20±0.01ab 0.22±0.01a 0.19±0.01bc
淮稻5号
HD5
C-O3 0.11±0.00ab 0.11±0.00ab 0.12±0.00a 0.18±0.00abc 0.19±0.00ab 0.19±0.01a
E-O3 0.11±0.00ab 0.12±0.01ab 0.10±0.01b 0.17±0.00b 0.17±0.01b 0.18±0.00bc
扬稻6号
YD6
C-O3 0.13±0.01ab 0.13±0.00ab 0.15±0.06a 0.20±0.01ab 0.20±0.01ab 0.19±0.01ab
E-O3 0.12±0.01ab 0.14±0.00ab 0.07±0.00b 0.21±0.00a 0.19±0.01ab 0.19±0.01b
C-O3:对照; E-O3:高臭氧浓度。上部粒、中部粒和下部粒对应的强势粒、中势粒和弱势粒。不同小写字母表示同一品种2个臭氧处理3个部位间差异达0.05显著水平。C-O3: control; E-O3: elevated ozone concentration. The upper part, middle part and lower parts grains correspond to superior, medium and inferior grains, respectively. Different lowercase letters refer to significant differences among two ozone treatments and three grain positions for one variety at 0.05 level.


下载: 导出CSV

参考文献(32)
[1]IPCC. Climate Change, 2013 — The Physical Science Basis: Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014
[2]KOEHLER P. Concentrations of low and high molecular weight thiols in wheat dough as affected by different concentrations of ascorbic acid[J]. Journal of Agricultural and Food Chemistry, 2003, 51(17): 4948-4953 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84f8b100c02172b580264cd2ac7ce626
[3]AINSWORTH E A. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration[J]. Global Change Biology, 2008, 14(17): 1642-1650 http://cn.bing.com/academic/profile?id=b5b94dd8f50fb41c66eaded53b679cf9&encoded=0&v=paper_preview&mkt=zh-cn
[4]杨连新, 王余龙, 石广跃, 等.近地层高臭氧浓度对水稻生长发育影响研究进展[J].应用生态学报, 2008, 19(4): 901-910 http://d.old.wanfangdata.com.cn/Periodical/yystxb200804033
YANG L X, WANG Y L, SHI G Y, et al. Responses of rice growth and development to elevated near-surface layer ozone (O3) concentration: A review[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 901-910 http://d.old.wanfangdata.com.cn/Periodical/yystxb200804033
[5]WANG Y X, FREI M. Stressed food — The impact of abiotic environmental stresses on crop quality[J]. Agriculture, Ecosystems and Environment, 2011, 141(3/4): 271-286 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17399f9821efcca096031f739ad40e9b
[6]YANG L X, WANG Y X. Rice: Chemistry and Technology[M]. 4th ed. Elsevier Inc. and AACC International, Technology. 2019: 427-441
[7]池晓菲, 舒庆尧.稻米糊化温度特性形成规律研究[J].中国水稻科学, 2008, 22(5): 548-550 http://d.old.wanfangdata.com.cn/Periodical/zgsdkx200805017
CHI X F, SHU Q Y. A study on the formation in the character of gelatinization temperature of rice grains[J]. Chinese Journal of Rice Science, 2008, 22(5): 548-550 http://d.old.wanfangdata.com.cn/Periodical/zgsdkx200805017
[8]王良东, 顾正彪. DSC、EM、NMR及X-射线衍射在淀粉研究中的应用[J].西部粮油科技, 2003, 28(4): 39-44 http://d.old.wanfangdata.com.cn/Periodical/xblykj200304015
WANG L D, GU Z B. The uses of differential scanning calorimetry, electron microscope, nuclear magnetic resonance and X-ray diffraction in starch research[J]. China Western Cereals & Oils Technology, 2003, 28(4): 39-44 http://d.old.wanfangdata.com.cn/Periodical/xblykj200304015
[9]YANG J C, PENG S B, VISPERAS R M, et al. Grain filling pattern and cytokinin content in the grains and roots of rice plants[J]. Plant Growth Regulation, 2000, 30(3): 261-270 http://cn.bing.com/academic/profile?id=cefa616f0ec76102955ffb9d9ac62155&encoded=0&v=paper_preview&mkt=zh-cn
[10]黄敏, 莫润秀, 邹应斌, 等.超级稻的产量构成特点和籽粒灌浆特性分析[J].作物研究, 2008, 22(4): 249-253 http://d.old.wanfangdata.com.cn/Periodical/zuowuyj200804010
HUANG M, MO R X, ZOU Y B, et al. Yield components and grain filling characters of super hybrid rice[J]. Crop Research, 2008, 22(4): 249-253 http://d.old.wanfangdata.com.cn/Periodical/zuowuyj200804010
[11]WANG Y X, SONG Q L, FREI M, et al. Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice[J]. Environmental Pollution, 2014, 189: 9-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6af7912b45ccff9fa609a62b672a5544
[12]赵轶鹏, 邵在胜, 宋琪玲, 等.一种新型自然光气体熏蒸平台:系统结构与控制精度[J].农业环境科学学报, 2012, 31(11): 2082-2093 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201211006.htm
ZHAO Y P, SHAO Z S, SONG Q L, et al. System structure and control accuracy of a solar-illuminated gas fumigation platform[J]. Journal of Agro-Environment Science, 2012, 31(11): 2082-2093 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201211006.htm
[13]邵在胜, 沈士博, 贾一磊, 等.臭氧浓度增加对不同敏感型水稻元素吸收与分配的影响[J].农业环境科学学报, 2016, 35(9): 1642-1652 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201609003
SHAO Z S, SHEN S B, JIA Y L, et al. Impact of ozone stress on element absorption and distribution of rice genotypes with different ozone sensitivities[J]. Journal of Agro-Environment Science, 2016, 35(9): 1642-1652 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201609003
[14]穆海蓉, 邵在胜, 沈士博, 等.臭氧浓度增加对超级稻南粳9108稻穗不同部位籽粒氨基酸含量的影响[J].农业环境科学学报, 2017, 36(3): 420-427 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201703002
MU H R, SHAO Z S, SHEN S B, et al. Impacts of ozone stress on grain amino acids of super rice cultivar Nanjing 9108 differ with grain positions on a panicle[J]. Journal of Agro-Environment Science, 2017, 36(3): 420-427 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201703002
[15]张大鹏, 吴建国, 石春海.稻米糊化温度DSC试验条件的优化及相关分析[J].中国粮油学报, 2011, 26(11): 1-4 http://d.old.wanfangdata.com.cn/Periodical/zglyxb201111001
ZHANG D P, WU J G, SHI C H. Optimization of DSC experimental conditions and correlation analysis for gelatinization temperature traits of rice[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(11): 1-4 http://d.old.wanfangdata.com.cn/Periodical/zglyxb201111001
[16]CHATAKANONDA P, VARAVINIT S, CHINACHOTI P. Effect of crosslinking on thermal and microscopic transitions of rice starch[J]. LWT-Food Science and Technology, 2000, 33(4): 276-284 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b734369acdeb2e49da0dc5f203da74d
[17]WANG Y X, YANG L X, HAN Y, et al. The impact of elevated tropospheric ozone on grain quality of hybrid rice: A free-air gas concentration enrichment (FACE) experiment[J]. Field Crops Research, 2012, 129: 81-89 http://cn.bing.com/academic/profile?id=a4417d3c327f868a61b41210fe7691d8&encoded=0&v=paper_preview&mkt=zh-cn
[18]宋琪玲, 齐义涛, 赵轶鹏, 等.自由空气中臭氧浓度升高对"武运粳21"稻米物性及食味品质的影响[J].中国生态农业学报, 2013, 21(5): 566-571 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013507&flag=1
SONG Q L, QI Y T, ZHAO Y P, et al. Impact of free air ozone concentration enrichment on cooked rice (Wuyunjing 21) texture and palatability[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 566-571 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013507&flag=1
[19]FREI M. Breeding of ozone resistant rice: Relevance, approaches and challenges[J]. Environmental Pollution, 2015, 197: 144-155 http://cn.bing.com/academic/profile?id=bcb2640b526867d43663416ce4c1aff0&encoded=0&v=paper_preview&mkt=zh-cn
[20]LII C Y, TSAI M L, TSENG K H. Effect of amylose content on the rheological property of rice starch[J]. Cereal Chemistry, 1996, 73(1): 415-420 http://cn.bing.com/academic/profile?id=385988ec7aa7cc30ddc60b2b57be922b&encoded=0&v=paper_preview&mkt=zh-cn
[21]李莎莎, 吴娜娜, 李兴峰, 等.不同品种糙米粉糊化特性比较研究[J].粮油食品科技, 2016, 24(4): 15-18 http://d.old.wanfangdata.com.cn/Periodical/lyspkj201604004
LI S S, WU N N, LI X F, et al. Compare of the paste properties of different varieties of brown rice flour[J]. Science and Technology of Cereals Oils and Foods, 2016, 24(4): 15-18 http://d.old.wanfangdata.com.cn/Periodical/lyspkj201604004
[22]刘奕, 张其芳, 程方民.蛋白质对稻米米粉热力学和黏滞特性的影响效应[J].中国粮油学报, 2006, 21(6): 9-13 http://d.old.wanfangdata.com.cn/Periodical/zglyxb200606003
LIU Y, ZHANG Q F, CHENG F M. Influence of protein in milled rice on DSC parameters and RVA properties[J]. Journal of the Chinese Cereals and Oils Association, 2006, 21(6): 9-13 http://d.old.wanfangdata.com.cn/Periodical/zglyxb200606003
[23]陆大雷, 郭换粉, 董策, 等.生长季节对糯玉米淀粉粒分布和热力学特性的影响[J].作物学报, 2010, 36(11): 1998-2003 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201011022
LU D L, GUO H F, DONG C, et al. Starch granule size distribution and thermal properties of waxy maize cultivars in growing seasons[J]. Acta Agronomica Sinica, 2010, 36(11): 1998-2003 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201011022
[24]赵前程, 吴素文, 李新华, 等.磷酸酯化改性对玉米杂交种淀粉糊化过程中热力学性质的影响[J].食品与生物技术学报, 2008, 27(3): 18-20 http://d.old.wanfangdata.com.cn/Periodical/wxqgdxxb200803004
ZHAO Q C, WU S W, LI X H, et al. Influence of modification by phosphate on the thermal properties of starches from normal corn hybrids during pasting[J]. Journal of Food Science and Biotechnology, 2008, 27(3): 18-20 http://d.old.wanfangdata.com.cn/Periodical/wxqgdxxb200803004
[25]唐明霞, 陈惠, 顾拥建, 等.乳熟期玉米糊化热力学性质的分析[J].食品与生物技术学报, 2015, 34(3): 291-294 http://d.old.wanfangdata.com.cn/Periodical/wxqgdxxb201503010
TANG M X, CHEN H, GU Y J, et al. Pasting thermodynamic analysis of maize in milky stage[J]. Journal of Food Science and Biotechnology, 2015, 34(3): 291-294 http://d.old.wanfangdata.com.cn/Periodical/wxqgdxxb201503010
[26]杨建昌.水稻弱势粒灌浆机理与调控途径[J].作物学报, 2010, 36(12): 2011-2019 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201012001
YANG J C. Mechanism and regulation in the filling of inferior spikelets of rice[J]. Acta Agronomica Sinica, 2010, 36(12): 2011-2019 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201012001
[27]张庆, 王娟, 景立权, 等.叶面施用不同形态锌化合物对稻米锌浓度及有效性的影响[J].中国水稻科学, 2015, 29(6): 610-618 http://d.old.wanfangdata.com.cn/Periodical/zgsdkx201506007
ZHANG Q, WANG J, JING L Q, et al. Effect of foliar application of different Zn compounds on Zn concentration and bioavailability in brown rice[J]. Chinese Journal of Rice Science, 2015, 29(6): 610-618 http://d.old.wanfangdata.com.cn/Periodical/zgsdkx201506007
[28]穆海蓉.稻米品质对臭氧胁迫的响应及其影响因子[D].扬州: 扬州大学, 2018: 145-150 http://cdmd.cnki.com.cn/Article/CDMD-11117-1018089621.htm
MU H R. The response of rice grain quality to ozone stress and its regulation factors[D]. Yangzhou: Yangzhou University, 2018: 145-150 http://cdmd.cnki.com.cn/Article/CDMD-11117-1018089621.htm
[29]陈书强, 金峰, 董丹, 等.两种穗型粳稻穗上不同粒位籽粒几个营养和蒸煮品质性状的比较分析[J].作物学报, 2008, 34(4): 641-652 http://d.old.wanfangdata.com.cn/Periodical/zuowxb200804016
CHEN S Q, JIN F, DONG D, et al. Comparisons of several nutritional and cooking qualities of grains at different grain positions of panicle between two panicle types of Japonica rice[J]. Acta Agronomica Sinica, 2008, 34(4): 641-652 http://d.old.wanfangdata.com.cn/Periodical/zuowxb200804016
[30]薛菁芳, 陈书强, 潘国君, 等.粳稻不同粒位上粒重和食味与其他品质性状的关系[J].华北农学报, 2015, 30(3): 129-135 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201503025
XUE J F, CHEN S Q, PAN G J, et al. Relationship between grain weight, taste quality and other quality traits at different grain positions of japonica rice[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(3): 129-135 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201503025
[31]汪巧菊, 陈昕钰, 冉莉萍, 等.小麦强弱势粒胚乳淀粉体和蛋白体发育及物质积累研究[J].麦类作物学报, 2019, 39(1): 89-95 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201901013
WANG Q J, CHEN X Y, RAN L P, et al. Study on amyloid and protein development and their accumulation in endosperm between superior and inferior wheat grains[J]. Journal of Triticeae Crops, 2019, 39(1): 89-95 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201901013
[32]SU D, SULTAN F, ZHAO N C, et al. Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration[J]. Journal of Zhejiang University Science B, 2014, 15(11): 986-996 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxbb-e201411006

相关话题/作物 环境科学 臭氧 大气 农业