刘丽娟1, 2,
李小玉1, 2,,
1.浙江农林大学林业与生物技术学院 杭州 311300
2.中国科学院新疆生态与地理研究所 乌鲁木齐 830011
3.中国科学院大学 北京 100049
基金项目: 国家自然科学基金项目31470708
国家自然科学基金项目U1503182
国家自然科学基金项目41271202
详细信息
作者简介:张振宇, 主要研究方向为干旱区农业水文环境。E-mail:zhangzhenyu162@mails.ucas.ac.cn
通讯作者:李小玉, 主要研究方向为景观生态学。E-mail:lixy76@163.com
中图分类号:S641.1计量
文章访问数:505
HTML全文浏览量:4
PDF下载量:472
被引次数:0
出版历程
收稿日期:2019-02-28
录用日期:2019-04-23
刊出日期:2019-08-01
Evapotranspiration characteristics of mulched drip-irrigated sunflower farmland in arid region
ZHANG Zhenyu1, 2, 3,,LIU Lijuan1, 2,
LI Xiaoyu1, 2,,
1. School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
2. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Natural Science Foundation of China31470708
the National Natural Science Foundation of ChinaU1503182
the National Natural Science Foundation of China41271202
More Information
Corresponding author:LI Xiaoyu, E-mail:lixy76@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:膜下滴灌是中国西北干旱区农业的新兴节水灌溉模式,定量分析膜下滴灌农田蒸散发特征并对比分析其与普通灌溉农田蒸散发的差异,对认识和优化干旱区节水滴灌技术有重要意义。本文以新疆天山北坡三工河流域绿洲向日葵农田为研究对象,基于2016年作物生育期观测数据,利用波文比-能量平衡法、地理探测器及通径分析方法对作物不同生育期农田蒸散发特征进行了定量分析,并与普通灌溉农田进行了比较。结果表明:1)膜下滴灌农田日均蒸散量在作物开花期最高,成熟期次之,苗期最小;随着作物的生长发育,净辐射通量与日蒸散发的相关性逐渐降低;日均蒸散量在各阶段的变化特征与普通灌溉相同,但每个阶段的日均蒸散量均小于普通灌溉农田。2)膜下滴灌农田日内净辐射通量在开花期最高,成熟期次之,苗期最小;日内湍流通量方面,苗期潜热通量与显热通量相当,开花期潜热通量明显高于显热通量,而成熟期潜热通量小于显热通量;而普通灌溉农田在3个时期的潜热通量均高于显热通量。3)温度、湿度与风速是影响膜下滴灌向日葵农田蒸散发的主导因子,湿度的下限决定了蒸散发下限,风速与气温的上限决定了蒸散发的上限;风向对蒸散发的作用不明显。膜下滴灌向日葵农田具有独特蒸散发特征,与普通灌溉农田相比,全生育期节水量超过300 mm。
Abstract:Mulched drip-irrigation is a burgeoning water-saving irrigation mode in the arid region of Northwest China. It is of great significance to understand and optimize mulched drip irrigation in arid region by analyzing the characteristics of evapotranspiration in mulched drip-irrigated farmland and comparing it with ordinarily irrigated farmland. Using the oasis sunflower farmland in the Sangong River basin on the northern slope of the Tianshan Mountain in Xinjiang as the study area, the farmland evapotranspiration characteristics during the sunflower growth period in 2016 were analyzed using the Bowen ratio-energy balance method, geographical detector, and path analysis method. Furthermore, these characteristics were compared to those of ordinarily irrigated farmlands. The results showed that:1) for mulched drip-irrigated farmland, the average daily evapotranspiration was highest at the flowering stage, followed by the maturity stage, and lowest in the seedling stage. With the growth of crops, the correlation between net radiative flux and daily evapotranspiration gradually decreased. The change trends of average daily evapotranspiration were the same as those of ordinarily irrigated farmland, whereas the average daily evapotranspiration of mulched drip-irrigated farmland was lower than that of ordinarily irrigated farmland at each stage. 2) Regarding the intraday flux in mulched drip-irrigated farmland, the net radiative flux peak was highest at the flowering stage, followed by that at the mature stage, and the minimum appeared at the seedling stage. In terms of turbulent flux, the latent heat flux was equivalent to the sensible heat flux at the seedling stage. Post the flowering period, the latent heat flux was significantly higher than the sensible heat flux, and this characteristic was the opposite at the mature stage. For the ordinarily irrigated farmland, the latent heat flux was higher than the sensible heat flux in all three crop growth stages. 3) The relationship between evapotranspiration and meteorological factors calculated by path analysis showed that temperature, humidity, and wind speed were the dominant factors influencing evapotranspiration. The lower limit of humidity determined the minimum evapotranspiration. The upper limit of wind speed and temperature determined the maximum evapotranspiration. The influence of wind direction was not significant on evapotranspiration. Sunflower farmland using mulched drip-irrigation has unique evapotranspiration features compared with ordinarily irrigated farmland, the amount of water saving exceeds 300 mm during the entire growth period.
HTML全文
图12016年观测期内站点降水量变化
Figure1.Change of precipitation during the observation period at observation station
下载: 全尺寸图片幻灯片
图2“类空间数据”示意图(横轴代表日内时间变化, 以小时计, 0:00—24:00;纵轴代表观测日数, 以d计, 0—365/366儒略日; 每个格代表某一天某时段的测量数据, 每个测量数据包含多个测量指标, 从而构成了多层测量数据)
Figure2.Schematic of similar spatial data (the horizontal axis represents the time variation in the day, from 0:00 to 24:00. The vertical axis represents the number of observation days, from 0 to 365/366 days of year (DOY). Each grid represents measurement data of a certain period of time in a certain day, each measurement data contains multiple measurement metrics constituting multi-layer measurement data)
下载: 全尺寸图片幻灯片
图3膜下滴灌向日葵农田不同生育期日蒸散量及各通量变化
$\overline {{\rm{ET}}} $:日均蒸散量; R:日均净辐射通量; G:日均土壤热通量; H:日均显热通量。
Figure3.Changes of daily evapotranspiration and fluxes of sunflower field at different growth stages under mulched drip-irrigation
$\overline {ET} $: average daily evapotranspiration; R: average daily net radiation flux; G: average daily soil heat flux; H: average daily sensible heat flux.
下载: 全尺寸图片幻灯片
图4膜下滴灌向日葵农田不同生育期日蒸散量(ET)与净辐射通量(R)拟合结果
Figure4.Fitting results of daily evapotranspiration (ET) and net radiant flux (R) of sunflower field at different growth stages under mulched drip-irrigation
下载: 全尺寸图片幻灯片
图5膜下滴灌向日葵农田不同生育期日内净辐射通量(R)、土壤热通量(G)、显热通量(H)及潜热通量(λE)变化
Figure5.Intraday changes of net radiation flux (R), soil heat flux (G), soil sensible heat flux (H) and soil latent heat flux (λE) of sunflower field at different growth stages under mulched drip-irrigation
下载: 全尺寸图片幻灯片
图6膜下滴灌向日葵生育期内农田日均温变化及各生育期的平均气温
Figure6.Daily average temperature and each stage's average temperature of sunflower field during growth period under mulched drip-irrigation
下载: 全尺寸图片幻灯片
表1主要观测仪器信息
Table1.Summary of instruments used for observation
观测项目 Observation project | 安装高度 Installation height (m) | 型号 Model |
风速/风向 Wind speed / wind direction | 3.0 | 05103-6 |
温度/湿度?Temperature / humidity | 1.5/2.0 | 111N & 222N |
净辐射通量?Net radiant flux | 2.0 | Q*7.1 |
土壤热通量?Soil heat flux | -0.1 | HFP01 |
降水量?Precipitation | 2.0 | 7852M |
下载: 导出CSV
表2各气象因子对膜下滴灌向日葵田蒸散发的解释贡献
Table2.Interpreting contribution of various meteorological factors to evapotranspiration of sunflower field under mulched drip-irrigation
风速 Wind speed | 风向 Wind direction | 最低温度 Minimum temperature | 最低湿度 Minimum humidity | 最高温度 Maximum temperature | 最高湿度 Maximum humidity | |
q | 0.49 | 0.58 | 0.56 | 0.64 | 0.54 | 0.72 |
q值代表自变量x解释了q×100%的因变量y。q represents the explanatory power of independent variable x to dependent variable y which explains the dependent variable y of q × 100%. |
下载: 导出CSV
表3各气象因子间交互作用对膜下滴灌向日葵田蒸散发的解释贡献及各因子对蒸散发的影响差异
Table3.Interpreting contributions of interaction and impact difference of various meteorological factors to evapotranspiration of sunflower field under mulched drip-irrigation
风速 Wind speed | 风向 Wind direction | 最低温度 Minimum temperature | 最低湿度 Minimum humidity | 最高温度 Maximum temperature | 最高湿度 Maximum humidity | |
风速?Wind speed | 0.49 | |||||
风向?Wind direction | 0.99 (Y) | 0.58 | ||||
最低温度 Minimum temperature | 0.99 (Y) | 0.99 (N) | 0.56 | |||
最低湿度 Minimum humidity | 1.00 (Y) | 0.99 (Y) | 1.00 (Y) | 0.64 | ||
最高温度 Maximum temperature | 0.99 (Y) | 1.00 (N) | 0.99 (N) | 0.99 (N) | 0.54 | |
最高湿度 Maximum humidity | 1.00 (Y) | 0.99 (Y) | 1.00 (Y) | 0.99 (Y) | 0.99 (Y) | 0.72 |
Y表示两个因子对因变量的影响具有明显差异, N表示两个因子对因变量的影响没有明显差异。“Y” means obvious differences in effects between two factors, “N” means no significant difference in effects between two factors. |
下载: 导出CSV
表4逐小时尺度气象因子与膜下滴灌向日葵田蒸散量通径分析结果
Table4.Path analysis between weather factor and evapotranspiration of sunflower field at hour scale under mulched drip-irrigation
气象因子 Meteorological factor | 直接作用 Direct effect | 间接作用?Indirect effect | 总贡献 Total contribution | ||||||
风速 Wind speed | 风向 Wind direction | 最低气温 Minimum temperature | 最低湿度 Minimum humidity | 最高气温 Maximum temperature | 最高湿度 Maximum humidity | 总和 Total | |||
风速 Wind speed | 0.168 1 | -0.007 9 | -0.612 7 | 0.779 6 | 0.539 9 | -0.677 1 | 0.021 9 | 0.19 | |
风向 Wind direction | -0.112 3 | 0.011 8 | -0.186 5 | -0.065 0 | 0.227 3 | 0.084 6 | 0.072 3 | -0.04 | |
最低温度 Minimum temperature | -2.663 7 | 0.038 7 | -0.007 9 | 1.364 4 | 2.841 6 | -1.333 0 | 2.903 7 | 0.24 | |
最低湿度 Minimum humidity | -2.165 7 | -0.060 5 | -0.003 4 | 1.678 1 | -1.733 4 | 2.094 8 | 1.975 7 | -0.19 | |
最高温度 Maximum temperature | 2.841 6 | 0.031 9 | -0.009 0 | -2.663 7 | 1.321 1 | -1.311 9 | -2.631 6 | 0.21 | |
最高湿度 Maximum humidity | 2.115 9 | -0.053 8 | -0.004 5 | 1.678 1 | -2.144 0 | -1.761 8 | -2.285 9 | -0.17 |
下载: 导出CSV
表5部分普通灌溉向日葵农田蒸散研究结果
Table5.Results of some evapotranspiration studies in ordinary irrigated sunflower fields
研究区 Research area | 阶段 Stage | 日均蒸散量 Daily average evapotranspiration (mm?d-1) | 文献 Literature |
Karnal, India | 苗期?Seedling stage | 2.22 | [44] |
开花期?Flowering period | 3.93 | ||
成熟期?Mature period | 2.73 | ||
Albacete, Spain | 苗期?Seedling stage | 1.80 | [45] |
开花期?Flowering period | 6.45 | ||
成熟期?Mature period | 4.40 | ||
河套灌区 Hetao irrigation area | 苗期?Seedling stage | — | [46] |
开花期?Flowering period | 3.85 | ||
成熟期?Mature period | 3.25 |
下载: 导出CSV
参考文献
[1] | 赵文智, 吉喜斌, 刘鹄.蒸散发观测研究进展及绿洲蒸散研究展望[J].干旱区研究, 2011, 28(3): 463-470 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201103015 ZHAO W Z, JI X B, LIU H. Progresses in evapotranspiration research and prospect in desert oasis evapotranspiration research[J]. Arid Zone Research, 2011, 28(3): 463-470 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201103015 |
[2] | 张强, 张之贤, 问晓梅, 等.陆面蒸散量观测方法比较分析及其影响因素研究[J].地球科学进展, 2011, 26(5): 538-547 http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105009 ZHANG Q, ZHANG Z X, WEN X M, et al. Comparisons of observational methods of land surface evapotranspiration and their influence factors[J]. Advances in Earth Science, 2011, 26(5): 538-547 http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105009 |
[3] | STOCKER T F, RAIBLE C C. Climate change: Water cycle shifts gear[J]. Nature, 2005, 434(7035): 830-833 doi: 10.1038/434830a |
[4] | 贾永莹.世界干旱地区概貌[J].干旱地区农业研究, 1995, 13(1): 121-126 http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ501.021.htm JIA Y Y. General situation of dryland areas in the world[J]. Agricultural Research in the Arid Areas, 1995, 13(1): 121-126 http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ501.021.htm |
[5] | PAUWELS V R N, SAMSON R. Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland[J]. Agricultural Water Management, 2006, 82(1/2): 1-24 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=67910b9b6c2041d62b215f198ace8963 |
[6] | 袁国富, 罗毅, 邵明安, 等.塔里木河下游荒漠河岸林蒸散规律及其关键控制机制[J].中国科学:地球科学, 2015, 45(5): 695-706 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201505014 YUAN G F, LUO Y, SHAO M A, et al. Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin[J]. Science China: Earth Sciences, 2015, 45(5): 695-706 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201505014 |
[7] | WILLIAMS D G, CABLE W, HULTINE K, et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques[J]. Agricultural and Forest Meteorology, 2004, 125(3/4): 241-258 doi: 10.1016-j.agrformet.2004.04.008/ |
[8] | 马玲, 赵平, 饶兴权, 等.乔木蒸腾作用的主要测定方法[J].生态学杂志, 2005, 24(1): 88-96 doi: 10.3321/j.issn:1000-4890.2005.01.018 MA L, ZHAO P, RAO X Q, et al. Main determination methods of tree transpiration[J]. Chinese Journal of Ecology, 2005, 24(1): 88-96 doi: 10.3321/j.issn:1000-4890.2005.01.018 |
[9] | DE BRUIN H A R, VAN DEN HURK B J J M, KOHSIEK W. The scintillation method tested over a dry vineyard area[J]. Boundary-Layer Meteorology, 1995, 76(1/2): 25-40 doi: 10.1007-BF00710889/ |
[10] | MCANENEY K J, GREEN A E, ASTILL M S. Large-aperture scintillometry: The homogeneous case[J]. Agricultural and Forest Meteorology, 1995, 76(3/4): 149-162 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021230909/ |
[11] | MALEK E, BINGHAM G E. Comparison of the Bowen ratio-energy balance and the water balance methods for the measurement of evapotranspiration[J]. Journal of Hydrology, 1993, 146(2/3): 167-178 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfaba4411bbf84576f1876a5a3d1cd60 |
[12] | LI F Q, LYONS T J. Estimation of regional evapotranspiration through remote sensing[J]. Journal of Applied Meteorology, 1999, 38(11): 1644-1654 doi: 10.1175/1520-0450(1999)038<1644:EORETR>2.0.CO;2 |
[13] | 杨兴国, 杨启国, 柯晓新, 等.旱作春小麦蒸散量测算方法的比较[J].中国沙漠, 2004, 24(5): 651-656 doi: 10.3321/j.issn:1000-694X.2004.05.026 YANG X G, YANG Q G, KE X X, et al. Comparison of methods for estimating evapotranspiration in rainfed spring wheat field[J]. Journal of Desert Research, 2004, 24(5): 651-656 doi: 10.3321/j.issn:1000-694X.2004.05.026 |
[14] | CARGNEL M D, ORCHANSKY A L, BREVEDAN R E, et al. Evapotranspiration and energy balance measurements over a soybean field in the semiarid southwestern region of Buenos Aires Province (Argentina)[J]. Phyton-International Journal of Experimental Botany, 2017, 86: 181-189 |
[15] | ZáBRANSKY P, PIVEC J, BRANT V, et al. The values of crop coefficients and bowen ratio of field crops in areas with insufficient precipitation in central Europe[J]. Irrigation and Drainage, 2015, 64(2): 253-262 doi: 10.1002/ird.1903 |
[16] | 沈彦俊, 刘昌明, 莫兴国, 等.麦田能量平衡及潜热分配特征分析[J].中国生态农业学报, 1997, 5(1): 12-17 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=1997104&flag=1 SHEN Y J, LIU C M, MO X G, et al. Energy balance and latent heat flux partition in wheat field[J]. Chinese Journal of Eco-Agriculture, 1997, 5(1): 12-17 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=1997104&flag=1 |
[17] | 吴锦奎, 丁永建, 王根绪, 等.干旱区内陆河流域中游低湿草地蒸散特征[J].中国生态农业学报, 2007, 15(4): 18-21 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2007404&flag=1 WU J K, DING Y J, WANG G X, et al. Characteristics of low-lying wet-grassland evapotranspiration in the middle reach of the inland river basin of Northwest China[J]. Chinese Journal of Eco-Agriculture, 2007, 15(4): 18-21 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2007404&flag=1 |
[18] | 戚培同, 古松, 唐艳鸿, 等.三种方法测定高寒草甸生态系统蒸散比较[J].生态学报, 2008, 28(1): 202-211 doi: 10.3321/j.issn:1000-0933.2008.01.023 QI P T, GU S, TANG Y H, et al. Comparison of three methods for measurement of evapotranspiration in an alpine meadow[J]. Acta Ecologica Sinica, 2008, 28(1): 202-211 doi: 10.3321/j.issn:1000-0933.2008.01.023 |
[19] | 李玉霖, 张铜会, 崔建垣.科尔沁沙地农田玉米耗水规律研究[J].中国沙漠, 2002, 22(4): 354-358 doi: 10.3321/j.issn:1000-694X.2002.04.009 LI Y L, ZHANG T H, CUI J Y. Water consumption law of maize in Horqin sandy land[J]. Journal of Desert Research, 2002, 22(4): 354-358 doi: 10.3321/j.issn:1000-694X.2002.04.009 |
[20] | 张永强, 沈彦俊, 刘昌明, 等.华北平原典型农田水、热与CO2通量的测定[J].地理学报, 2002, 57(3): 333-342 doi: 10.3321/j.issn:0375-5444.2002.03.010 ZHANG Y Q, SHEN Y J, LIU C M, et al. Measurement and analysis of water, heat and CO2 flux from a farmland in the North China Plain[J]. Acta Geographica Sinica, 2002, 57(3): 333-342 doi: 10.3321/j.issn:0375-5444.2002.03.010 |
[21] | DING D Y, ZHAO Y, FENG H, et al. Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China[J]. Agricultural Water Management, 2018, 201: 246-257 doi: 10.1016/j.agwat.2017.12.029 |
[22] | 林涛, 郭仁松, 徐海江, 等.滴灌频率对南疆棉田水分蒸散特征及WUE的影响[J].新疆农业科学, 2015, 52(7): 1224-1229 http://d.old.wanfangdata.com.cn/Periodical/xjnykx201507008 LIN T, GUO R S, XU H J, et al. The impact of irrigation frequency on the characters of evapotranspiration and WUE which use plastic film under drip irrigation in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2015, 52(7): 1224-1229 http://d.old.wanfangdata.com.cn/Periodical/xjnykx201507008 |
[23] | SHUKLA S, SHRESTHA N K. Evapotranspiration for plastic-mulched production system for gradually cooling and warming seasons: Measurements and modeling[J]. Irrigation Science, 2015, 33(5): 387-397 doi: 10.1007/s00271-015-0473-5 |
[24] | 马金龙, 刘丽娟, 李小玉, 等.干旱区绿洲膜下滴灌棉田蒸散过程[J].生态学杂志, 2015, 34(4): 974-981 http://d.old.wanfangdata.com.cn/Periodical/stxzz201504012 MA J L, LIU L J, LI X Y, et al. Evapotranspiration process of cotton field under mulched drip irrigation of oasis in arid region[J]. Chinese Journal of Ecology, 2015, 34(4): 974-981 http://d.old.wanfangdata.com.cn/Periodical/stxzz201504012 |
[25] | 马盾, 刘忠山, 周小云, 等.新疆北部向日葵病虫草害发生及综合防治[J].作物杂志, 2011, (2): 94-97 doi: 10.3969/j.issn.1001-7283.2011.02.024 MA D, LIU Z S, ZHOU X Y, et al. New trends of disease, pest and weeds on sunflower in northern Xinjiang and comprehensive control measures[J]. Crops, 2011, (2): 94-97 doi: 10.3969/j.issn.1001-7283.2011.02.024 |
[26] | BOWEN I S. The ratio of heat losses by conduction and by evaporation from any water surface[J]. Physical Review, 1926, 27(6): 779-787 doi: 10.1103/PhysRev.27.779 |
[27] | GRACE J, LLOYD J, MCINTYRE J, et al. Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia[J]. Global Change Biology, 1995, 1(1): 1-12 doi: 10.1111-j.1365-2486.1995.tb00001.x/ |
[28] | CELLIER P, BRUNET Y. Flux-gradient relationships above tall plant canopies[J]. Agricultural and Forest Meteorology, 1992, 58(1/2): 93-117 http://www.sciencedirect.com/science/article/pii/016819239290113I |
[29] | RANA G, KATERJI N. Evapotranspiration measurement for tall plant canopies: The sweet sorghum case[J]. Theoretical and Applied Climatology, 1996, 54(3/4): 187-200 doi: 10.1007/BF00865161 |
[30] | 冯起, 司建华, 席海洋.荒漠绿洲水热过程与生态恢复技术[M].北京:科学出版社, 2009 FENG Q, SI J H, XI H Y. Hydrothermal Process and Ecological Recovery Technology in the Desert Oasis[M]. Beijing: Science Press, 2009 |
[31] | 朱劲伟.波文比在研究森林蒸发散中的作用及其处理[J].林业科学, 1980, 16(1): 58-61 http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE198001010.htm ZHU J W. The role and process of Bowen ratio in studying the evapotranspiration of forests[J]. Scientia Silvae Sinicae, 1980, 16(1): 58-61 http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE198001010.htm |
[32] | WANG J F, LI X H, CHRISTAKOS G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2016, 24(1): 107-127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f637928d711402f020a016140497a2c7 |
[33] | WANG J F, ZHANG T L, FU B J. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67: 250-256 doi: 10.1016/j.ecolind.2016.02.052 |
[34] | 王劲峰, 徐成东.地理探测器:原理与展望[J].地理学报, 2017, 72(1): 116-134 http://d.old.wanfangdata.com.cn/Periodical/zhonggtdkx201805005 WANG J F, XU C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134 http://d.old.wanfangdata.com.cn/Periodical/zhonggtdkx201805005 |
[35] | 黄小涛, 罗格平.天山北坡低山丘陵干草原生长季蒸散特征[J].干旱区地理, 2017, 40(6): 1198-1206 http://d.old.wanfangdata.com.cn/Periodical/ghqdl201706010 HUANG X T, LUO G P. Evapotranspiration characteristics of the growing season in hilly dry steppe, the northern slope of Tianshan Mountains[J]. Arid Land Geography, 2017, 40(6): 1198-1206 http://d.old.wanfangdata.com.cn/Periodical/ghqdl201706010 |
[36] | 吴锦奎, 丁永建, 沈永平, 等.黑河中游间作灌溉农田的能量平衡[J].冰川冻土, 2006, 28(3): 443-449 doi: 10.3969/j.issn.1000-0240.2006.03.022 WU J K, DING Y J, SHEN Y P, et al. Energy balance in the irrigational intercropping field in the middle reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 443-449 doi: 10.3969/j.issn.1000-0240.2006.03.022 |
[37] | 吴家兵, 关德新, 张弥, 等.涡动相关法与波文比-能量平衡法测算森林蒸散的比较研究--以长白山阔叶红松林为例[J].生态学杂志, 2005, 24(10): 1245-1249 doi: 10.3321/j.issn:1000-4890.2005.10.027 WU J B, GUAN D X, ZHANG M, et al. Comparison of eddy covariance and BREB methods in determining forest evapotranspiration - Case study on broad-leaved Korean pine forest in Changbai Mountain[J]. Chinese Journal of Ecology, 2005, 24(10): 1245-1249 doi: 10.3321/j.issn:1000-4890.2005.10.027 |
[38] | SáNCHEZ J M, LóPEZ-URREA R, RUBIO E, et al. Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry[J]. Agricultural Water Management, 2014, 137: 23-29 doi: 10.1016/j.agwat.2014.02.002 |
[39] | 吴海龙, 余新晓, 张艳, 等.异质下垫面显热通量动态变化及对环境因子的响应[J].水土保持研究, 2013, 20(4): 160-165 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201304032 WU H L, YU X X, ZHANG Y, et al. Dynamic changes in sensible heat flux of heterogeneous surface and response to environment factors[J]. Research of Soil and Water Conservation, 2013, 20(4): 160-165 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201304032 |
[40] | 贺有为, 王秋兵, 温学发, 等.季节性干旱对中亚热带人工林显热和潜热通量日变化的影响[J].生态学报, 2011, 31(11): 3069-3081 http://d.old.wanfangdata.com.cn/Periodical/stxb201111013 HE Y W, WANG Q B, WEN X F, et al. The diurnal trends of sensible and latent heat fluxes of a subtropical evergreen coniferous plantation subjected to seasonal drought[J]. Acta Ecologica Sinica, 2011, 31(11): 3069-3081 http://d.old.wanfangdata.com.cn/Periodical/stxb201111013 |
[41] | 李阳, 景元书, 李根, 等.低丘红壤区集水区和田块尺度农田能量平衡特征比较[J].生态学杂志, 2016, 35(9): 2393-2403 http://d.old.wanfangdata.com.cn/Periodical/stxzz201609017 LI Y, JING Y S, LI G, et al. Comparison of the energy balance characteristics of cropland on catchment and field scales in low hilly region of red soil[J]. Chinese Journal of Ecology, 2016, 35(9): 2393-2403 http://d.old.wanfangdata.com.cn/Periodical/stxzz201609017 |
[42] | 司建华, 冯起, 张艳武, 等.荒漠-绿洲芦苇地蒸散量及能量平衡特征[J].干旱区研究, 2010, 27(2): 160-168 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201002002 SI J H, FENG Q, ZHANG Y W, et al. Research on evapotranspiration and energy budget of Phragmites australis stand in oasis[J]. Arid Zone Research, 2010, 27(2): 160-168 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201002002 |
[43] | 王秀康, 李占斌, 邢英英.覆膜和施肥对玉米产量和土壤温度、硝态氮分布的影响[J].植物营养与肥料学报, 2015, 21(4): 884-897 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201504007 WANG X K, LI Z B, XING Y Y. Effects of mulching and fertilization on maize yield, soil temperature and nitrate-N distribution[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 884-897 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201504007 |
[44] | TYAGI N K, SHARMA D K, LUTHRA S K. Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter[J]. Agricultural Water Management, 2000, 45(1): 41-54 doi: 10.1016/S0378-3774(99)00071-2 |
[45] | LóPEZ-URREA R, MONTORO A, TROUT T J. Consumptive water use and crop coefficients of irrigated sunflower[J]. Irrigation Science, 2014, 32(2): 99-109 doi: 10.1007/s00271-013-0418-9 |
[46] | 黄凌旭.利用作物冠层温度估算农田蒸散量[D].北京: 中国水利水电科学研究院, 2018 http://cdmd.cnki.com.cn/Article/CDMD-82301-1018178105.htm HUANG L X. Estimation of evapotranspiration using the crop canopy temperature[D]. Beijing: Chinese Institute of Water Resources and Hydropower Research, 2018 http://cdmd.cnki.com.cn/Article/CDMD-82301-1018178105.htm |
[47] | 王旭, 周国逸, 张德强, 等.南亚热带针阔混交林土壤热通量研究[J].生态环境, 2005, 14(2): 260-265 doi: 10.3969/j.issn.1674-5906.2005.02.027 WANG X, ZHOU G Y, ZHANG D Q, et al. Soil heat fluxes of mixed coniferous and broad-leaf forest in the south subtropics in China[J]. Ecology and Environment, 2005, 14(2): 260-265 doi: 10.3969/j.issn.1674-5906.2005.02.027 |
[48] | 郭家选, 梅旭荣, 林琪, 等.冬小麦农田暂时水分胁迫状况下水、热通量日变化[J].生态学报, 2006, 26(1): 130-137 doi: 10.3321/j.issn:1000-0933.2006.01.019 GUO J X, MEI X R, LIN Q, et al. Diurnal variation of water and heat flux under transient water stress in a winter wheat field[J]. Acta Ecologica Sinica, 2006, 26(1): 130-137 doi: 10.3321/j.issn:1000-0933.2006.01.019 |
[49] | 袁再健, 沈彦俊, 褚英敏, 等.华北平原冬小麦生长期典型农田热、碳通量特征与过程模拟[J].环境科学, 2010, 31(1): 41-48 http://d.old.wanfangdata.com.cn/Periodical/hjkx201001007 YUAN Z J, SHEN Y J, CHU Y M, et al. Characteristics and simulation of heat and CO2 fluxes over a typical cropland during the winter wheat growing in the North China Plain[J]. Environmental Science, 2010, 31(1): 41-48 http://d.old.wanfangdata.com.cn/Periodical/hjkx201001007 |