胡发龙2, 3,
柴强2, 3,,
1.甘肃农业大学资源与环境学院 兰州 730070
2.甘肃农业大学农学院 兰州 730070
3.甘肃省干旱生境作物学重点实验室 兰州 730070
基金项目: 国家公益性行业(农业)科研专项201503125-3
国家自然科学基金项目31771738
国家自然科学基金项目31860363
详细信息
作者简介:王琦明, 主要从事农田生态系统研究。E-mail:wangqiming0614@yahoo.com
通讯作者:柴强, 主要从事多熟种植、节水农业和循环农业的研究。E-mail:Chaiq@gsau.edu.cn
中图分类号:S344计量
文章访问数:519
HTML全文浏览量:41
PDF下载量:376
被引次数:0
出版历程
收稿日期:2019-01-20
录用日期:2019-04-03
刊出日期:2019-09-01
Effect of conservation tillage on natural resources utilization efficiency and sustainability of integrated wheat-maize intercropping system
WANG Qiming1, 3,,HU Falong2, 3,
CHAI Qiang2, 3,,
1. Faculty of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, China
2. Faculty of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
3. Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China
Funds: the Special Fund for Agro-scientific Research in the Public Interest of China201503125-3
the National Natural Science Foundation of China31771738
the National Natural Science Foundation of China31860363
More Information
Corresponding author:CHAI Qiang, E-mail: Chaiq@gsau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:农田复合系统是集约化农作的有效途径之一,在增加生物多样性和提高产量方面具有重要作用。干旱区农业生产中,温室气体减排和作物耗水减量是发展高效可持续农业的重要参考指标,研发基于作物复合生产的模式是该区节水、减排和可持续农业发展面临的重大课题。本研究以河西绿洲灌区长期规模化种植的小麦/玉米复合生产系统为对象,于2010-2012年度在甘肃农业大学校地联合绿洲农业科研教学基地(武威站),通过集成免耕立茬(NTS)、免耕秸秆覆盖(NTM)、少耕秸秆翻压(RTS)形成不同小麦/玉米间作复合系统,并以传统间作(CTI)为对照,重点研究了不同系统的土壤碳排放量和水分利用特征,比较分析了其生产效率和可持续性。结果表明,小麦和玉米复合系统的生物热能产较单作小麦提高113%,较单作玉米提高21%,该系统基于生物热能产的土地当量比均大于1。农田复合生产系统能有效降低土壤CO2排放,特别是集成免耕秸秆覆盖的间作系统,土壤CO2排放量比单作玉米降低12%,比传统间作降低13%,排放效率比单作玉米提高39%,比传统间作提高31%。此外,农田复合生产系统还显著降低了作物耗水,与传统间作相比,集成免耕秸秆覆盖的间作系统的棵间蒸发量、耗水总量和单位耗水碳排放量分别降低11%、5%和9%,但单位耗水生物热能产提高19%。农田复合生产系统较传统间作具有更高的土地当量比(1.78)、碳排当量比(1.48)和耗水当量比(1.22),三者分别提高14%、28%和20%,因而其可持续评价指数提高了13%。小麦/玉米间作集成免耕秸秆覆盖的农田复合生产系统可作为河西绿洲灌区高效可持续农作的可行模式。
关键词:小麦/玉米间作/
保护性耕作/
土壤CO2排放/
水分利用/
生物热能产
Abstract:The integrated production system is effective for crop intensification and also plays an important role in improving biodiversity and grain yield. The reduction of greenhouse gas emissions and crop water consumption are important parameters in developing high-efficient and sustainable agriculture in arid areas. Researches on soil carbon emission, water use and characteristic of the integrated production system will benefit the productivity and sustainability of agricultural practices in this region. The experiment was carried out in 2011 and 2012 at the Oasis Agricultural Scientific Researching and Teaching Station of Gansu Agriculture University and Local Government, China. Wheat-maize intercropping system was used as the object of this study due to its long-term application in Hexi Oasis region. Through integration, different conservation practices, including no-till with stubble standing, no-till with stubble mulching, and reduced tillage with stubble incorporation were applied in wheat-maize intercropping system forming three integrated production systems (named NTS, NTM and RTS, respectively), with conventional intercropping (CTI), conventional monocropped maize (CTM) and wheat (CTW) as the control systems. The study mainly focused on soil carbon emission and water use characteristics of different cropping systems, and further compared the differences in system effectiveness and sustainability. Results showed that the energy yield of integrated wheat-maize intercropping system increased by 113% over monocropping wheat, and by 21% over monocropping maize, and the land equivalent ratios of integrated intercropping systems based on energy yield were greater than 1. The integrated system also significantly reduced soil CO2 emission, especially for the NTM, of which, the soil CO2 emission was reduced by 12% than CTM, and by 13% than CTI. Also, its' CO2 emission efficiency increased by 39% over CTM, and by 31% over CTI. In addition, the integrated system significantly reduced the crop water consumption. Compared to CTI, NTM reduced evaporation, water consumption and carbon emission per unit of water by 11%, 5% and 9%, respectively. Nevertheless, the energy yield per unit of water improved by 19%. Compared to CTI, land (1.78), carbon (1.48) and water (1.22) equivalent ratios improved by 14%, 28% and 20% under NTM respectively. Therefore, the sustainability index was enhanced by 13% over the CTI. Consequently, the integrated wheat-maize production system can be used as a high-efficient and sustainable cropping model in the Hexi Oasis Irrigation Area.
Key words:Wheat-maize intercropping/
Conservation tillage/
Soil CO2 emission/
Water utilization/
Energy yield
HTML全文

图1小麦/玉米间作示意图
Figure1.Diagrammatic sketch of maize and wheat intercropping


图22011年和2012年不同耕作方式下小麦/玉米复合生产系统的生物热能产(A)和土地当量比(B)
NTS:免耕立茬间作; NTM:免耕秸秆覆盖间作; RTS:少耕秸秆翻压间作; CTI:传统间作; CTM:传统单作玉米; CTW:传统单作小麦。不同小写字母表示同一年不同处理间差异显著(P < 0.05)。
Figure2.Energy yield (A) and land equivalent ratio (B) of wheat and maize intercropping systems under different tillage practices in 2011 and 2012
NTS: no-till with stubble standing of intercropping system; NTM: no-till with stubble mulching of intercropping system; RTS: reduced tillage with stubble incorporation of intercropping system; CTI: conventional intercropping system; CTM: conventional monocropping of maize; CTW: conventional monocropping of wheat. Different lowercase letters indicate significant differences among treatments in the same year (P < 0.05).


图32011年和2012年不同耕作方式下小麦/玉米复合生产系统和传统间作的生物热能产耗水当量比(WEREY)和碳排耗水当量比(WERCE)
NTS:免耕立茬间作; NTM:免耕秸秆覆盖间作; RTS:少耕秸秆翻压间作; CTI:传统间作。不同小写字母表示同一年份不同处理间差异显著(P < 0.05)。
Figure3.Water equivalent ratio of energy yield (WEREY) and water equivalent ratio of carbon emission (WERCE) of wheat and maize intercropping systems under different tillage practices and the conventional intercropping system in 2011 and 2012
NTS: no-till with stubble standing of intercropping system; NTM: no-till with stubble mulching of intercropping system; RTS: reduced tillage with stubble incorporation of intercropping system; CTI: conventional intercropping system. Different lowercase letters indicate significant differences among treatments in the same year (P < 0.05).

表1武威站2011—2012年作物生育期内逐月气象资料
Table1.Monthly meteorological data during the growing season in Wuwei Station in 2011 and 2012
年份 Year | 项目 Item | 3月 Match | 4月 April | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September |
2011 | 温度Temperature (℃) | 1.7 | 9.2 | 16.3 | 21.7 | 22.8 | 21.0 | 14.6 |
降雨量Rainfall (mm) | 5.2 | 2.5 | 27.3 | 15.5 | 37.8 | 90.2 | 41.4 | |
参考蒸发ETo (mm) | 1.3 | 2.5 | 3.9 | 4.3 | 4.3 | 3.5 | 3.3 | |
2012 | 温度Temperature (℃) | 2.7 | 10.4 | 13.8 | 18.0 | 19.1 | 18.8 | 12.9 |
降雨量Rainfall (mm) | 9.2 | 14.8 | 22.8 | 21.3 | 52.6 | 18.6 | 32.9 | |
参考蒸发ETo (mm) | 1.8 | 4.3 | 3.4 | 4.5 | 4.7 | 3.0 | 2.7 |

表2不同小麦/玉米间作复合生产系统主要农艺参数
Table2.Major agronomic parameters of various wheat and maize intercropping system
作物系统 Cropping system | 作物 Crop | 带宽 Strip width (cm) | 膜宽 Mulch width (cm) | 行数 Row number | 行距 Rows spacing (cm) | 株距 Plants spacing (cm) | 密度 Planting density (plants·hm-2) |
间作Intercropping | 小麦Wheat | 80 | — | 6 | 12 | — | 6 750 000 |
玉米Maize | 80 | 80 | 2 | 40 | 24 | 82 500 | |
单作小麦Monocropping wheat | 小麦Wheat | — | — | — | 12 | — | 3 750 000 |
单作玉米Monocropping maize | 玉米Maize | — | 120 | 3 | 40 | 30 | 52 500 |

表5不同耕作方式下小麦/玉米复合生产系统的可持续性
Table5.Sustainability of wheat and maize intercropping systems under different tillage practices
处理 Treatment | ji | 参考指标Functional component | 可持续评价系数 Evaluation index | |||||
作物水分利用效率 Crop water use efficiency | 土地当量比 Land equivalent ratio | 生物热能产 Energy yield | 单位耗水生物热能产 energy yield of per unit water use efficiency | 土壤CO2排放量 Soil CO2 emissions | 单位耗水碳排放 carbon emission of per unit water use efficiency | |||
NTS | 1 | 0.86 | 0.93 | 0.89 | 0.87 | 0.37 | 0.64 | 0.73b |
NTM | 2 | 0.89 | 0.93 | 0.95 | 0.94 | 0.42 | 0.74 | 0.78a |
RTS | 3 | 0.82 | 0.89 | 0.86 | 0.83 | 0.41 | 0.73 | 0.73b |
CTI | 4 | 0.77 | 0.85 | 0.83 | 0.79 | 0.37 | 0.67 | 0.69c |
CTW | 5 | 0.61 | 0.44 | 0.41 | 0.72 | 0.82 | 0.81 | 0.61d |
CTM | 6 | 0.76 | 0.44 | 0.73 | 0.82 | 0.34 | 0.52 | 0.53e |
NTS:免耕立茬间作; NTM:免耕秸秆覆盖间作; RTS:少耕秸秆翻压间作; CTI:传统间作; CTM:传统单作玉米; CTW:传统单作小麦。NTS: no-till with stubble standing of intercropping system; NTM: no-till with stubble mulching of intercropping system; RTS: reduced tillage with stubble incorporation of intercropping system; CTI: conventional intercropping system; CTM: conventional monocropping of maize; CTW: conventional monocropping of wheat. |

表32011年和2012年不同耕作方式下小麦/玉米复合生产系统土壤CO2排放特征
Table3.Soil CO2 emission characteristics of wheat and maize intercropping systems under different tillage practices in 2011 and 2012
处理 Treatment | 土壤CO2排放量 Soil CO2 emission (t·hm-2) | CO2排放效率 Carbon emission efficiency (MJ·kg-1) | 碳排当量比 Carbon equivalent ratio | |||||
2011 | 2012 | 2011 | 2012 | 2011 | 2012 | |||
NTS | 10.3a | 8.6c | 53.7d | 57.6b | 1.10c | 1.39b | ||
NTM | 7.9c | 8.4c | 73.8a | 63.6a | 1.46a | 1.50a | ||
RTS | 8.4c | 8.5c | 63.8b | 56.3b | 1.33b | 1.35c | ||
CTI | 9.6b | 9.1bc | 52.6d | 52.0d | 1.10c | 1.22d | ||
CTW | 4.1d | 4.3d | 60.7c | 55.8bc | — | — | ||
CTM | 10.4a | 9.7a | 42.4e | 43.0e | — | — | ||
P-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
LSD (0.05) | 0.44 | 0.14 | 2.7 | 2.2 | 0.05 | 0.07 | ||
NTS:免耕立茬间作; NTM:免耕秸秆覆盖间作; RTS:少耕秸秆翻压间作; CTI:传统间作; CTM:传统单作玉米; CTW:传统单作小麦。不同不写字母表示不同处理间差异显著(P < 0.05)。NTS: no-till with stubble standing of intercropping system; NTM: no-till with stubble mulching of intercropping system; RTS: reduced tillage with stubble incorporation of intercropping system; CTI: conventional intercropping system; CTM: conventional monocropping of maize; CTW: conventional monocropping of wheat. Different lowercase letters indicate significant differences among treatments (P < 0.05). |

表42011年和2012年不同耕作方式下小麦/玉米复合生产系统的耗水特征
Table4.Water use characteristics of wheat and maize intercropping systems under different tillage practices in 2011 and 2012
处理 Treatment | 棵间蒸发 Evaporation (mm) | E/ET (%) | 耗水总量 Water consumption (mm) | WUEEY (MJ·hm-2·mm-1) | WUECE (kg·hm-2·mm-1) | |||||||||
2011 | 2012 | 2011 | 2012 | 2011 | 2012 | 2011 | 2012 | 2011 | 2012 | |||||
NTS | 297bc | 261c | 39.4c | 38.6c | 752b | 676bc | 735b | 736b | 3.74b | 3.46bc | ||||
NTM | 292bc | 254cd | 39.6c | 37.9cd | 736c | 670c | 791a | 795a | 2.92d | 3.36c | ||||
RTS | 305b | 274b | 40.4bc | 40.0b | 756b | 686b | 706c | 698d | 3.02d | 3.37c | ||||
CTI | 320a | 293a | 41.6b | 42.1a | 771a | 695a | 652e | 676e | 3.38c | 3.55b | ||||
CTW | 156e | 144e | 36.8d | 37.8cd | 424e | 378e | 581f | 631f | 2.61e | 3.16d | ||||
CTM | 286d | 248d | 44.4a | 41.9a | 644d | 592d | 682d | 704c | 4.39a | 4.46a | ||||
P-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
LSD (0.05) | 9.8 | 7.2 | 3.9 | 2.3 | 4.3 | 11.5 | 32.3 | 31.5 | 0.03 | 0.09 | ||||
NTS:免耕立茬间作; NTM:免耕秸秆覆盖间作; RTS:少耕秸秆翻压间作; CTI:传统间作; CTM:传统单作玉米; CTW:传统单作小麦。E:蒸发; ET:蒸散发; WUEEY:单位耗水热能产; WUECE:单位耗水碳排放。不同小写字母表示不同处理间差异显著(P < 0.05)。NTS: no-till with stubble standing of intercropping system; NTM: no-till with stubble mulching of intercropping system; RTS: reduced tillage with stubble incorporation of intercropping system; CTI: conventional intercropping system; CTM: conventional monocropping of maize; CTW: conventional monocropping of wheat. E: evaporation; ET: evapotranspiration; WUEEY: energy yield of per unit water use efficiency; WUEEC: carbon emission of per unit water use efficiency. Different lowercase letters indicate significant differences among treatments (P < 0.05). |

参考文献
[1] | WANJARI R H, SINGH M V, GHOSH P K. Sustainable yield index: An approach to evaluate the sustainability of long-term intensive cropping systems in India[J]. Journal of Sustainable Agriculture, 2004, 24(4): 39-56 doi: 10.1300/J064v24n04_05 |
[2] | ZHOU D, AN P, PAN Z, et al. Arable land use intensity change in China from 1985 to 2005: Evidence from integrated cropping systems and agro economic analysis[J]. The Journal of Agricultural Science, 2012, 150(2): 179-190 doi: 10.1017/S0021859611000396 |
[3] | BROOKER R W, KARLEY A J, NEWTON A C, et al. Facilitation and sustainable agriculture: A mechanistic approach to reconciling crop production and conservation[J]. Functional Ecology, 2015, 30(1): 98-107 http://cn.bing.com/academic/profile?id=52ae972dd43b69ebbea1ef11fcf2defa&encoded=0&v=paper_preview&mkt=zh-cn |
[4] | 柴强, 胡发龙, 陈桂平.禾豆间作氮素高效利用机理及农艺调控途径研究进展[J].中国生态农业学报, 2017, 25(1): 19-26 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170104&flag=1 CHAI Q, HU F L, CHEN G P. Research advance in the mechanism and agronomic regulation of high-efficient use of nitrogen in cereal-legume intercropping[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 19-26 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170104&flag=1 |
[5] | TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898): 671-677 doi: 10.1038/nature01014 |
[6] | MUELLER N D, GERBER J S, JOHNSTON M, et al. Closing yield gaps through nutrient and water management[J]. Nature, 2012, 490(7419): 254-257 doi: 10.1038/nature11420 |
[7] | HU F L, CHAI Q, YU A Z, et al. Less carbon emissions of wheat-maize intercropping under reduced tillage in arid areas[J]. Agronomy for Sustainable Development, 2015, 35(2): 701-711 doi: 10.1007/s13593-014-0257-y |
[8] | 张仁陟, 黄高宝, 蔡立群, 等.几种保护性耕作措施在黄土高原旱作农田的实践[J].中国生态农业学报, 2013, 21(1): 61-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013108&flag=1 ZHANG R Z, HUANG G B, CAI L Q, et al. Dry farmland practice involving multi-conservation tillage measures in the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 61-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013108&flag=1 |
[9] | ARSLAN A, MCCARTHY N, LIPPER L, et al. Adoption and intensity of adoption of conservation farming practices in Zambia[J]. Agriculture, Ecosystems & Environment, 2014, 187: 72-86 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d1900dc0a08ea9ea78360f4dba410914 |
[10] | AL-KAISI M M, YIN X H. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations[J]. Journal of Environmental Quality, 2005, 34(2): 437-445 doi: 10.2134/jeq2005.0437 |
[11] | FUENTES M, HIDALGO C, ETCHEVERS J, et al. Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions[J]. Plant and Soil, 2011, 355(1/2): 183-197 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1050cfd742441f7c96046d4dd01b966c |
[12] | ALLETTO L, COQUET Y, BENOIT P, et al. Tillage management effects on pesticide fate in soils. A review[J]. Agronomy for Sustainable Development, 2010, 30(2): 367-400 doi: 10.1051/agro/2009018 |
[13] | GOVAERTS B, SAYRE K D, CEBALLOS-RAMIREZ J M, et al. Conventionally tilled and permanent raised beds with different crop residue management: effects on soil C and N dynamics[J]. Plant and Soil, 2006, 280(1/2): 143-155 http://cn.bing.com/academic/profile?id=91d49d4fe1e17309d91aaf89b4527c50&encoded=0&v=paper_preview&mkt=zh-cn |
[14] | KIRKEGAARD J A, HUNT J R, MCBEATH T M, et al. Improving water productivity in the Australian Grains industry — a nationally coordinated approach[J]. Crop & Pasture Science, 2014, 65(7): 583-601 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=475d3951901c16446b3d9da52d1c169c |
[15] | HATFIELD J L, SAUER T J, PRUEGER J H. Managing soils to achieve greater water use efficiency[J]. Agronomy Journal, 2001, 93(2): 271-280 doi: 10.2134/agronj2001.932271x |
[16] | ALTIERI M A, NICHOLLS C I, HENAO A, et al. Agroecology and the design of climate change-resilient farming systems[J]. Agronomy for Sustainable Development, 2015, 35(3): 869-890 doi: 10.1007/s13593-015-0285-2 |
[17] | 胡发龙, 柴强, 甘延太, 等.少免耕及秸秆还田小麦间作玉米的碳排放与水分利用特征[J].中国农业科学, 2015, 49(1): 120-131 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201601011 HU F L, CHAI Q, GAN Y T, et al. Characteristics of soil carbon emission and water utilization in wheat/maize intercropping with minimal/zero tillage and straw retention[J]. Scientia Agricultura Sinica, 2015, 49(1): 120-131 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201601011 |
[18] | 殷文, 史倩倩, 郭瑶, 等.秸秆还田、一膜两年用及间作对农田碳排放的短期效应[J].中国生态农业学报, 2016, 24(6): 716-724 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016603&flag=1 YIN W, SHI Q Q, GUO Y, et al. Short-term response of farmland carbon emission to straw return, two-year plastic film mulching and intercropping[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 716-724 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016603&flag=1 |
[19] | 殷文, 柴强, 樊志龙, 等.绿洲灌区典型种植模式的水热利用与碳排放和能值分析[J].应用生态学报, 2018, 29(11): 3658-3668 http://d.old.wanfangdata.com.cn/Periodical/yystxb201811018 YIN W, CHAI Q, FAN Z L, et al. Emergy analysis, water-heat utilization, and carbon emission of typical cropping patterns in the oasis irrigation area[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3658-3668 http://d.old.wanfangdata.com.cn/Periodical/yystxb201811018 |
[20] | HU F L, GAN Y T, CUI H Y, et al. Intercropping maize and wheat with conservation agriculture principles improves water harvesting and reduces carbon emissions in dry areas[J]. European Journal of Agronomy, 2016, 74: 9-17 doi: 10.1016/j.eja.2015.11.019 |
[21] | CHAI Q, QIN A Z, GAN Y T, et al. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas[J]. Agronomy for Sustainable Development, 2014, 34(2): 535-543 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2e2271e9711ea372005cfb5a0f2b537a |
[22] | QIN A Z, HUANG G B, CHAI Q, et al. Grain yield and soil respiratory response to intercropping systems on arid land[J]. Field Crop Research, 2013, 144: 1-10 doi: 10.1016/j.fcr.2012.12.005 |
[23] | YANG C H, HUANG G B, CHAI Q, et al. Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China[J]. Field Crops Research, 2011, 124(3): 426-432 doi: 10.1016/j.fcr.2011.07.013 |
[24] | LORENZ A J, GUSTAFSON T J, COORS J G, et al. Breeding maize for a bioeconomy: A literature survey examining harvest index and stover yield and their relationship to grain yield[J]. Crop Science, 2010, 50(1): 1-12 doi: 10.2135/cropsci2009.02.0086 |
[25] | 王自奎, 吴普特, 赵西宁, 等.作物间套作群体光能截获和利用机理研究进展[J].自然资源学报, 2015, 30(6): 1057-1066 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201506016 WANG Z K, WU P T, ZHAO X N, et al. A review of light interception and utilization by intercropped canopies[J]. Journal of Natural Resources, 2015, 30(6): 1057-1066 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201506016 |
[26] | 黄高宝, 张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报, 2002, 18(1): 53-56 doi: 10.3321/j.issn:1002-6819.2002.01.013 HUANG G B, ZHANG E H. Coordinating of root-water- fertilizer relation of spring wheat-spring corn intercropping system under regulated deficit irrigation[J]. Transactions of the CSAE, 2002, 18(1): 53-56 doi: 10.3321/j.issn:1002-6819.2002.01.013 |
[27] | 刘广才, 杨祁峰, 李隆, 等.小麦/玉米间作优势及地上部与地下部因素的相对贡献[J].植物生态学报, 2008, 32(2): 477-484 doi: 10.3773/j.issn.1005-264x.2008.02.027 LIU G C, YANG Q F, LI L, et al. Intercropping advantage and contribution of above-and below-ground interactions in wheat-maize intercropping[J]. Journal of Plant Ecology, 2008, 32(2): 477-484 doi: 10.3773/j.issn.1005-264x.2008.02.027 |
[28] | AWAL M A, KOSHI H, IKEDA T. Radiation interception and use by maize/peanut intercrop canopy[J]. Agricultural and Forest Meteorology, 2006, 139(1/2): 74-83 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0629e7a8cd39e48a6d28c83dd91f278 |
[29] | 李鲁华, 陈树宾, 秦莉, 等.不同土壤水分条件下春小麦品种根系功能效率的研究[J].中国农业科学, 2002, 35(7): 867-871 doi: 10.3321/j.issn:0578-1752.2002.07.025 LI L H, CHEN S B, QIN L, et al. Study on root function efficiency of spring wheats under different moisture condition[J]. Scientia Agricultura Sinica, 2002, 35(7): 867-871 doi: 10.3321/j.issn:0578-1752.2002.07.025 |
[30] | LITHOURGIDIS A S, DHIMA K V, VASILAKOGLOU I B, et al. Sustainable production of barley and wheat by intercropping common vetch[J]. Agronomy for Sustainable Development, 2007, 27(2): 95-99 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cd7f72e5144b2bfcdeb3d7f21dfbf91 |
[31] | FASAKHODI A A, NOURI S H, AMINI M. Water resources sustainability and optimal cropping pattern in farming systems; a multi-objective fractional goal programming approach[J]. Water Resources Management, 2010, 24(15): 4639-4657 doi: 10.1007/s11269-010-9683-z |
[32] | 张凤云, 吴普特, 赵西宁, 等.间套作提高农田水分利用效率的节水机理[J].应用生态学报, 2012, 23(5): 1400-1406 http://d.old.wanfangdata.com.cn/Periodical/yystxb201205036 ZHANG F Y, WU P T, ZHAO X N, et al. Water-saving mechanisms of intercropping system in improving cropland water use efficiency[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1400-1406 http://d.old.wanfangdata.com.cn/Periodical/yystxb201205036 |
[33] | LI L L, HUANG G B, ZHANG R Z, et al. Benefits of conservation agriculture on soil and water conservation and its progress in China[J]. Agricultural Sciences in China, 2011, 10(6): 850-859 doi: 10.1016/S1671-2927(11)60071-0 |