删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四川地区玉米/大豆带状套作对大豆形态、叶绿素荧光特征及系统产量的影响

本站小编 Free考研考试/2022-01-01

陈元凯,
冯铃洋,
MuhammadAli Raza,
范元芳,
谌俊旭,
雍太文,
杨文钰,,
杨峰,
四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室/四川省作物带状复合种植工程技术研究中心 成都 611130
基金项目: 国家重点研发计划项目2016YFD0300209
国家自然科学基金项目31571615
四川省教育厅重点项目16ZA0041

详细信息
作者简介:陈元凯, 主要从事作物高产优质高效栽培理论与技术研究。E-mail:1838866709@qq.com
通讯作者:杨文钰, 主要从事作物高产优质高效栽培理论与技术研究, E-mail:mssiwyyang@sicau.edu.cn
杨峰, 主要从事作物高产优质高效栽培理论与技术研究, E-mail:f.yang@sicau.edu.cn
中图分类号:S565.1

计量

文章访问数:1610
HTML全文浏览量:9
PDF下载量:2871
被引次数:0
出版历程

收稿日期:2018-11-23
录用日期:2019-02-24
刊出日期:2019-06-01

Effect of maize/soybean relay strip intercropping system on soybean morphology, chlorophyll fluorescence, and yield in Sichuan area

CHEN Yuankai,
FENG Lingyang,
MUHAMMAD Ali Raza,
FAN Yuanfang,
CHEN Junxu,
YONG Taiwen,
YANG Wenyu,,
YANG Feng,
College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, China
Funds: the National Key Research and Development Project of China2016YFD0300209
the National Natural Science Foundation of China31571615
the Major Project of Education Department of Sichuan16ZA0041

More Information
Corresponding author:YANG Wenyu, E-mail:mssiwyyang@sicau.edu.cn;YANG Feng, E-mail:f.yang@sicau.edu.cn


摘要
HTML全文
(2)(5)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:玉米/大豆带状套作可以充分利用光环境,提高单位土地面积物质产出。为探明玉米/大豆带状复合种植模式下不同空间配置对大豆冠层光环境、形态、产量及系统效益的影响,进而为大豆高产优质栽培提供依据,本研究选用半紧凑型(‘川单418’)和紧凑型(‘荣玉1210’)玉米品种与大豆带状套作,固定带宽为200 cm,玉米采用宽窄行种植,玉米窄行距设置3个处理:20 cm、40 cm、60 cm;并以单作大豆(SS)作为对照。分析透光率、形态、光合色素、荧光参数、生物量和系统产量的变化规律。结果表明:套作大豆冠层透光率、红光/远红光(R/FR)比值随玉米窄行距的增大而逐渐降低;套作下大豆茎粗、节数、茎干重和全叶干重均随玉米窄行距增大呈降低趋势,最大值出现在玉米窄行距20 cm处理下;与单作大豆相比,两个玉米品种下大豆茎粗、节数、茎干重和全叶干重均显著降低,而第2节间长和主茎长显著升高。套作下大豆叶片光合色素含量随玉米窄行距的增大而逐渐降低,各行距处理及不同玉米品种下套作的叶片光合色素含量均低于单作大豆。大豆叶片荧光参数Fv/Fm、NPQ、Fq'Fm'Fq'/Fv'随玉米窄行距的增大均呈先增大后减小的趋势,而Fo变化趋势与之相反。玉米收获后,大豆光环境得到改善并迅速恢复生长,套作大豆形态生理指标与单作差异减小,但由于前期玉米的遮荫,各套作处理间大豆产量差异仍显著。通过系统效益分析,在玉米窄行距40 cm处理下,套作系统综合产量最高,两玉米品种下玉米、大豆产量平均分别为8 559.52 kg·hm-2、1 717.60 kg·hm-2,土地当量比平均达1.57。本试验中大豆与两个株型玉米套作,大豆形态生理指标差异影响不显著。因此,选择紧凑或半紧凑玉米品种,适度缩小玉米窄行距可以显著改善带状套作大豆的生长环境,提高其生物量和产量。
关键词:四川地区/
玉米/大豆带状套作/
玉米品种/
玉米行距/
大豆形态生理特征/
系统产量
Abstract:Maize/soybean relay strip intercropping can make efficient use of light and land resources to improve yield per unit of land area. The research was conducted to explore the influence of row spacing of maize on the soybean canopy light environment and morphological traits. Two maize varieties, semi-compact (Chuandan 418) and compact (Rongyu 1210), were used to study the efficient utilization of land resources to enhance yield and yield components. Three arrangements of 20 cm, 40 cm, and 60 cm of maize narrow row spacing were set with same width of strip intercropping (SI) belt and soybean row spacing. Solely soybean with a fixed strip width of 200 cm was planted as a control. The light transmittance, morphology, photosynthetic pigment, fluorescence parameters, biomass of soybean and grain yield of both maize and soybean were analyzed. The results showed that the light transmittance and red light/far-red light (R/FR) ratio of the soybean canopy decreased with an increasing narrow row spacing of maize. The same trend was visible in the stem diameter, node number, and dry matter of stem and leaves. The maximum values were measured in the maize narrow row spacing width of 20 cm. Compared with the control, the stem diameter, node number, dry matter of stem and leaves of soybean were significantly reduced under intercropping with two maize varieties, while the second internode length and main stem length of soybean were significantly increased. Photosynthetic pigments contents in intercropped soybean leaves gradually decreased with the increase of narrow row spacing of maize, and were lower than monocultured soybean. The fluorescence parameters of soybean leaves of Fv/Fm, NPQ, Fq'/Fm', and Fq'/Fv' first increased and then decreased, while a reverse trend was visible for Fo with the increase of narrow row spacing of maize. The soybean rapidly recovered after exposure to a full light environment by harvesting the maize crop. The difference in soybean morphological and physiological indexes between intercropping and monoculture was reduced. However, owing to the shading effect of maize in the early growth stage, a significant difference in the grain yield was observed between different intercropping treatments. A benefit analysis of the maize/soybean intercropping system demonstrated that the comprehensive yield was the highest for a narrow row spacing arrangement of maize (40 cm). The yield of maize and soybean were on average 8 559.52 kg·hm-2 and 1 717.60 kg·hm-2, respectively. The average land equivalent ratio was 1.57. There was no significant effect on soybean morphological and physiological indexes under intercropping conditions between both types of maize in this experiment. It can be concluded that selecting compact or semi-compact maize varieties and moderately reducing the narrow row spacing of maize can significantly improve the growth of soybean in a maize/soybean strip intercropping system, and result in higher biomass and yield.
Key words:Sichuan area/
Maize/soybean relay strip intercropping/
Maize variety/
Maize row spacing/
Morphological characteristics of soybean/
System yield

HTML全文


图1不同玉米行距处理下玉米/大豆带状套作种植结构示意图
Figure1.Sketch maps of maize and soybean relay strip intercropping systems under different treatments of maize row spacing


下载: 全尺寸图片幻灯片


图2不同玉米行距和玉米品种对玉米大豆共生期内大豆冠层透光率(a)和R/FR值(b)的影响
不同小写字母表示不同处理在0.05水平上差异显著。A1和A2分别为玉米品种‘川单418’和‘荣玉1210’; B1、B2和B3表示玉米/大豆带状套作中玉米窄行距分别为20 cm、40 cm和60 cm。SS表示单作大豆。
Figure2.Effect of different maize row spacing and maize varieties on PAR transmittance (a) and ratio between the spectral irradiance of R light and FR light (b) of the canopy of soybean at maize/soybean symbiosis period
Different lowercase letters indicate significant differences among different treatments at 0.05 level. A1 and A2 are maize varieties of 'Chuandan 418' and 'Rongyu 1210'. B1, B2 and B3 mean narrow row spacing of maize of 20 cm, 40 cm and 60 cm in maize/soybean relay strip intercropping systems. SS means sole soybean planting.


下载: 全尺寸图片幻灯片

表1不同玉米行距和玉米品种对大豆不同生育期形态指标的影响
Table1.Effect of different maize row spacing and maize varieties on the morphological index of intercropped soybean at different growth stages
处理
Treatment
五叶期?Fifth trifoliolate盛荚期?Full pod
茎粗
Stem diameter
(mm)
节数
Internode
number
第2节间长
Length of the
2nd internode
(cm)
主茎长
Main stem length
(cm)
茎粗
Stem diameter
(mm)
节数
Internode
number
第2节间长
Length of the
2nd internode
(cm)
主茎长
Main stem length
(cm)
分枝数
Branching
number
A1B1 4.58b 11b 8.39c 48.56c8.72b 16b 10.06c 79.33b 5b
A1B2 3.82c 9c 10.32b 52.89b 8.28c 14c 11.56b 82.64b 4b
A1B3 2.91d 8c 12.53a 56.87a 7.67d 13c 12.89a 85.11a 4b
A2B1 4.23b 10b 8.65c 50.11c 8.42b 15b 10.39b 81.12b 4b
A2B2 3.71c 9bc 10.47b 53.33b 8.17bc 14b 11.94a 83.04a 4b
A2B3 3.27d 8c 12.00a 55.76a 7.91c 14b 12.11a 84.46a 4b
SS 9.57a 15a 5.17d 41.04d 12.23a 24a 5.33c 69.11c 7a
不同小写字母表示不同处理在0.05水平上差异显著。A1和A2分别为玉米品种‘川单418’和‘荣玉1210’; B1、B2和B3表示玉米/大豆带状套作中玉米窄行距分别为20 cm、40 cm和60 cm。SS表示单作大豆。Different lowercase letters indicate significant differences among different treatments at 0.05 level. A1 and A2 are maize varieties of ‘Chuandan 418’ and ‘Rongyu 1210’. B1, B2 and B3 mean narrow row spacing of maize of 20 cm, 40 cm and 60 cm in maize/soybean relay strip intercropping systems. SS means sole soybean planting.


下载: 导出CSV
表2不同玉米行距和玉米品种对大豆不同生育期生物量的影响
Table2.Effect of different maize row spacing and maize varieties on the biomass of intercropped soybean at different growth stages
处理
Treatment
五叶期?Fifth trifoliolate 盛荚期?Full pod
茎干重
Stem dry
weight
(g)
全叶干重
Full leaf
dry weigh
(g)
茎干重
Stem dry
weight
(g)
全叶干重
Full leaf
dry weigh
(g)
A1B1 8.091b 5.987b 65.524b 54.259b
A1B2 5.367c 3.875c 54.891c 47.389bc
A1B3 1.696d 1.293d 40.992d 41.564c
A2B1 6.298b 4.568b 60.759b 50.198b
A2B2 4.945c 3.697c 51.814c 46.117b
A2B3 3.397d 2.891d 42.642d 43.089b
SS 23.415a 17.584a 122.667a 87.059a
不同小写字母表示不同处理在0.05水平上差异显著。A1和A2分别为玉米品种‘川单418’和‘荣玉1210’; B1、B2和B3表示玉米/大豆带状套作中玉米窄行距分别为20 cm、40 cm和60 cm。SS表示单作大豆。Different lowercase letters indicate significant differences among different treatments at 0.05 level. A1 and A2 are maize varieties of ‘Chuandan 418’ and ‘Rongyu 1210’. B1, B2 and B3 mean narrow row spacing of maize of 20 cm, 40 cm and 60 cm in maize/soybean relay strip intercropping systems. SS means sole soybean planting.


下载: 导出CSV
表3不同玉米行距和玉米品种对大豆不同生育期叶片光合色素的影响
Table3.Effect of different maize row spacing and maize varieties on the photosynthetic pigment of intercropped soybean leaves at different growth stages
处理
Treatment
五叶期?Fifth trifoliolate盛荚期?Full pod
叶绿素a
Chlorophyll a
(mg?g-1)
叶绿素b
Chlorophyll b
(mg?g-1)
总叶绿素Total
chlorophyll
(mg?g-1)
类胡萝卜素
Carotenoid
(mg?g-1)
叶绿素a
Chlorophyll a
(mg?g-1)
叶绿素b
Chlorophyll b
(mg?g-1)
总叶绿素
Total
chlorophyll
(mg?g-1)
类胡萝卜素
Carotenoid
(mg?g-1)
A1B1 2.415b 0.568b 2.983b 0.531b 3.631b 0.836b 4.467b 0.893ab
A1B2 1.859c 0.458c 2.317c 0.446c 3.536b 0.817b 4.352b 0.868b
A1B3 1.392d 0.353d 1.745d 0.385d 3.442b 0.789b 4.231b 0.850b
A2B1 2.097b 0.545b 2.642b 0.506b 3.605b 0.913b 4.518b 0.723b
A2B2 1.676c 0.455c 2.131c 0.451c 3.501b 0.899b 4.399b 0.694b
A2B3 1.417d 0.366d 1.782d 0.396d 3.449b 0.857b 4.306b 0.671b
SS 3.189a 0.918a 4.107a 0.613a 3.905a 1.022a 4.928a 0.918a
不同小写字母表示不同处理在0.05水平上差异显著。A1和A2分别为玉米品种‘川单418’和‘荣玉1210’; B1、B2和B3表示玉米大/豆带状套作中玉米窄行距分别为20 cm、40 cm和60 cm。SS表示单作大豆。Different lowercase letters indicate significant differences among different treatments at 0.05 level. A1 and A2 are maize varieties of ‘Chuandan 418’ and ‘Rongyu 1210’. B1, B2 and B3 mean narrow row spacing of maize of 20 cm, 40 cm and 60 cm in maize/soybean relay strip intercropping systems. SS means sole soybean planting.


下载: 导出CSV
表4不同玉米行距和玉米品种对大豆不同生育期叶片荧光参数的影响
Table4.Effect of different maize row spacing and maize varieties on the fluorescence parameters of intercropped soybean leaves at different growth stages
处理
Treatment
五叶期?Fifth trifoliolate盛荚期?Full pod
NPQ Fv/Fm FI'/Fv' Fq'/Fm' FoNPQ Fv/Fm FI'/Fv' Fq'/Fm' Fo
A1B1 2.442b 0.769b 0.361c 0.185b 3 618c1.954a 0.827a 0.445a 0.263a 3 524a
A1B2 2.557b 0.811a 0.423a 0.212a 2 492d 2.012a 0.831a 0.450a 0.269a 3 455a
A1B3 2.998a 0.727d 0.385b 0.183b 3 743b 1.969a 0.823a 0.434a 0.261a 3 560a
A2B1 2.669b 0.801b 0.375c 0.197b 2 596c 2.036a 0.830a 0.448a 0.267a 3 497a
A2B2 2.724b 0.829a 0.439a 0.227a 2 198d 2.117a 0.837a 0.454a 0.272a 3 415a
A2B3 3.051a 0.786c 0.396b 0.188c 2 817b 2.011a 0.827a 0.439a 0.264a 3 504a
SS 2.371c 0.820a 0.327d 0.158d 3 916a 1.944a 0.826a 0.438a 0.257a 3 589a
不同小写字母表示不同处理在0.05水平上差异显著。A1和A2分别为玉米品种‘川单418’和‘荣玉1210’; B1、B2和B3表示玉米/大豆带状套作中玉米窄行距分别为20 cm、40 cm和60 cm。SS表示单作大豆。Different lowercase letters indicate significant differences among different treatments at 0.05 level. A1 and A2 are maize varieties of ‘Chuandan 418’ and ‘Rongyu 1210’. B1, B2 and B3 mean narrow row spacing of maize of 20 cm, 40 cm and 60 cm in maize/soybean relay strip intercropping systems. SS means sole soybean planting.


下载: 导出CSV
表5不同玉米行距和玉米品种对系统产量的影响
Table5.Effect of different maize row spacing and maize varieties on the system grain yield
处理
Treatment
玉米
Maize Yield
(kg?hm-2)
大豆
Soybean Yield
(kg?hm-2)
产量贡献率
Contribution rate (%)
土地当量比
LER
玉米?Maize 大豆?Soybean
A1B1 5 172.70e 2 046.30b 71.65 28.35 1.37e
A1B2 7 917.48c 1 777.78c 81.66 18.34 1.58a
A1B3 8 627.92b 1 287.04d 87.02 12.98 1.48c
A2B1 6 651.32d 1 944.44b 77.38 22.62 1.41d
A2B2 9 201.56a 1 657.41c 84.74 15.26 1.56a
A2B3 9 665.82a 1 407.41d 87.29 12.71 1.52b
SMA1 8 703.34b 100.00 0.00 1.00f
SMA2 9 843.99a 100.00 0.00 1.00f
SS 2 638.89a 0.00 100.00 1.00f
不同小写字母表示不同处理在0.05水平上差异显著。A1和A2分别为玉米品种‘川单418’和‘荣玉1210’; B1、B2和B3表示玉米/大豆带状套作中玉米窄行距分别为20 cm、40 cm和60 cm。SS表示单作大豆。Different lowercase letters indicate significant differences among different treatments at 0.05 level. A1 and A2 are maize varieties of ‘Chuandan 418’ and ‘Rongyu 1210’. B1, B2 and B3 mean narrow row spacing of maize of 20 cm, 40 cm and 60 cm in maize-soybean relay strip intercropping systems. SS means sole soybean planting.


下载: 导出CSV

参考文献(38)
[1]MUCHERU-MUNA M, PYPERS P, MUGENDI D, et al. A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya[J]. Field Crops Research, 2010, 115(2):132-139 doi: 10.1016/j.fcr.2009.10.013
[2]PYPERS P, SANGINGA J M, KASEREKA B, et al. Increased productivity through integrated soil fertility management in cassava-legume intercropping systems in the highlands of Sud-Kivu, DR Congo[J]. Field Crops Research, 2011, 120(1):76-85 doi: 10.1016/j.fcr.2010.09.004
[3]杨文钰, 雍太文, 任万军, 等.发展套作大豆, 振兴大豆产业[J].大豆科学, 2008, 27(1):1-7 http://d.old.wanfangdata.com.cn/Periodical/ddkx200801001
YANG W Y, YONG T W, REN W J, et al. Develop relay-planting soybean, revitalize soybean industry[J]. Soybean Science, 2008, 27(1):1-7 http://d.old.wanfangdata.com.cn/Periodical/ddkx200801001
[4]杨文钰, 杨峰, 雍太文.我国间套作大豆研究方向和发展对策研讨会纪要[J].大豆科技, 2011, (1):35-36 doi: 10.3969/j.issn.1674-3547.2011.01.013
YANG W Y, YANG F, YONG T W. Summaries of the research direction and development strategy of intercropped soybean in China[J]. Soybean Science & Technology, 2011, (1):35-36 doi: 10.3969/j.issn.1674-3547.2011.01.013
[5]LITHOURGIDIS A S, DORDAS C A, DAMALAS C A, et al. Annual intercrops:An alternative pathway for sustainable agriculture[J]. Australian Journal of Crop Science, 2011, 5(4):396-410 http://www.researchgate.net/publication/224934832_Annual_intercrops_an_alternative_pathway_for_sustainable_agriculture
[6]ZHU Y Y, CHEN H R, FAN J H, et al. Genetic diversity and disease control in rice[J]. Nature, 2000, 406(6797):718-722 doi: 10.1038/35021046
[7]LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27):11192-11196 doi: 10.1073/pnas.0704591104
[8]YANG F, HUANG S, GAO R C, et al. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:Far-red ratio[J]. Field Crops Research, 2014, 155:245-253 doi: 10.1016/j.fcr.2013.08.011
[9]AMOSS C, JEUFFROY M H, DAVID C. Relay intercropping of legume cover crops in organic winter wheat:Effects on performance and resource availability[J]. Field Crops Research, 2013, 145:78-87 doi: 10.1016/j.fcr.2013.02.010
[10]杨燕竹.不同播期衔接对玉米-大豆间作体系下作物干物质积累及产量的影响[D].雅安: 四川农业大学, 2016 http://d.wanfangdata.com.cn/Periodical/J0127650
YANG Y Z. Effects of different sowing time on dry matter accumulation and yield of maize-soybean intercropping[D]. Ya'an: Sichuan Agricultural University, 2016 http://d.wanfangdata.com.cn/Periodical/J0127650
[11]陈光荣, 杨文钰, 张国宏, 等.薯/豆套作模式下不同熟期大豆品种的生长补偿效应[J].中国农业科学, 2016, 49(3):455-467 doi: 10.3864/j.issn.0578-1752.2016.03.005
CHEN G R, YANG W Y, ZHANG G H, et al. Compensation effect of different soybean varieties in potato/soybean intercropping systems[J]. Scientia Agricultura Sinica, 2016, 49(3):455-467 doi: 10.3864/j.issn.0578-1752.2016.03.005
[12]周勋波, 杨国敏, 孙淑娟, 等.不同株行距配置对夏大豆群体结构及光截获的影响[J].生态学报, 2010, 30(3):691-697 http://d.old.wanfangdata.com.cn/Periodical/stxb201003017
ZHOU X B, YANG G M, SUN S J, et al. Effect of different plant-row spacing on population structure and PAR interception in summer soybean[J]. Acta Ecologica Sinica, 2010, 30(3):691-697 http://d.old.wanfangdata.com.cn/Periodical/stxb201003017
[13]朱星陶, 谭春燕, 陈佳琴, 等.玉米-大豆间作行距对大豆生长及品质的影响[J].贵州农业科学, 2016, 44(6):22-25 doi: 10.3969/j.issn.1001-3601.2016.06.007
ZHU X T, TAN C Y, CHEN J Q, et al. Effects of intercropping row spacing between maize and soybean on growth and quality of soybean[J]. Guizhou Agricultural Sciences, 2016, 44(6):22-25 doi: 10.3969/j.issn.1001-3601.2016.06.007
[14]杨峰, 崔亮, 武晓玲, 等.不同空间配置套作大豆后期农学参数及光谱特征分析[J].中国油料作物学报, 2012, 34(3):268-272 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201203007
YANG F, CUI L, WU X L, et al. Soybean agronomic and hyperspectral characteristics at later stage under spatial patterns of maize-soybean intercropping[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(3):268-272 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201203007
[15]王竹, 杨文钰, 伍晓燕, 等.玉米株型和幅宽对套作大豆初花期形态建成及产量的影响[J].应用生态学报, 2008, 19(2):323-329 http://d.old.wanfangdata.com.cn/Periodical/yystxb200802017
WANG Z, YANG W Y, WU X Y, et al. Effects of maize plant type and planting width on the early morphological characters and yield of interplanted soybean[J]. Chinese Journal of Applied Ecology, 2008, 19(2):323-329 http://d.old.wanfangdata.com.cn/Periodical/yystxb200802017
[16]卢凤芝.不同带宽对玉米-大豆带状套作系统作物养分积累竞争和产量的影响[D].雅安: 四川农业大学, 2014 http://d.wanfangdata.com.cn/Thesis/J0120659
LU F Z. Effects of different strip-widths on grain yield, crop nutrition accumulation and competitiveness in maize and soybean relay strip intercropping system[D]. Ya'an: Sichuan Agricultural University, 2014 http://d.wanfangdata.com.cn/Thesis/J0120659
[17]梁建秋, 曾宪堂, 张明荣, 等.四川主要大豆品种生育期组划分的研究[J].大豆科学, 2014, 33(1):13-16 http://d.old.wanfangdata.com.cn/Periodical/ddkx201401004
LIANG J Q, ZENG X T, ZHANG M R, et al. Classification on maturity groups of main soybean cultivars in Sichuan[J]. Soybean Science, 2014, 33(1):13-16 http://d.old.wanfangdata.com.cn/Periodical/ddkx201401004
[18]FEHR W R, CAVINESS C E, BURMOOD D T, et al. Stage of development descriptions for soybeans, Glycine max (L). Merrill[J]. Crop Science, 1971, 11(6):929-931 http://www.researchgate.net/publication/250109930_Stage_of_Development_Descriptions_for_Soybeans_Glycine_Max_(L.)_Merrill1
[19]李艳大, 汤亮, 张玉屏, 等.水稻冠层光截获与叶面积和产量的关系[J].中国农业科学, 2010, 43(16):3296-3305 doi: 10.3864/j.issn.0578-1752.2010.16.004
LI Y D, TANG L, ZHANG Y P, et al. Relationship of PAR interception of canopy to leaf area and yield in rice[J]. Scientia Agricultura Sinica, 2010, 43(16):3296-3305 doi: 10.3864/j.issn.0578-1752.2010.16.004
[20]HERTEL C, LEUCHNER M, ROTZER T, et al. Assessing stand structure of beech and spruce from measured spectral radiation properties and modeled leaf biomass parameters[J]. Agricultural and Forest Meteorology, 2012, 165:82-91 doi: 10.1016/j.agrformet.2012.06.008
[21]SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2/3):337-354 http://www.sciencedirect.com/science/article/pii/S003442570200010X
[22]MATHEW J P, HERBERT S J, ZHANG S H, et al. Differential response of soybean yield components to the timing of light enrichment[J]. Agronomy Journal, 2000, 92(6):1156-1161 doi: 10.2134/agronj2000.9261156x
[23]ECHARTE L, MAGGIORA A D, CERRUDO D, et al. Yield response to plant density of maize and sunflower intercropped with soybean[J]. Field Crops Research, 2011, 121(3):423-429 doi: 10.1016/j.fcr.2011.01.011
[24]BORGHI E, COSTA C, NASCENTE A S, et al. Effects of row spacing and intercrop on maize grain yield and forage production of palisade grass[J]. Crop and Pasture Science, 2013, 63(12):1106-1113 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c0d1cee7a32e3e528107f3c2f3fccd6
[25]APHALO P J, BALLAR C L, SCOPEL A L. Plant-plant signaling, the shade-avoidance response and competition[J]. Journal of Experimental Botany, 1999, 50(340):1629-1634 doi: 10.1093/jxb/50.340.1629
[26]高仁才, 杨峰, 廖敦平, 等.行距配置对套作大豆冠层光环境及其形态特征和产量的影响[J].大豆科学, 2015, 34(4):611-615 http://d.old.wanfangdata.com.cn/Periodical/ddkx201504012
GAO R C, YANG F, LIAO D P, et al. Effects of different row spacings of maize on light environment, morphological characteristics and yield of soybeans in a relay intercropping system[J]. Soybean Science, 2015, 34(4):611-615 http://d.old.wanfangdata.com.cn/Periodical/ddkx201504012
[27]杨峰, 黄山, 崔亮, 等.玉米/大豆套作下作物叶片氮、磷动态特征及其相关性分析[J].植物营养与肥料学报, 2013, 19(4):781-789 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201304002
YANG F, HUANG S, CUI L, et al. Dynamic changes and correlations of P and N concentrations in crop leaves under relay intercropping system of maize and soybean[J]. Plant Nutrition and Fertilizer Science, 2013, 19(4):781-789 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201304002
[28]吴其林, 王竹, 杨文钰.苗期遮荫对大豆茎秆形态和物质积累的影响[J].大豆科学, 2007, 26(6):868-872 doi: 10.3969/j.issn.1000-9841.2007.06.012
WU Q L, WANG Z, YANG W Y. Seedling shading affects morphogenesis and substance accumulation of stem in soybean[J]. Soybean Science, 2007, 26(6):868-872 doi: 10.3969/j.issn.1000-9841.2007.06.012
[29]DUDLEY S A, SCHMITT J. Genetic differentiation in morphological responses to simulated foliage shade between populations of impatiens capensis from open and woodland sites[J]. Functional Ecology, 1995, 9(4):655-666 doi: 10.2307/2390158
[30]陈兵, 王克如, 李少昆, 等.病害胁迫对棉叶光谱反射率和叶绿素荧光特性的影响[J].农业工程学报, 2011, 27(9):86-93 doi: 10.3969/j.issn.1002-6819.2011.09.017
CHEN B, WANG K R, LI S K, et al. The effects of disease stress on spectra reflectance and chlorophyll fluorescence characteristics of cotton leaves[J]. Transactions of the CSAE, 2011, 27(9):86-93 doi: 10.3969/j.issn.1002-6819.2011.09.017
[31]王锐, 杨峰, 张勇, 等.套作大豆后期叶片叶绿素荧光特性及光谱特征分析[J].核农学报, 2015, 29(6):1182-1189 http://d.old.wanfangdata.com.cn/Periodical/hnxb201506023
WANG R, YANG F, ZHANG Y, et al, The Analysis of chlorophyll fluorescence parameters and hyperspectral characteristics of soybean after maize harvest under relay intercropping systems[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(6):1182-1189 http://d.old.wanfangdata.com.cn/Periodical/hnxb201506023
[32]刘悦秋, 孙向阳, 王勇, 等.遮荫对异株荨麻光合特性和荧光参数的影响[J].生态学报, 2007, 27(8):3457-3464 doi: 10.3321/j.issn:1000-0933.2007.08.044
LIU Y Q, SUN X Y, WANG Y, et al. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of urtica dioica[J]. Acta Ecologica Sinica, 2007, 27(8):3457-3464 doi: 10.3321/j.issn:1000-0933.2007.08.044
[33]赵丽英, 邓西平, 山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报, 2005, 16(7):1261-1264 doi: 10.3321/j.issn:1001-9332.2005.07.015
ZHAO L Y, DENG X P, SHAN L. Effects of osmotic stress on chlorophyll fluorescence parameters of wheat seedling[J]. Chinese Journal of applied Ecology, 2005, 16(7):1261-1264 doi: 10.3321/j.issn:1001-9332.2005.07.015
[34]张治安, 陈展宇.植物生理学[M].长春:吉林大学出版社, 2009:105-106
ZHANG Z A, CHEN Z Y. Plant Physiology[M]. Changchun:Jilin University Press, 2009:105-106
[35]宋艳霞, 杨文钰, 李卓玺, 等.不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应[J].中国油料作物学报, 2009, 31(4):474-479 doi: 10.3321/j.issn:1007-9084.2009.04.013
SONG Y X, YANG W Y, LI Z X, et al. The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping[J]. Chinese Journal of Oil Crop Sciences, 2009, 31(4):474-479 doi: 10.3321/j.issn:1007-9084.2009.04.013
[36]王勋, 戴廷波, 姜东, 等.不同生态环境下水稻基因型产量形成与源库特性的比较研究[J].应用生态学报, 2005, 16(4):615-619 doi: 10.3321/j.issn:1001-9332.2005.04.006
WANG X, DAI T B, JIANG D, et al. Yield-formation and source-sink characteristics of rice genotypes under two different eco-environments[J]. Chinese Journal of Applied Ecology, 2005, 16(4):615-619 doi: 10.3321/j.issn:1001-9332.2005.04.006
[37]崔亮, 杨文钰, 黄妮, 等.玉米-大豆带状套作下玉米株型对大豆干物质积累和产量形成的影响[J].应用生态学报, 2015, 26(8):2414-2420 http://d.old.wanfangdata.com.cn/Periodical/yystxb201508022
CUI L, YANG W Y, HUANG N, et al. Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems[J]. Chinese Journal of Applied Ecology, 2015, 26(8):2414-2420 http://d.old.wanfangdata.com.cn/Periodical/yystxb201508022
[38]杨峰, 娄莹, 廖敦平, 等.玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响[J].作物学报, 2015, 41(4):642-650 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201504016
YANG F, LOU Y, LIAO D P, et al. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system[J]. Acta Agronomica Sinica, 2015, 41(4):642-650 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201504016

相关话题/作物 系统 生态 科学 生理