赵璐峰,
唐建军,
郭梁,
丁丽莲,
张剑,
任伟征,
陈欣,
浙江大学生命科学学院 杭州 310058
基金项目: 科技部重大专项2016YFD0300905
国家自然基金国际合作与交流项目31661143001
详细信息
作者简介:胡亮亮, 主要研究方向为农业系统中生物的互惠及其效应。E-mail:zjuhull@126.com
通讯作者:陈欣, 主要研究方向为农业系统中生物的互惠及其效应。E-mail:chen-tang@zju.edu.cn
中图分类号:Q143计量
文章访问数:639
HTML全文浏览量:13
PDF下载量:587
被引次数:0
出版历程
收稿日期:2019-03-19
录用日期:2019-04-09
刊出日期:2019-07-01
Extension potential of rice-fish co-culture system: A case study of 10 provinces in South China
HU Liangliang,ZHAO Lufeng,
TANG Jianjun,
GUO Liang,
DING Lilian,
ZHANG Jian,
REN Weizheng,
CHEN Xin,
College of Life Sciences, Zhejiang University, Hangzhou 310058, China
Funds: the Major Projects of the Ministry of Science and Technology of China2016YFD0300905
the National Natural Science Foundation of China31661143001
More Information
Corresponding author:CHEN Xin, E-mail: chen-tang@zju.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:稻田浅水环境为许多水产动物提供了生境,也为稻鱼共生产业的发展提供了基础。但是,一个区域的稻田是否适合发展稻鱼共生系统,常常受到当地自然和社会条件的影响,了解这些影响对有效推广稻鱼共生系统有重要意义。本文以我国南方10省为研究区域,从自然和社会经济因素两个方面分析了稻鱼共生系统的推广潜力。研究利用气象资料和农业统计数据,基于地理信息系统构建了研究区域内的稻田地理分布数据库,确定了15个影响稻鱼共生系统推广效率的指标,通过指标的层级模型和线性加权评分法对不同稻田的推广优先等级进行评估,并构建了基于稻田总面积、推广率和单产水平下鱼产量估算的简易模型。结果表明,综合自然和社会经济条件,研究区域内的稻田可划分为4个推广优先等级,面积占比分别为:等级1占29.6%(3.59×106 hm2),等级2占16.9%(2.05×106 hm2),等级3占24.2%(2.94×106 hm2)和等级4占29.4%(3.57×106 hm2);其中湖南、四川、江西和浙江4省的稻田50%以上属于等级1和等级2,而在云南和贵州基本上所有的稻田都属于等级3和等级4。等级1和等级2的稻田适合推广集约型稻鱼共生模式,这两个等级的稻田每个生长季可产出最高鱼产量分别为3.77×106 t和2.15×106 t;而等级3的稻田适合进行粗放型和集约型模式相结合的推广方式,粗放型和集约型模式最高鱼产量分别为0.62×106 t和3.09×106 t。本研究主要结果为合理制定稻鱼共生系统推广策略提供借鉴,也可为国内外稻田水产养殖产业发展规划的制定提供参考。
关键词:稻鱼共生系统/
推广优先级/
地理信息系统/
自然因素/
社会经济因素/
鱼产量
Abstract:Rice fields can provide habitats for a wide range of aquatic animals, including carps, crabs, crayfish, soft shell turtles, which makes it possible to couple rice culture with fish production. This is referred to as the rice-fish co-culture system. The suitability of rice fields in a specific region for the rice-fish co-culture system often depends on local natural and social economic conditions. An understanding of the potential of rice fields for use in the rice-fish co-culture system would aid effective extension of rice-fish co-culture system and maximize the benefits of this extension. In this study, we assessed the effects of natural and social-economic conditions on the extension of the rice-fish co-culture system in 10 provinces of South China, and predicted the potential of fish yield from rice fields in the rice-fish co-culture system extension. We first built a geographical distribution database of all rice fields in the study area by using a geographic information system (GIS) comprising meteorological data and national statistics. We then assessed the extension priority of different rice fields with a hierarchy model of all assessment criteria and the weighted linear combination method. To assess the extension benefits, we further established a simple model that included rice field area, extension rate, and fish yield. The results showed that rice fields in our study region could be divided into four classes of extension priority based on natural and social-economic scores. The area proportions of four classes were:29.6% for class 1 (3.59×106 hm2), 16.9% for class 2 (2.05×106 hm2), 24.2% for class 3 (2.94×106 hm2), and 29.4% for class 4 (3.57×106 hm2). However, the proportions of rice fields in the four classes were different in the ten provinces. For the provinces of Hunan, Sichuan, Jiangxi, and Zhejiang, half of rice fields were grouped into class 1 and 2, whereas all the rice fields of the provinces of Yunnan and Guizhou were grouped into class 3 and 4. The rice fields of class 1 and class 2 were suitable for the extension of the intensive rice-fish co-culture system, and able to produce a maximum yield of 3.77×106 t and 2.15×106 t of fish in a growing season, respectively. The rice fields of class 3 were suitable for extension of the extensive or intensive rice-fish co-culture systems, and able to produce a maximum yield of 0.62×106 t or 3.09×106 t of fish in a growing season, respectively. The rice fields of class 4 were not suitable for rice-fish co-culture system. Our results may provide an important basis for extending the rice-fish co-culture system in South China. The results may also be a reference for rice-fish co-culture system development in other rice culture areas.
Key words:Rice-fish co-culture system/
Extension priority/
Geographic information system/
Natural factors/
Social-economic factor/
Fish production
HTML全文
图1稻田用于稻鱼共生系统推广的优先级评价指标层次结构(括号内数字代表指标的权重, 灰色格子内的是用于计算的基础指标, 来源于1.2中的方法构建的D1-D15数据库)
Figure1.Hierarchical structure of extension priority evaluation indices for rice-fish co-culture system (Numbers in parentheses are weights of indexes. In the gray blocks are the basic indices used for calculation, which are detailedly explained in the table 1)
下载: 全尺寸图片幻灯片
图2基于自然因素和社会经济因素的中国南方10省稻田适合推广稻鱼共生系统的得分值空间分布(图中展示的是以县为单元的分值, 通过县内所有稻田栅格的平均得到。白色区域无稻田分布。SC:四川; CQ:重庆; ZJ:浙江; HN:湖南; JX:江西; GZ:贵州; FJ:福建; YN:云南; GD:广东; GX:广西)
Figure2.Spatial distribution of scores of rice fields suitable for extending rice-fish co-culture system in 10 provinces in South China based on natural and social-economic factors. The data shown in figure are the average scores of all rice field grids within a county. The white portion is no rice field. SC: Sichuan; CQ: Chongqing; ZJ: Zhejiang; HN: Hunan; JX: Jiangxi; GZ: Guizhou; FJ: Fujian; YN: Yunnan; GD: Guangdong; GX: Guangxi.
下载: 全尺寸图片幻灯片
图3中国南方10省内稻田适合推广稻鱼共生系统优先等级的空间分布
灰色区域为非研究区域, 白色区域无稻田分布。SC:四川; CQ:重庆; ZJ:浙江; HN:湖南; JX:江西; GZ:贵州; FJ:福建; YN:云南; GD:广东; GX:广西。The gray portion is out of study area, and the white portion is no rice field. SC: Sichuan; CQ: Chongqing; ZJ: Zhejiang; HN: Hunan; JX: Jiangxi; GZ: Guizhou; FJ: Fujian; YN: Yunnan; GD: Guangdong; GX: Guangxi.
Figure3.Spatial distribution of priority classes of rice fields suitable for extending rice-fish co-culture system in 10 provinces in South China
下载: 全尺寸图片幻灯片
图4不同省份稻田不同推广优先级面积(左Y轴)和2016年稻田水产养殖面积(右Y轴)
Figure4.Areas of rice field of each suitable class for extending rice-fish co-culture system (left Y axe) and the area of rice-field aquaculture in 2016 (right Y axe) in the 10 provinces of South China
下载: 全尺寸图片幻灯片
图5在等级1和等级2稻田中不同推广率(r1和r2)的鱼预期产量(左轴)和与其相当的2016年池塘养殖产量的比例(右轴)。图中实线表示在r1=r2的情形下, 预期产量随着r1增加的变化趋势。其中r1=r2=25%、50%、75%和100%时的产量点已突出标注。阴影部分代表预期产量的可能范围, 阴影的上、下边沿分别代表r2=100%和r2=0%时预期产量随着r1增加的变化趋势。虚线为南方10省2016年的稻鱼共生系统鱼总产量
Figure5.Predicted fish production (left Y axis) and corresponding percentage in pond production (right Y axis) under different extension rates of Class 1 and Class 2 (shown as r1 and r2) of rice-fish co-culture system in South China. The solid line shows the trend of predicted production along with the change of r1 as r2 keeps identical to r1, where five special points (r1 = r2 = 0%, 25%, 50%, 75% and 100%) are labeled. The shading represents the possible range of predicted production. The upper and lower border lines show the situations of r2 = 100% and 0%, respectively. The dashed line is the total fish production of 10 provinces of South China from rice-fish co-culture system in 2016.
下载: 全尺寸图片幻灯片
图6在等级3稻田中基于不同推广率(r3)和推广模式比例的鱼预期产量(左轴)和与其产量相当的等级1稻田的推广率(r1, 右轴)。E:粗放型模式的占比; I:集约型模式的占比。图中实线表示粗放型模式和集约型模式等比例推广时, 鱼产量随r3增加的变化趋势。阴影部分代表预期产量的可能范围, 阴影的上、下边沿分别代表全部推广集约化模式和全部推广粗放型模式下的预期产量随着r3增加的变化趋势。虚线表示南方10省2016年的稻鱼共生系统鱼总产量。
Figure6.Predicted fish production in the rice fields (left axis) and corresponding extension rate of Class 1 (r1) under different extension rates of Class 3 (r3) of rice-fish co-culture system in South China. E: percentage of extensive mode; I: percentage of intensive mode. The solid line shows the trend of predicted production along with the change of r3 when the percentage of the extensive mode is identical to the intensive mode. The shading represents the range of predicted production. The upper and lower border lines show the situations of 100% intensive mode and 100% extensive mode, respectively. The dashed line is the total fish production of 10 provinces from rice-fish co-culture system in 2016 in South China.
下载: 全尺寸图片幻灯片
表1稻田用于稻鱼共生系统推广的优先级评价指标说明
Table1.Explanation of evaluation indices of extension priority for rice-fish co-culture system
指标 Index | 指标性质1) Index nature1) | 详细说明2) Explanation2) | |
气候资源 Climate resources | D1有效积温 Effective accumulated temperature (d·℃) | 正向 Positive | 生长季内≥10 ℃有效温度的总和 Effective accumulated temperature ≥10 ℃ in a growth season |
D2降雨量 Precipitation (mm) | 正向 Positive | 生长季内总降雨量, 不计微量降雨、雾、露和霜的降雨形式 Total precipitation in a growth season, excluding unmeasurable rainfalls, fogs, dews and frosts | |
D3水域面积 Inland water area (hm2) | 正向 Positive | 稻田30 km半径范围内的内陆水域面积。水域类型包括了河渠、湖泊和水库坑塘 Total water area within 30 km of each rice field grid, including rivers, canals, lakes and reservoirs | |
气候不稳定性 Climate instability | D4暴雨概率 Rainstorm probability (%) | 负向 Negative | 生长季内发生日降雨量≥50 mm的天数所占比例 Percentage of days with daily precipitation over 50 mm in a growth season |
D5高温概率 Probability of high temperature (%) | 负向 Negative | 生长季内日最高温≥35 ℃的天数所占比例 Percentage of days with maximum daily temperature over 35 ℃ in a growth season | |
D6干旱概率3) Drought probability (%)3) | 负向 Negative | 1998—2017年期间至少发生一次干旱的年份所占比例 Percentage of years that drought happened at least once in a year in the period of 1998-2017 | |
D7日温差 Daily range of temperature (℃) | 负向 Negative | 生长季内日温差的总和 Sum of daily range of temperature in a growth season | |
土壤条件 Soil condition | D8土壤有机质含量 Topsoil organic matter content (10-2 mg·g-1) | 正向 Positive | 表土层土壤的有机质含量 Organic matter content in the topsoil |
D9土壤氮含量 Topsoil N content (10-2 mg·g-1) | 正向 Positive | 表土层土壤的氮含量 Nitrogen content in the topsoil | |
D10土壤磷含量 Topsoil P content (10-2 mg·g-1) | 正向 Positive | 表土层土壤的磷含量 Phosphorus content in the topsoil | |
D11土壤 pH Topsoil pH | 双向 Two-way | 表土层土壤的水浸pH pH in the topsoil measured in a soil-water solution | |
D12土壤沙粒含量 Topsoil sand fraction (wt%) | 负向 Negative | 表土层土壤的沙含量 Sand percentage in the topsoil | |
稻田资源 Rice field resource | D13稻田分布密度 Density of rice fields (%) | 正向 Positive | 县级稻田面积占县面积的比例 Percentage of rice field areas in total areas at the county level |
推广便利性 Convenience | D14稻田到当地政府的距离 Distance to local governments (m) | 负向 Negative | 稻田栅格到县政府的欧氏距离 Euclidean distance of each rice field grid to the location of county governments |
经济水平 Economic level | D15农村人口可支配收入 Per capita disposable income of rural population ( ) | 正向 Positive | 县农村常住人口的人均可支配收入 Per capita disposable income of rural residents in county level |
1)正向指标指该指标值越大, 指标对应的推广优先级得分越高, 负向指标相反, 双向指标指随着指标的增加, 得分先增加后降低。2)气象指标(除了干旱概率)是1998—2017年20个生长季(5月1日—10月31日)的平均值。表土层厚度30 cm。3)干旱的判断标准:降雨量连续一个月少于20年平均值的20%, 或连续两个月只达到20年平均值的20%~50%, 或连续3个月只达到20年平均值的50%~75%。1) The positive indices refer to that a higher index value means a higher score for extension priority, the negative indices are opposite; while the two-way index mean as the index increases, the score increases first and then decreases. 2) Meteorological indices (except drought probability) are the average of all growth seasons (from May 1st to Oct 31st) from 1998 to 2017. Topsoil refers to a 0-30 cm soil layer. 3) Criterion for drought: precipitation is less than 20% of the average of 20 years for one month, or only 20%-50% of the average of 20 years for two months, or only 50%-75% of the average of 20 years for three months. |
下载: 导出CSV
表2基于自然因素得分(Sn)和社会经济因素得分(Ss)的稻田用于稻鱼共生系统推广的优先级分类
Table2.Classification of extension priority for rice-fish co-culture system based on natural factors score (Sn) and social-economic score (Ss)
等级 Class | 判断标准 Criterion | 策略 Strategy |
1 | Sn和Ss都高于平均水平1) Sn and Ss are above the average levels1) | 推广优先级最高, 适合大力推广集约型稻鱼共生模式 Highly prior. Suitable for major extension of intensive rice-fish mode |
2 | Ss高于平均水平但Sn低于平均水平 Ss is above the average level, but Sn is below the average level | 推广优先级较高, 适合推广集约型稻鱼共生模式 Moderately prior. Suitable for extension of intensive rice-fish mode |
3 | Ss低于平均水平但Sn高于平均水平 Sn is above the average level, but Ss is below the average level | 推广优先级较差, 适合根据实际情况推广粗放型或集约型稻鱼共生模式 Marginally prior. Intensive or extensive mode can be developed based on local conditions. |
4 | Ss和Sn都低于平均水平 Sn and Ss are below the average levels | 不适合推广, 但可由农户自发性地采用稻鱼共生模式 Not suitable for extension, but farmers can spontaneously practice rice-fish co-culture system. |
1)平均水平是所有稻田栅格经稻田面积加权的平均值。The average level is the mean of all rice field grids weighted by the rice field area of grids. |
下载: 导出CSV
表3研究区域内稻田不同推广优先等级的面积、平均得分和生产潜力
Table3.Areas, average priority scores and potential productions of the rice fields in each class
等级 Class | 稻田面积 Rice field area (106 hm2) | 面积占比 Area proportion (%) | 得分 Score | 推广模式 Extension mode | 最大鱼产量1) Maximum fish production (106 t)1) |
1 | 3.59 | 29.56 | 0.54±0.04 | 集约型Intensive | 3.77 |
2 | 2.05 | 16.85 | 0.49±0.04 | 集约型Intensive | 2.15 |
3 | 2.94 | 24.20 | 0.46±0.03 | 粗放型Extensive | 0.62 |
集约型Intensive | 3.09 | ||||
4 | 3.57 | 29.40 | 0.41±0.03 | — | — |
1)最大鱼产量是指所有稻田都推广稻鱼共生系统时的鱼总产量。1) The maximum fish production is the total fish yield from the rice fields that are all explored for rice-fish co-culture system. |
下载: 导出CSV
参考文献
[1] | FOLEY J A, RAMANKUTTY N, BRAUMAN K A, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369):337-342 |
[2] | LIU J G, YANG W. Water sustainability for China and beyond[J]. Science, 2012, 337(6095):649-650 |
[3] | 胡亮亮, 唐建军, 张剑, 等.稻-鱼系统的发展与未来思考[J].中国生态农业学报, 2015, 23(3):268-275 HU L L, TANG J J, ZHANG J, et al. Development of rice-fish system:Today and tomorrow[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3):268-275 |
[4] | Food and Agriculture Organization of the United Nations. FAOSTAT[EB/OL]. (2016). http://faostat3.fao.org/home/E |
[5] | OECD/Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2015-2024[M]. Paris: OECD Publishing, 2015 |
[6] | CABELLO F C. Heavy use of prophylactic antibiotics in aquaculture:A growing problem for human and animal health and for the environment[J]. Environmental Microbiology, 2006, 8(7):1137-1144 |
[7] | MAGALH?ES A L B, VITULE J R S. Aquarium industry threatens biodiversity[J]. Science, 2013, 341(6145):457 |
[8] | NAYLOR R L, GOLDBURG R J, PRIMAVERA J H, et al. Effect of aquaculture on world fish supplies[J]. Nature, 2000, 405(6790):1017-1024 |
[9] | PéREZ J E, NIRCHIO M, GOMEZ J A. Aquaculture:Part of the problem, not a solution[J]. Nature, 2000, 408(6812):514 |
[10] | TROELL M, NAYLOR R L, METIAN M, et al. Does aquaculture add resilience to the global food system?[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(37):13257-13263 |
[11] | AHMED N, WARD J D, SAINT C P. Can integrated aquaculture-agriculture (IAA) produce "more crop per drop"?[J]. Food Security, 2014, 6(6):767-779 |
[12] | HU L L, ZHANG J, REN W Z, et al. Can the co-cultivation of rice and fish help sustain rice production?[J]. Scientific Reports, 2016, 6:28728 |
[13] | XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50):E1381-E1387 |
[14] | 李嘉尧, 常东, 李柏年, 等.不同稻田综合种养模式的成本效益分析[J].水产学报, 2014, 38(9):1431-1438 LI J Y, CHANG D, LI B N, et al. Benefit-cost analysis of different rice-based production systems[J]. Journal of Fisheries of China, 2014, 38(9):1431-1438 |
[15] | 王晨, 胡亮亮, 唐建军, 等.稻鱼种养型农场的特征与效应分析[J].农业现代化研究, 2018, 39(5):875-882 WANG C, HU L L, TANG J J, et al. Characteristics and the effects of the rice-fish integration based farms in China[J]. Research of Agricultural Modernization, 2018, 39(5):875-882 |
[16] | DELA CRUZ C R, LIGHTFOOT C, COSTA-PIERCE B A, et al. Rice-fish Research and Development in Asia[R]. Manila: International Center for Living Aquatic Resources Management, 1992 |
[17] | CAI R K, NI D S, WANG J G. Rice-fish culture in China: The past, present, and future[M]//MACKAY K T. Rice-Fish Culture in China. Ottawa: International Development Research Centre, 1995: 15-21 |
[18] | RUDDLE K. Traditional integrated farming systems and rural development:The example of rice field fisheries in Southeast Asia[J]. Agricultural Administration, 1982, 10(1):1-11 |
[19] | LU J B, LI X. Review of rice-fish-farming systems in China-One of the globally important ingenious agricultural heritage systems (GIAHS)[J]. Aquaculture, 2006, 260(1/4):106-113 |
[20] | AHMED N, GARNETT S T. Integrated rice-fish farming in Bangladesh:Meeting the challenges of food security[J]. Food Security, 2011, 3(1):81-92 |
[21] | RADHEYSHYAM, SAHA G S, DE H K, et al. Status and economy of community fish farming in rural Odisha[J]. Indian Journal of Fisheries, 2013, 60(4):59-67 |
[22] | SHAMS N. Contribution of rice field ecosystems to food security strategies in Northwest Cambodia[J]. Journal of Sustainable Agriculture, 2007, 29(4):109-133 |
[23] | 李可心, 朱泽闻, 钱银龙.新一轮稻田养殖的趋势特征及发展建议[J].中国渔业经济, 2011, 29(6):17-21 LI K X, ZHU Z W, QIAN Y L. Trend characteristics and development proposals of a new round rice-fish culture[J]. Chinese Fisheries Economics, 2011, 29(6):17-21 |
[24] | 沈雪达, 苟伟明.我国稻田养殖发展与前景探讨[J].中国渔业经济, 2013, 31(2):151-156 SHEN X D, GOU W M. Research on rice paddy development and prospects in China[J]. Chinese Fisheries Economics, 2013, 31(2):151-156 |
[25] | 周江伟, 刘贵斌, 黄璜.传统农业文化遗产稻田养鱼进步与创新体系研究[J].湖南农业科学, 2017, (9):105-109 ZHOU J W, LIU G B, HUANG H. Progress and innovation system of fish farming in the paddy field of traditional agricultural heritage[J]. Hunan Agricultural Sciences, 2017, (9):105-109 |
[26] | HALWART M, GUPTA M V. Culture of Fish in Rice Fields[M]. Rome:FAO, 2004 |
[27] | COCHE A G. Fish culture in rice fields. A world-wide synthesis[J]. Hydrobiologia, 1967, 30(1):1-44 |
[28] | 李娜娜.中国主要稻田种养模式生态分析[D].杭州: 浙江大学, 2013: 27 LI N N. Ecological analysis of representative rice-based ecosystems in China[D]. Hangzhou: Zhejiang University, 2013: 27 |
[29] | 农业农村部渔业渔政管理局.中国渔业年鉴2017[M].北京:中国农业出版社, 2017 Ministry of Agriculture and Rural Affairs of the People's Republic of China. China Fisheries Yearbook 2017[M]. Beijing:China Agriculture Press, 2017 |
[30] | 全国水产技术推广总站.中国稻渔综合种养产业发展报告(2018)[J].中国水产, 2019, (1):20-27 National Aquatic Technology Extension Station of the People's Republic of China. Report on the industry development of China's integrated rice-fish farming[J]. China Fisheries, 2019, (1):20-27 |
[31] | 谷婕, 吴涛, 黄璜, 等.我国稻田养鱼经营的发展进程与展望[J].作物研究, 2017, 31(6):597-601 GU J, WU T, HUANG H, et al. The development and prospect of the management of rice field fish farming in China[J]. Crop Research, 2017, 31(6):597-601 |
[32] | DíAZ I, MELLO A L, SALHI M, et al. Multiscalar land suitability assessment for aquaculture production in Uruguay[J]. Aquaculture Research, 2017, 48(6):3052-3065 |
[33] | MALCZEWSKI J. GIS-based multicriteria decision analysis:A survey of the literature[J]. International Journal of Geographical Information Science, 2006, 20(7):703-726 |
[34] | WIJENAYAKE W M H K, AMARASINGHE U S, DE SILVA S S. Application of a multiple-criteria decision making approach for selecting non-perennial reservoirs for culture-based fishery development:Case study from Sri Lanka[J]. Aquaculture, 2016, 459:26-35 |
[35] | 杜宁, 杨宁生, 孙英泽.基于GIS的池塘养殖适宜性评价——以河南省为例[J].中国水产科学, 2008, 15(3):476-482 DU N, YANG N S, SUN Y Z. GIS-based evaluation of aquaculture suitability in Henan Province[J]. Journal of Fishery Sciences of China, 2008, 15(3):476-482 |
[36] | 林勇, 刘述锡, 关道明, 等.基于GIS的虾夷扇贝养殖适宜性综合评价——以北黄海大小长山岛为例[J].生态学报, 2014, 34(20):5984-5992 LIN Y, LIU S X, GUAN D M, et al. GIS-based Japanese scallop (Patinopecten yessoensis) aquaculture suitability assessment:A case study with the islands of Dachangshan and Xiaochangshan, North Yellow Sea, China[J]. Acta Ecologica Sinica, 2014, 34(20):5984-5992 |
[37] | MALCZEWSKI J. On the use of weighted linear combination method in GIS:Common and best practice approaches[J]. Transaction in GIS, 2000, 4(1):5-22 |
[38] | 陈述云.综合评价中指标的客观赋权方法[J].上海统计, 1995, (6):16-18 CHEN S Y. Objective weighting in comprehensive assessments[J]. Shanghai Statistics, 1995, (6):16-18 |
[39] | 常巧素.稻鱼共生模式的经济生态社会效益分析——以L县苗族聚居区为例[J].山西农业科学, 2016, 44(11):1723-1728 CHANG Q S. Analysis of the economic ecological social benefits of rice-fish symbiosis model-A case study of Miao Nationality area in L County[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(11):1723-1728 |
[40] | 刘某承, 张丹, 李文华.稻田养鱼与常规稻田耕作模式的综合效益比较研究——以浙江省青田县为例[J].中国生态农业学报, 2010, 18(1):164-169 LIU M C, ZHANG D, LI W H. Evaluation of comprehensive benefit of rice-fish agriculture and rice monocropping-A case study of Qingtian County, Zhejiang Province[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):164-169 |
[41] | 张丹, 闵庆文, 孙业红, 等.侗族稻田养鱼的历史、现状、机遇与对策——以贵州省从江县为例[J].中国生态农业学报, 2008, 16(4):987-990 ZHANG D, MIN Q W, SUN Y H, et al. History, current state, opportunities and countermeasures of Dong Nationality rice-fish agrosystem-A case study of Congjiang County, Guizhou Province[J]. Chinese Journal of Eco-Agriculture, 2008, 16(4):987-990 |
[42] | 方世贞, 李正友, 罗永成, 等.贵州省黔东南州稻田养鱼现状及发展对策[J].贵州畜牧兽医, 2014, 38(1):61-63 FANG S Z, LI Z Y, LUO Y C, et al. Status and developing countermeasures of rice-fish farming in Qiandongnan Prefecture, Guizhou Province[J]. Guizhou Journal of Animal Husbandry and Veterinary Medicine, 2014, 38(1):61-63 |
[43] | 游峥嵘.云南省稻田养鱼产业现状及发展对策研究[D].武汉: 华中师范大学, 2015 YOU Z R. The research on the status and development of raising fish in paddy field in Yunnan Province[D]. Wuhan: Central China Normal University, 2015 |
[44] | 黄璜, 刘小燕, 戴振炎, 等.湖南省稻田养鱼生产与农业供给侧改革[J].作物研究, 2016, 30(6):656-660 HUANG H, LIU X Y, DAI Z Y, et al. Rice-fish farming and agricultural supply side reform in Hunan Province[J]. Crop Research, 2016, 30(6):656-660 |
[45] | HU L L, REN W Z, TANG J J, et al. The productivity of traditional rice-fish co-culture can be increased without increasing nitrogen loss to the environment[J]. Agriculture, Ecosystems & Environment, 2013, 177:28-34 |
[46] | OEHME M, FREI M, RAZZAK M A, et al. Studies on nitrogen cycling under different nitrogen inputs in integrated rice-fish culture in Bangladesh[J]. Nutrient Cycling in Agroecosystems, 2007, 79(2):181-191 |
[47] | ZHANG J, HU L L, REN W Z, et al. Rice-soft shell turtle coculture effects on yield and its environment[J]. Agriculture, Ecosystems & Environment, 2016, 224:116-122 |