删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

2004-2015年长江中下游地区冬油菜生产碳足迹的时空变化

本站小编 Free考研考试/2022-01-01

陈中督,
徐春春,
纪龙,
方福平,
中国水稻研究所 杭州 311300
基金项目: 国家重点研发计划项目2016YFD0300210
浙江省自然科学基金青年基金项目LQ18G030013

详细信息
作者简介:陈中督, 主要从事低碳农作制研究。E-mail:chenzhongdu@caas.cn
通讯作者:方福平, 主要研究方向为稻田生态及产业经济研究。E-mail:fangfuping@caas.cn
中图分类号:S181.6;S511.047

计量

文章访问数:712
HTML全文浏览量:6
PDF下载量:686
被引次数:0
出版历程

收稿日期:2018-11-26
录用日期:2019-02-18
刊出日期:2019-07-01

Spatial and temporal changes in carbon footprint for oilseed rape production in the middle and lower reaches of Yangtze River during 2004-2015

CHEN Zhongdu,
XU Chunchun,
JI Long,
FANG Fuping,
China National Rice Research Institute, Hangzhou 311300, China
Funds: the National Key Research and Development Program of China2016YFD0300210
the Natural Science Foundation of ZhejiangLQ18G030013

More Information
Corresponding author:FANG Fuping, E-mail:fangfuping@caas.cn


摘要
HTML全文
(3)(4)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:长江流域是我国油菜生产的主产区,系统分析油菜生产碳足迹对促进该地区农业低碳化生产与缓解气候变化的影响具有重要的意义。本文基于油菜播种面积、产量及生产投入等统计资料数据,运用农业碳足迹理论和生命周期评价法定量分析2004-2015年长江中下游地区油菜生产碳足迹时空变化动态及其构成。研究结果表明,油菜生产的碳足迹呈先下降后上升的趋势,最低点出现在2013年,为2 177.6 kg·hm-2;肥料和人工是长江流域油菜生产主要的温室气体排放源,分别占总碳足迹的50.9%~53.1%和5.8%~8.4%。不同省份间油菜生产碳足迹具有明显的差异,江苏省和浙江省的单位面积碳足迹(CFa)和单位产量碳足迹(CFy)均较高,而湖南和江西两省的CFa和CFy均较低。长江中下游地区油菜高产省CFa、CFy显著高于低产省,其中,氮肥、磷肥和复合肥产生的碳足迹值均显著高于低产省份,分别提高81.7%、81.2%和112.8%(P < 0.05)。研究表明发展油菜生产节肥技术,加强机械一体化技术以减少人工成本是未来长江流域油菜应对气候变化发展低碳农业的重要举措。结果部分尽量详细些
关键词:碳足迹/
油菜/
全球变暖/
生命周期/
时空变化/
减排
Abstract:The Yangtze River is one of the major oilseed rape producing areas in China. It is therefore of great significance to analyze the carbon footprint of oilseed rape, for developing low-carbon agriculture and for climate change mitigation in this region. Based on the statistical data of sown area, crop yield, and farmland investment of oilseed rape production along the Yangtze River, the spatiotemporal dynamic change in carbon footprint and its composition of oilseed rape during 2004-2015 in the middle and lower reaches of Yangtze River was estimated using the theory of carbon footprint and life cycle assessment method in the agricultural sector. The results showed the carbon footprint of oilseed rape at first decreased and then increased, the lowest point being 2 177.6 kg·hm-2 in 2013. The main components of the carbon footprint for oilseed rape production were fertilizer (50.9%-53.1%) and labor (5.8%-8.4%). Obvious differences were found among main agricultural provinces in the study area. The carbon footprint per unit area (CFa) and per unit yield (CFy) of Jiangsu and Zhejiang Provinces were higher, while that of Hunan and Jiangxi Provinces were lower. What was more, the CFa and CFy in high yield regions were significantly higher than that in low yield regions. Among them, the carbon footprint of nitrogenous fertilizer, phosphate fertilizer, and compound fertilizer was significantly higher than that for low-yielding provinces, which increased by 81.7%, 81.2%, and 112.8%, respectively, (P < 0.05). The results suggest that improving crop management practices that limit fertilizer consumption and strengthen mechanical integration technology to reduce labor costs could help mitigate greenhouse gas emissions from oilseed rape production along the middle and lower reaches of Yangtze River.
Key words:Carbon footprint/
Oilseed rape/
Global warming/
Life cycle assessment/
Spatio-temporal variation/
Greenhouse gas mitigation

HTML全文


图1油菜生产的碳足迹计算边界
Figure1.System boundary for calculating greenhouse gases emissions of oilseed rape production


下载: 全尺寸图片幻灯片


图22004—2015年长江中下游流域油菜生产单位面积碳足迹和单位产量碳足迹变化情况
Figure2.Range of carbon footprint per unit area and carbon footprint per unit yield of oilseed rape production of the middle and lower reaches of Yangtze River from 2004 to 2015


下载: 全尺寸图片幻灯片


图3长江中下游流域各省份2004—2015年油菜生产单位面积碳足迹、单位产量碳足迹及其变化率分布
a:单位面积碳足迹分布, 单位为kg(CO2-eq)∙hm-2; b: 2004—2015年单位面积碳足迹变化率分布(CFa trend), 单位为kg(CO2-eq)∙hm-2∙a-1; c:单位产量碳足迹分布(CFy), 单位为kg(CO2-eq)∙kg-1; d: 2004—2015年单位产量碳足迹变化率分布(CFy trend), 单位为kg(CO2-eq)∙kg-1∙a-1。a: distribution of carbon footprint per unit area (CFa), kg(CO2-eq)∙hm-2; b: distribution of change in carbon footprint trends per unit area during 2004-2015 (CFa trend), kg(CO2-eq)∙hm-2∙a-1; c: distribution of carbon footprint per unit yield (CFy), kg(CO2-eq)∙kg-1; d: distribution of change in carbon footprint trends per unit yield during 2004-2015 (CFy trend), kg(CO2-eq)∙kg-1∙a-1.
Figure3.Distribution of carbon footprint per unit area, carbon footprint per unit yield and their trends of oilseed rape production during 2004-2015 in each province of the middle and lower reaches of Yangtze River


下载: 全尺寸图片幻灯片

表1油菜生产中各农业投入资料的温室气体排放系数
Table1.Greenhouse gases emissions coefficients of different agricultural materials for oilseed production
项目Item 系数Coefficient 来源Sources
柴油Diesel 0.89 kg(CO2-eq)?kg-1 CLCD0.7
柴油燃烧
Diesel combustion
4.1 kg(CO2-eq)?kg-1 CLCD0.7
氮肥N fertilizer 1.53 kg(CO2-eq)?kg-1 CLCD0.7
磷肥P fertilizer 1.63 kg(CO2-eq)?kg-1 CLCD0.7
钾肥K fertilizer 0.65 kg(CO2-eq)?kg-1 CLCD0.7
复合肥
Compound fertilizer
1.77 kg(CO2-eq)?kg-1 CLCD0.7
人工Labor 0.86 kg(CO2-eq)?d-1?person-1 刘巽浩等[21] LIU, et al[21]
杀虫剂Insecticides 16.61 kg(CO2-eq)?kg-1 Ecoinvent2.2
除草剂Herbicides 10.15 kg(CO2-eq)?kg-1 Ecoinvent2.2
杀菌剂Fungicides 10.57 kg(CO2-eq)?kg-1 Ecoinvent2.2
油菜种子Rice seed 0.83 kg(CO2-eq)?kg-1 Gan, et al[22]


下载: 导出CSV
表22004—2015年长江中下游流域油菜生产单位面积碳足迹组成
Table2.Composition of carbon footprint of oilseed rape production of the middle and lower reaches of Yangtze River from 2004 to 2015
项目Item 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
农田投入
Farm input [kg(CO2-eq)?hm-2]
氮肥
N fertilizer
714.4 693.7 577.8 573.5 589.2 572.9 554.1 526.0 525.3 470.8 484.9 484.4
磷肥
P fertilizer
579.7 612.5 417.2 474.0 357.7 358.8 330.3 324.8 285.3 237.5 261.7 269.4
钾肥
K fertilizer
8.1 6.6 4.4 3.8 1.8 3.2 3.6 1.8 2.6 2.7 1.7 3.6
复合肥
Compound fertilizer
165.3 245.8 243.7 273.8 336.5 326.8 371.9 355.4 364.9 409.3 455.8 474.7
种子
Seed
2.7 4.7 5.0 4.3 3.5 3.5 3.3 3.3 3.6 3.0 3.3 3.1
人工
Labor
192.5 187.2 203.5 202.3 205.1 197.1 166.7 149.5 147.1 147.4 139.1 136.1
除草剂
Herbicide
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
杀虫剂
Insecticide
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
杀菌剂
Fungicide
73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7
柴油
Diesel
27.3 27.5 22.0 31.1 33.7 38.7 42.3 39.5 52.3 56.8 73.8 91.6
N2O排放量
N2O emission (kg?hm-2)
998.3 986.7 865.4 873.9 923.5 886.9 874.2 826.8 827.4 773.9 804.9 813.2
单位面积碳足迹
(CFa) Carbon footprint per unit area [kg(CO2-eq)?hm-2]
2 764.3 2 840.7 2 415.1 2 512.6 2 527.1 2 463.9 2 422.3 2 303.1 2 284.4 2 177.6 2 301.3 2 352.2
产量
Yield (kg?hm-2)
2 068.1 1 941.0 1 843.5 2 086.5 2 030.6 2 047.3 1 803.7 1 861.3 1 909.7 2 133.0 1 989.2 2 154.9
单位产量碳足迹
(CFy) Carbon footprint per unit yield [kg(CO2-eq)?kg-1]
1.34 1.46 1.31 1.20 1.24 1.20 1.34 1.24 1.20 1.02 1.16 1.09


下载: 导出CSV
表3长江中下游流域不同时期油菜生产碳足迹回归方程
Table3.Regression equations of carbon footprint of oilseed rape production in different periods of the middle and lower reaches of Yangtze River
项目Item 时间段Time period
2004—2013 2013—2015 2004—2015
回归方程Regression equation Y2=12.40X1+122.17 Y2=10.40X4+0.29X10+975.83 Y1=12.81X1+12.20X2+6.27X4+102.08
决定系数R2 0.950 0.989 0.956
标准回归系数Standard regression coefficient
氮肥N fertilizer (X1) 0.975** 0.333 1.132**
磷肥P fertilizer (X2) 0.311 0.445 0.528**
钾肥K fertilizer (X3) 0.360 0.367 0.112
复合肥Compound fertilizer (X4) 0.195 0.989** 0.743**
油菜种子Rice seed (X5) 0.391 0.321 0.387
人工Labor (X6) 0.459 0.124 0.349
除草剂Herbicide (X7) 0.123 0.131 0.112
杀虫剂Insecticide (X8) 0.213 0.176 0.231
杀菌剂Fungicide (X9) 0.312 0.211 0.412
柴油Diesel (X10) 0.447 0.011** 0.419


下载: 导出CSV
表4长江中下游流域典型省份碳足迹、投入及产业构成
Table4.Carbon footprint, input and composition of industry of typical provinces in the middle and lower reaches of Yangtze River
项目Item 高产省份(江苏、浙江)
High yield provinces (Jiangsu, Zhejiang)
低产省份(江西、湖南)
Low yield provinces (Jiangxi, Hunan)
农田投入
Farm input [kg(CO2-eq)?hm-2]
氮肥N fertilizer 775.7±141.1a 427.0±21.8b
磷肥P fertilizer 464±111.2a 256.1±70.3b
钾肥K fertilizer 1.7±0.8b 3.2±0.6a
复合肥Compound fertilizer 434.8±155.1a 204.3±114.3b
种子Seed 3.1±1.2a 4.7±2.2a
人工Labor 190.9±72.2a 161.0±70.2a
除草剂Herbicide 1.2a 1.2a
杀虫剂Insecticide 1.1a 1.1a
杀菌剂Fungicide 73.7a 73.7a
柴油Diesel 54.8±20.2a 32.1±20.3a
N2O排放量N2O emission (kg?hm-2) 1 156.7±342.2a 683.5±80.3b
产量Yield (kg?hm-2) 2 153.9±322.7a 1 621.3±197.1b
单位面积碳足迹(CFa) Carbon footprint per unit area [kg(CO2-eq)?hm-2] 3 157.7±451.2a 1 848.8±201.2b
单位产量碳足迹(CFy) Carbon footprint per unit yield [kg(CO2-eq)?kg-1] 1.4±0.1a 1.1±0.1b
同行数据后不同小写字母表示高产与低产省份在0.05水平差异显著。Different lowercase letters in the same row mean significant differences at 0.05 level between provinces of high yield and low yield.


下载: 导出CSV

参考文献(35)
[1]IPCC. Climate Change 2014: Mitigation of Climate Change[M]. Contribution of Working Group Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014
[2]王占彪, 陈静, 张立峰, 等.河北省棉花生产碳足迹分析[J].棉花学报, 2016, 28(6):594-601 http://d.old.wanfangdata.com.cn/Periodical/mhxb201606009
WANG Z B, CHEN J, ZHANG L F, et al. Carbon footprint analysis of cotton production in Hebei Province[J]. Cotton Science, 2016, 28(6):594-601 http://d.old.wanfangdata.com.cn/Periodical/mhxb201606009
[3]LEHUGER S, GABRIELLE B, LAVILLE P. Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe[J]. Agricultural and Forest Meteorology, 2011, 151(12):1654-1671 doi: 10.1016/j.agrformet.2011.07.002
[4]LINQUIST B, VAN GROENIGEN K J, ADVIENTO-BORBE M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global Change Biology, 2012, 18(1):194-209 doi: 10.1111/j.1365-2486.2011.02502.x
[5]ROBERTSON G P, PAUL E A, HARWOOD R R. Greenhouse gases in intensive agriculture:Contributions of individual gases to the radiative forcing of the atmosphere[J]. Science, 2000, 289:1922-1925 doi: 10.1126/science.289.5486.1922
[6]LAL R. Soil carbon dynamics in cropland and rangeland[J]. Environmental Pollution, 2002, 116(3):353-362 doi: 10.1016/S0269-7491(01)00211-1
[7]杜受祜.低碳发展:城市可持续发展的必然战略选择[J].成都发展改革研究, 2010, (1):40-41 http://d.old.wanfangdata.com.cn/Periodical/hjwryfz201410019
DU S H. Low-carbon development:An inevitable strategic choice for sustainable urban development[J]. Chengdu Development and Reform Research, 2010, (1):40-41 http://d.old.wanfangdata.com.cn/Periodical/hjwryfz201410019
[8]齐晔, 李惠民, 王晓.农业与中国的低碳发展战略[J].中国农业科学, 2012, 45(1):1-6 doi: 10.3864/j.issn.0578-1752.2012.01.001
QI Y, LI H M, WANG X. Agriculture and low-carbon development strategy in China[J]. Scientia Agricultura Sinica, 2012, 45(1):1-6 doi: 10.3864/j.issn.0578-1752.2012.01.001
[9]WIEDMANN T, MINX J. A definition of 'Carbon Footprint'[M]//PERTSOVA C C. Ecological Economics Research Trends. Hauppauge, NY: Nova Science Publishers, 2009: 193-195
[10]GAN Y T, LIANG C, HAMEL C, et al. Strategies for reducing the carbon footprint of field crops for semiarid areas. A review[J]. Agronomy for Sustainable Development, 2011, 31(4):643-656 doi: 10.1007/s13593-011-0011-7
[11]陈中督.农作措施对双季稻田固碳减排效应与农户低碳技术采纳行为研究[D].北京: 中国农业大学, 2017
CHEN Z D. Farming practices on carbon sequestration and emission mitigation in double rice field and adoption behavior of low carbon technology by rice farmers[D]. Beijing: China Agricultural University, 2017
[12]米松华, 黄祖辉, 朱奇彪, 等.农户低碳减排技术采纳行为研究[J].浙江农业学报, 2014, 26(3):797-804 doi: 10.3969/j.issn.1004-1524.2014.03.44
MI S H, HUANG Z H, ZHU Q B, et al. Study on factors influencing farmers' adoption of low-carbon technologies[J]. Acta Agriculturae Zhejiangensis, 2014, 26(3):797-804 doi: 10.3969/j.issn.1004-1524.2014.03.44
[13]傅廷栋.中国油菜生产与品种改良[J].华中农业大学学报, 1999, 18(6):501-504 doi: 10.3321/j.issn:1000-2421.1999.06.001
FU T D. Rapeseed production and variety improvement in China[J]. Journal of Huazhong Agricultural University, 1999, 18(6):501-504 doi: 10.3321/j.issn:1000-2421.1999.06.001
[14]涂金星, 张冬晓, 张毅, 等.我国油菜育种目标及品种审定问题的商榷[J].中国油料作物学报, 2007, 29(3):350-352 doi: 10.3321/j.issn:1007-9084.2007.03.025
TU J X, ZHANG D X, ZHANG Y, et al. Discussion on some standards of variety registration and breeding goals of Brassica napus in China[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(3):350-352 doi: 10.3321/j.issn:1007-9084.2007.03.025
[15]中华人民共和国国家统计局.中国农村统计年鉴-2014[M].北京:中国统计出版社, 2014
National Statistical Bureau of the People's Republic of China. China Rural Statistical Yearbook, 2014[M]. Beijing:China Statistics Press, 2014
[16]徐华丽.长江流域油菜施肥状况调查及配方施肥效果研究[D].武汉: 华中农业大学, 2012
XU H L. Investigation on fertilization and effect of formulated fertilization of winter rapeseed in Yangtze River Basin[D]. Wuhan: Huazhong Agricultural University, 2012
[17]王红, 张瑞芳, 周大迈.氮肥引起的面源污染问题研究进展[J].北方园艺, 2011, (5):201-203 http://d.old.wanfangdata.com.cn/Periodical/bfyany201105071
WANG H, ZHANG R F, ZHOU D M. Current situations and research progress of non-point pollution problems caused by nitrogen[J]. Northern Horticulture, 2011, (5):201-203 http://d.old.wanfangdata.com.cn/Periodical/bfyany201105071
[18]唐浩, 邱卫国, 周翾, 等.稻麦轮作条件下氮素流失特性及控制对策研究[J].人民黄河, 2010, 32(6):64-66 doi: 10.3969/j.issn.1000-1379.2010.06.028
TANG H, QIU W G, ZHOU X, et al. Study on nitrogen loss characteristics and control measures under crop rotation[J]. Yellow River, 2010, 32(6):64-66 doi: 10.3969/j.issn.1000-1379.2010.06.028
[19]R??S E, SUNDBERG C, HANSSON P A. Carbon footprint of food products[M]//MUTHU S S. Assessment of Carbon Footprint in Different Industrial Sectors, Volume 1. Singapore: Springer, 2014: 85-112
[20]Intergovernmental Panel on Climate Change (IPCC). Climate Change 2006: Synthesis Report[R]. Cambridge: Cambridge University Press, 2006
[21]刘巽浩, 徐文修, 李增嘉, 等.农田生态系统碳足迹法:误区、改进与应用——兼析中国集约农作碳效率[J].中国农业资源与区划, 2013, 34(6):1-11 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205028
LIU X H, XU W X, LI Z J, et al. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China's intensive farming[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6):1-11 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205028
[22]GAN Y T, LIANG C, HUANG G B, et al. Carbon footprint of canola and mustard is a function of the rate of N fertilizer[J]. The International Journal of Life Cycle Assessment, 2012, 17(1):58-68 doi: 10.1007/s11367-011-0337-z
[23]LIEBIG M A, TANAKA D L, KRUPINSKY J M, et al. Dynamic cropping systems:Contributions to improve agroecosystem sustainability[J]. Agronomy Journal, 2007, 99(4):899-903 http://cn.bing.com/academic/profile?id=047cd6cf09748b15dcbe8abcf4dddc7e&encoded=0&v=paper_preview&mkt=zh-cn
[24]ZENTNER R P, LAFOND G P, DERKSEN D A, et al. Effects of tillage method and crop rotation on non-renewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies[J]. Soil and Tillage Research, 2004, 77(2):125-136 doi: 10.1016/j.still.2003.11.002
[25]KRUPINSKY J M, BAILEY K L, MCMULLEN M P, et al. Managing plant disease risk in diversified cropping systems[J]. Agronomy Journal, 2002, 94(2):198-209 doi: 10.2134/agronj2002.0198
[26]MILLER P R, GAN Y T, MCCONKEY B G, et al. Pulse crops for the northern great plains:Ⅰ. Grain productivity and residual effects on soil water and nitrogen[J]. Agronomy Journal, 2003, 95(4):972-979 doi: 10.2134/agronj2003.9720
[27]TANAKA D L, KRUPINSKY J M, MERRILL S D, et al. Dynamic cropping systems for sustainable crop production in the northern great plains[J]. Agronomy Journal, 2007, 99(4):904-911 doi: 10.2134/agronj2006.0132s
[28]OSBORNE B, SAUNDERS M, WALMSLEY D, et al. Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance[J]. Agriculture, Ecosystems & Environment, 2010, 139(3):293-301 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=46416f7d1217afcda7e5a5f22d1e3f45
[29]卢小宏.不同农作措施下冬小麦-夏玉米碳足迹及优化潜力评价[D].北京: 中国农业大学, 2013
LU X H. Carbon footprint and optimization potential of winter wheat and summer maize under different agricultural measures[D]. Beijing: China Agricultural University, 2013
[30]HILLIER J, HAWES C, SQUIRE G, et al. The carbon footprints of food crop production[J]. International Journal of Agricultural Sustainability, 2009, 7(2):107-118 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.3763/ijas.2009.0419
[31]刘夏璐, 王洪涛, 陈建, 等.中国生命周期参考数据库的建立方法与基础模型[J].环境科学学报, 2010, 30(10):2136-2144 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201010030
LIU X L, WANG H T, CHEN J, et al. Method and basic model for development of Chinese reference life cycle database[J]. Acta Scientiae Circumstantiae, 2010, 30(10):2136-2144 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201010030
[32]杨帆, 孟远夺, 姜义, 等. 2013年我国种植业化肥施用状况分析[J].植物营养与肥料学报, 2015, 21(1):217-225 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201501024
YANG F, MENG Y D, JIANG Y, et al. Chemical fertilizer application and supply in crop farming in China in 2013[J]. Plant Nutrition and Fertilizer Science, 2015, 21(1):217-225 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201501024
[33]任涛, 鲁剑巍.中国冬油菜氮素养分管理策略[J].中国农业科学, 2016, 49(18):3506-3521 doi: 10.3864/j.issn.0578-1752.2016.18.005
REN T, LU J W. Integrated nitrogen management strategy for winter oilseed rape (Brassica napus L.) in China[J]. Scientia Agricultura Sinica, 2016, 49(18):3506-3521 doi: 10.3864/j.issn.0578-1752.2016.18.005
[34]周广生, 左青松, 廖庆喜, 等.我国油菜机械化生产现状、存在问题及对策[J].湖北农业科学, 2013, 52(9):2153-2157 doi: 10.3969/j.issn.0439-8114.2013.09.050
ZHOU G S, ZUO Q S, LIAO Q X, et al. Mechanical production status, existing problems and strategy discussion of rapeseed in China[J]. Hubei Agricultural Sciences, 2013, 52(9):2153-2157 doi: 10.3969/j.issn.0439-8114.2013.09.050
[35]崔晓晨, 李安宁, 王国占, 等.三大粮食作物农机作业成本及效益分析——基于全国26个省的农机户问卷调查[J].农机化研究, 2011, 33(2):15-18 doi: 10.3969/j.issn.1003-188X.2011.02.004
CUI X C, LI A N, WANG G Z, et al. Research on machinery cost of grain-production in China-based on a nationwide questionnaire survey[J]. Journal of Agricultural Mechanization Research, 2011, 33(2):15-18 doi: 10.3969/j.issn.1003-188X.2011.02.004

相关话题/生产 农业 技术 种子 农田