陈平3,
张巨松1,,,
阿不都卡地尔·库尔班1,
林涛2,
郭仁松2
1.新疆农业大学农学院/教育部棉花工程研究中心 乌鲁木齐 830052
2.新疆农业科学院经济作物研究所 乌鲁木齐 830091
3.阿瓦提县气象局 阿瓦提 843200
基金项目: 国家重点研发计划项目2017YFD0101605-05
国家"十二五"科技支撑计划项目2014BAD11B02
新疆维吾尔自治区重点研发项目2016B01001-2
详细信息
作者简介:陈振, 主要研究方向为海岛棉丰产抗逆栽培技术及其生理基础。E-mail:643914079@qq.com
通讯作者:张巨松, 主要研究方向为棉花高产栽培与生理生态。E-mail:xjndzjs@163.com
中图分类号:S314计量
文章访问数:549
HTML全文浏览量:5
PDF下载量:370
被引次数:0
出版历程
收稿日期:2018-12-20
录用日期:2019-03-26
刊出日期:2019-09-01
Effects of short-term heat stress on island cotton yield formation of different fruiting branches
CHEN Zhen1,,CHEN Ping3,
ZHANG Jusong1,,,
Abudukadier?KUERBAN1,
LIN Tao2,
GUO Rensong2
1. Agriculture College, Xinjiang Agricultural University/Research Center of Cotton Engineering, Ministry of Education, Urumqi 830052, China
2. Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
3. Awati County Meteorological Bureau, Awati 843200, China
Funds: the National Key Research and Development Project of China2017YFD0101605-05
the National Key Technology R & D Program of China2014BAD11B02
the Key Research and Development Project of Xinjiang Uygur Autonomous Region2016B01001-2
More Information
Corresponding author:ZHANG Jusong, E-mail: xjndzjs@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:高温是影响棉花产量的重要环境因子,研究盛花期短期高温胁迫对海岛棉不同部位果枝产量及产量构成因素的影响,有助于为海岛棉选育耐热稳产性品种、制定丰产抗逆栽培技术提供理论方法。以‘新海43号’和‘新海49号’为材料,于盛花期在田间搭设增温棚,设置不同增温持续时间[0 d(CK)、3 d(H3)、6 d(H6)、9 d(H9)]模拟短期高温胁迫对海岛棉干物质积累、叶片净光合速率、蕾铃脱落率、产量及产量构成因素的影响。结果表明:盛花期短期高温胁迫,导致‘新海43号’和‘新海49号’中部果枝蕾铃脱落率显著增加,棉株总干物质积累量下降。在花后30~50 d,各增温处理棉铃的干物质量与对照相比显著降低;而花后40~50 d,两品种H6、H9处理茎、叶干物质量与对照相比显著升高。随生育进程的推进,‘新海43号’和‘新海49号’在H3、H6、H9处理下棉铃最大干物质量比对照分别降低8.9%、29.3%、36.3%和11.8%、28.1%、42.6%;棉铃日均积累量分别下降10.9%、32.8%、42.2%和12.8%、30.3%、45.9%;而达到快速积累期终止时期所需的时间分别增加5 d、8 d、14 d和1 d、5 d、10 d。在增温处理期间,两品种主茎叶Pn随增温持续时间的延长呈大幅下降趋势;增温结束后,各处理叶片Pn的衰减速度不同,在生殖生长后期(花后40 d)H3、H6、H9处理下叶片Pn均高于对照,表现为H9 > H6 > H3 > CK。短期高温胁迫导致两品种单株结铃数、单铃重和衣分显著降低,其中单株结铃数变异系数(15.4%~18.5%)最大,衣分变异系数(4.1%~4.7%)最小。‘新海43号’和‘新海49号’H3、H6、H9处理下单株结铃数分别减少21.6%、22.5%、28.9%和16.6%、26.4%、34.7%;而增温显著增加了上部果枝铃数,进而提高了上部果枝产量及产量贡献率。品种间,‘新海49号’净光合速率、单株结铃数和单铃重下降幅度以及蕾铃脱落率的增加幅度均大于‘新海43号’,说明‘新海43号’具有更好的耐热性。
关键词:海岛棉/
高温胁迫/
果枝位置/
干物质积累/
净光合速率/
产量
Abstract:High temperature is an important environmental factor affecting cotton yield. An experiment was conducted on the effects of short-term heat stress during the full bloom stage on fruit branch yield and yield components of island cotton; it is helpful to provide theoretical methods for breeding heat-resistant and stable-yielding varieties and formulating high-yield and stress-resistant cultivation techniques for island cotton. Using 'Xinhai 43' and 'Xinhai 49', a warming shed was set up in the field during the full bloom stage, and treatments of four warming levels[lasting for 0 (control), 3 (H3), 6 (H6), and 9 d (H9)] were employed to simulate the effects of short-term high temperature stress. The effects of temperature increase on dry matter accumulation, net photosynthetic rate, abscission rate of squares and bolls, yield, and yield components were analyzed. The results showed that short-term heat stress at the full bloom stage resulted in a significant increase in abscission rate of squares and bolls of the middle fruit branch of 'Xinhai 43' and 'Xinhai 49', and total dry matter accumulation of cotton plants decreased. At 30-50 days after anthesis, the dry matter of cotton bolls was significantly lower than that of the control. However, at 40-50 days after anthesis, the dry matter of the stems and leaves of two varieties with H6 and H9 treatments were significantly greater than those of the control. As the growth process progressed, compared with the control, the maximum dry matter of 'Xinhai 43' and 'Xinhai 49' with H3, H6 and H9 treatments decreased by 8.9%, 29.3% and 36.3%, and 11.8%, 28.1%, and 42.6%, respectively; and the daily average accumulation of cotton bolls decreased by 10.9%, 32.8%, and 42.2%, and 12.8%, 30.3%, and 45.9%, respectively. The time needed to reach the terminating date of fleet accumulation period increased by 5, 8, and 14 d, and 1, 5, and 10 d in 'Xinhai 43' and 'Xinhai 49', respectively. During the warming treatment, the Pn of the two varieties leaves decreased significantly with longer warming duration. After the end of warming, the senescence rate of Pn in each treatment was different. At the later stage of reproductive growth (40 days after anthesis), the Pn of leaves treated with H3, H6, and H9 was higher than those of the control, and in the order of H9 > H6 > H3 > CK. Short-term high temperature resulted in a significant decrease in boll number per plant, boll weight, and lint percentage. Among them, the coefficient of variation of boll number per plant (15.4% to 18.5%) was the largest, and the coefficient of variation of lint percentage (4.1% to 4.7%) was the smallest. Under the treatments of H3, H6, and H9, the boll number per plant of 'Xinhai 43' and 'Xinhai 49' decreased by 21.6%, 22.5%, and 28.9% and 16.6%, 26.4%, and 34.7%, respectively. However, the warming significantly increased the number of bolls in the upper fruit branches, and the number of bolls in the upper fruit branches of 'Xinhai 43' and 'Xinhai 49' increased by 0-24.9% and 2.7%-58.2% compared with the control. This, in turn, increased the yield and yield contribution rate of the upper fruit branches. Among varieties, the decrease in Pn, boll number, boll weight, and abscission rate of squares and bolls of 'Xinhai 49' were greater than those of 'Xinhai 43', suggesting that 'Xinhai 43' has better heat resistance.
Key words:Island cotton/
Heat stress/
Fruiting branch position/
Dry matter accumulation/
Leaf net photosynthetic rate/
Yield
HTML全文

图12018年研究区海岛棉全生育期月气温(平均、最高和最低)与降雨量情况
Figure1.Monthly air temperature (mean, maximum and minimum) and rainfall during the whole growth period of island cotton in 2018 in the study area


图22018年海岛棉盛花期高温胁迫期间高温处理(棚内)和对照(棚外)的温度变化
Figure2.Temperature changes of high temperature treatments (inside the shed) and the control (outside the shed))during heat stress at full bloom stage of island cotton in 2018


图3盛花期短期增温下不同海岛棉品种地上部各器官干物质量的动态变化
CK:不增温; H3:增温3 d; H6:增温6 d; H9:增温9 d。不同小写字母表示同一品种不同处理间在0.05水平差异显著。
Figure3.Dynamic changes of aboveground dry matter of different organs of different island cotton varieties under short-term warming during full-blooming stage
CK: no warming; H3: warming for 3 days; H6: warming for 6 days; H9: warming for 9 days. Different lowercase letters indicate significant differences among treatments of the same organ at 0.05 level.


图4盛花期短期增温对不同海岛棉品种净光合速率(Pn)的影响
CK:不增温; H3:增温3 d; H6:增温6 d; H9:增温9 d。
Figure4.Effects of short-term warming during full-blooming stage on net photosynthetic rate (Pn) of different island cotton varieties
CK: no warming; H3: warming for 3 days; H6: warming for 6 days; H9: warming for 9 days.


图5盛花期短期增温下不同海岛棉品种不同部位果枝产量与增温天数之间的关系
Figure5.Relationship between warming days and yield in different fruiting branches of different island cotton varieties under short-term warming during full-blooming stage

表1盛花期短期增温下海岛棉棉铃干物质积累的Logistic模型及其特征值
Table1.Logistic models and its eigenvalues of biomass accumulation of cotton boll of different island cotton varieties under short-term warming during full-blooming stage
品种 Variety | 处理 Treatment | 方程 Equation | t1 (d) | t2 (d) | Vm (kg·hm-2·d-2) | Wm (g) | P | R2 |
新海43号 Xinhai43 | CK | y=35.98/(1+16e-0.128 1t) | 22 | 32 | 1.15 | 35.98 | < 0.001 | 0.993 |
H3 | y=32.78/(1+12.29e-0.101 8t) | 25 | 37 | 0.83 | 32.78 | < 0.001 | 0.989 | |
H6 | y=25.45/(1+6.08e-0.077 9 t) | 23 | 40 | 0.49 | 25.45 | < 0.001 | 0.981 | |
H9 | y=22.91/(1+6.07e-0.067 2t) | 27 | 46 | 0.38 | 22.91 | < 0.001 | 0.980 | |
新海49号 Xinhai49 | CK | y=58.13/(1+16.45e-0.126 7t) | 22 | 34 | 1.84 | 58.13 | < 0.001 | 0.981 |
H3 | y=51.27/(1+14.36e-0.114 3t) | 23 | 35 | 1.46 | 51.27 | < 0.001 | 0.993 | |
H6 | y=41.82/(1+10.2e-0.092 1t) | 25 | 39 | 0.96 | 41.82 | < 0.001 | 0.995 | |
H9 | y=33.39/(1+7.78e-0.075 8t) | 27 | 44 | 0.63 | 33.39 | < 0.001 | 0.998 | |
CK:不增温; H3:增温3 d; H6:增温6 d; H9:增温9 d。y:棉铃干物质累积; t:花后天数(d); t1:最大积累速率时间; t2:快速积累期终止时间; Vm:棉铃干物质最大累积速率; Wm:最大理论干物质量; P:回归概率值。CK: no warming; H3: warming for 3 days; H6: warming for 6 days; H9: warming for 9 days. y: boll dry matter accumulation; t: days after anthesis; t1: maximum accumulation rate time; t2: terminating date of fleet accumulation period; Vm: maximum dry matter accumulation rate of boll; Wm: maximal theoretical biomass accumulation value; P: probability of regression. |

表2盛花期短期增温对海岛棉产量及产量构成因素的影响
Table2.Effects of short-term warming during full-blooming stage on the yield and yield components of different island cotton varieties
品种 Variety | 处理 Treatment | 单株结铃数 Boll number per plant | 单铃重 Boll weight (g) | 衣分 Lint percentage (%) | 籽棉产量 Seed cotton yield (kg·hm-2) |
新海43号 Xinhai 43 | CK | 10.72±0.65a | 2.82±0.04ab | 0.33±0.01a | 5 389.35±234.05a |
H3 | 8.40±0.11b | 2.91±0.06a | 0.32±0.02ab | 4 772.85±281.7b | |
H6 | 8.31±0.47bc | 2.61±0.04b | 0.31±0.02ab | 4 285.95±267.95c | |
H9 | 7.62±0.28c | 2.58±0.08b | 0.30±0.02b | 3 917.70±263.70c | |
CV (%) | 15.4 | 5.9 | 4.1 | 13.9 | |
新海49号 Xinhai 49 | CK | 11.22±0.19a | 2.90±0.05a | 0.34±0.01a | 5 913.45±251.55a |
H3 | 9.36±0.27b | 2.84±0.03a | 0.33±0.02ab | 5 203.20±130.90b | |
H6 | 8.26±0.26c | 2.51±0.07b | 0.31±0.03b | 4 054.35±234.45c | |
H9 | 7.33±0.50d | 2.30±0.03b | 0.31±0.01b | 3 287.85±183.90d | |
CV (%) | 18.5 | 10.6 | 4.7 | 25.4 | |
CK:不增温; H3:增温3 d; H6:增温6 d; H9:增温9 d。CV%:变异系数。不同小写字母表示同一品种不同处理间在0.05水平差异显著。CK: no warming; H3: warming for 3 days; H6: warming for 6 days; H9: warming for 9 days. CV: coefficient of variation. Different lowercase letters indicate significant differences among treatments of the same variety at 0.05 level. |

表3盛花期增温、品种和果枝位置在产量及产量构成因素上的统计学意义及交互作用
Table3.Effects of warming during full-blooming stage (H), variety (V) and fruiting branch position (FB) on seed cotton yield and yield components of different island cotton varieties
因素 Factor | 因素水平 Factor level | 单株结铃数B oll number per plant | 铃重 Boll weight (g) | 衣分 Lint percentage (%) | 籽棉产量 Seed cotton yield (kg·hm-2) |
品种 Variety (V) | 新海43号Xinhai 43 | 8.76±0.39b | 2.73±0.06a | 0.32±0.02a | 4 590.40±249.41a |
新海49号Xinhai 49 | 9.04±0.32a | 2.64±0.05a | 0.32±0.02a | 4 614.71±231.12a | |
增温水平 Warming (H) | CK | 10.97±0.42a | 2.86±0.05a | 0.34±0.01a | 5 651.40±242.86a |
H3 | 8.88±0.19b | 2.88±0.14a | 0.33±0.02ab | 4 988.03±206.35b | |
H6 | 8.29±0.37b | 2.56±0.06b | 0.31±0.03b | 4 170.15±251.21c | |
H9 | 7.48±0.39c | 2.44±0.06b | 0.31±0.02b | 3 600.65±223.87d | |
果枝位置 Fruiting branch position (FB) | FB1-5 | 2.89±0.13b | 2.63±0.08b | 0.33±0.02ab | 1 491.17±76.21b |
FB6-10 | 3.77±0.09a | 2.78±0.14a | 0.34±0.03a | 1 959.08±113.43a | |
FB≥11 | 2.24±0.11c | 2.64±0.09b | 0.31±0.02b | 1 152.84±69.28c | |
P值 P value | V | < 0.001 | 0.112 | 0.343 | 0.890 |
H | < 0.001 | < 0.001 | 0.125 | < 0.001 | |
FB | < 0.001 | 0.001 | 0.026 | < 0.001 | |
V × H | 0.729 | 0.058 | 0.585 | 0.605 | |
V × FB | < 0.001 | < 0.001 | 0.433 | < 0.001 | |
H × FB | < 0.001 | 0.066 | 0.658 | < 0.001 | |
V × H × FB | 0.631 | 0.179 | 0.840 | 0.238 | |
CK:不增温; H3:增温3 d; H6:增温6 d; H9:增温9 d。FB1-5:下部果枝; FB6-10:中部果枝; FB≥11:上部果枝。不同小写字母表示同一因素不同水平间在0.05水平差异显著。CK: no warming; H3: warming for 3 days; H6: warming for 6 days; H9: warming for 9 days. FB1-5: lower fruiting branches; FB6-10: middle fruiting branches; FB≥11: upper fruiting branches. Different lowercase letters indicate significant differences among different levels of the same factor at 0.05 level. |

表4盛花期短期增温对海岛棉不同部位果枝蕾铃脱落率及皮棉贡献率的影响
Table4.Effects of short-term warming during full-blooming stage on boll abscission and lint yield distribution on different fruiting branches of different island cotton varieties
品种 Variety | 处理 Treatment | 蕾铃脱落率 Boll abscission (%) | 皮棉贡献率 Contribution rate of lint (%) | |||||
FB1-5 | FB6-10 | FB≥11 | FB1-5 | FB6-10 | FB≥11 | |||
新海43号 Xinhai 43 | CK | 8.86±0.10b | 12.43±0.12b | 0.00±0.00b | 21.99±2.37c | 56.56±4.61a | 21.44±2.29b | |
H3 | 14.71±0.06a | 24.29±0.66ab | 1.43±0.10ab | 24.09±2.97bc | 52.02±5.05a | 22.89±5.76b | ||
H6 | 13.29±0.25a | 25.71±0.50a | 1.00±0.12ab | 25.36±0.2b | 42.65±3.94ab | 31.99±2.19a | ||
H9 | 11.43±0.72ab | 31.86±0.40a | 2.86±0.00a | 30.03±3.12a | 37.67±4.25b | 32.30±1.81a | ||
新海49号 Xinhai 49 | CK | 10.43±0.35b | 15.29±0.46c | 2.43±0.06b | 35.22±2.07c | 48.38±5.85a | 16.40±2.38c | |
H3 | 13.29±0.25ab | 15.71±0.53c | 4.29±0.17b | 35.25±3.51c | 45.02±3.05a | 19.74±3.25c | ||
H6 | 16.14±0.40a | 29.57±0.31b | 9.00±0.23a | 43.37±2.21b | 29.49±1.85b | 27.14±4.57b | ||
H9 | 14.00±0.45a | 57.14±0.26a | 9.00±0.06a | 48.90±1.16a | 13.34±1.75c | 37.76±1.35a | ||
P值 P value | V | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | 0.191 | |
H | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | ||
V × H | < 0.001 | < 0.001 | < 0.001 | < 0.001 | 0.06 | 0.04 | ||
CK:不增温; H3:增温3 d; H6:增温6 d; H9:增温9 d。FB1-5:下部果枝; FB6-10:中部果枝; FB≥11:上部果枝。V:品种; H:增温。同列不同小写字母表示同一品种不同处理间在0.05水平差异显著。CK: no warming; H3: warming for 3 days; H6: warming for 6 days; H9: warming for 9 days. FB1-5: lower fruiting branches; FB6-10: middle fruiting branches; FB≥11: upper fruiting branches. V: variety; H: warming during full-blooming stage. Different lowercase letters in the same column indicate significant differences among treatments of the same variety at 0.05 level. |

表5盛花期短期增温对海岛棉不同部位果枝产量及产量构成因素的影响
Table5.Effects of short-term warming during full-blooming stage on yield and yield components on different fruiting branches of island cotton
品种 Variety | 处理 Treatment | 单株结铃数 Boll number per plant | 单铃重 Boll weight (g) | 衣分 Lint percentage (%) | 籽棉产量 Seed cotton yield (kg·hm-2) | |||||||||||
FB1-5 | FB6-10 | FB≥11 | FB1-5 | FB6-10 | FB≥11 | FB1-5 | FB6-10 | FB≥11 | FB1-5 | FB6-10 | FB≥11 | |||||
新海43号 Xinhai 43 | CK | 2.34± 0.03a | 6.31± 0.15a | 2.05± 0.03b | 2.6± 0.08a | 2.95± 0.11ab | 2.9± 0.05a | 0.31± 0.03a | 0.34± 0.03a | 0.33± 0.02a | 1 185.3± 64.35a | 3 048.45± 89.15a | 1 155.6± 80.55b | |||
H3 | 2.32± 0.04a | 4.23± 0.02b | 1.85± 0.13c | 2.64± 0.21a | 3.06± 0.16a | 3.03± 0.10a | 0.32± 0.02a | 0.34± 0.08a | 0.34± 0.03a | 1 197.6± 176.40a | 2 482.8± 115.75b | 1 092.45± 89.55b | ||||
H6 | 2.31± 0.02a | 3.44± 0.10c | 2.56± 0.10a | 2.51± 0.16a | 2.73± 0.07bc | 2.68± 0.08b | 0.31± 0.04a | 0.32± 0.01ab | 0.29± 0.01b | 1 086.75± 77.85b | 1 828.05± 82.1c | 1 371.15± 108.00a | ||||
H9 | 2.32± 0.03a | 2.84± 0.08d | 2.46± 0.13a | 2.62± 0.13a | 2.64± 0.19c | 2.51± 0.13b | 0.29± 0.02a | 0.31± 0.02b | 0.27± 0.03b | 1 176.6± 27.15a | 1 475.85± 138.75d | 1 265.25± 97.8ab | ||||
新海49号 Xinhai49 | CK | 3.58± 0.10a | 5.80± 0.04a | 1.84±0.31c | 2.97± 0.13a | 3.04± 0.21a | 2.69± 0.10ab | 0.31± 0.02a | 0.37± 0.02a | 0.34± 0.02a | 2 082.75± 58.20a | 2 861.1± 177.3a | 969.6± 76.05b | |||
H3 | 3.47± 0.09ab | 4.00± 0.18b | 1.89±0.04c | 2.82± 0.19ab | 3.03± 0.07a | 2.77± 0.11a | 0.31± 0.05a | 0.35± 0.02ab | 0.32± 0.01ab | 1 834.05± 33.75b | 2 342.25± 120.75b | 1 026.9± 176.40b | ||||
H6 | 3.34± 0.13b | 2.51± 0.07c | 2.41± 0.09b | 2.70± 0.11b | 2.48± 0.05b | 2.36± 0.36bc | 0.32± 0.03a | 0.33± 0.01b | 0.28± 0.09c | 1 758.45± 113.55b | 1 195.65± 27.75c | 1 100.25± 93.15ab | ||||
H9 | 3.42± 0.09ab | 1.00± 0.12d | 2.91± 0.06a | 2.74± 0.05b | 2.31± 0.10b | 2.19± 0.06c | 0.30± 0.03a | 0.33± 0.05b | 0.29± 0.01bc | 1 607.85± 65.25c | 438.45± 26.25d | 1 241.55± 92.4a | ||||
P值 P value | V | < 0.001 | < 0.001 | 0.574 | 0.36 | 0.029 | < 0.001 | 0.117 | 0.269 | 0.254 | < 0.001 | < 0.001 | 0.004 | |||
H | 0.060 | < 0.001 | < 0.001 | 0.18 | < 0.001 | < 0.001 | 0.586 | 0.352 | 0.115 | 0.002 | < 0.001 | 0.003 | ||||
V × H | 0.171 | < 0.001 | 0.003 | 0.12 | 0.051 | 0.910 | 0.585 | 0.960 | 0.558 | < 0.001 | < 0.001 | 0.117 | ||||
CK:不增温; H3:增温3 d; H6:增温6 d; H9:增温9 d。FB1-5:下部果枝; FB6-10:中部果枝; FB≥11:上部果枝。V:品种; H:增温。同列不同小写字母表示同一品种不同处理间在0.05水平差异显著。CK: no warming; H3: warming for 3 days; H6: warming for 6 days; H9: warming for 9 days. FB1-5: lower fruiting branches; FB6-10: middle fruiting branches; FB≥11: upper fruiting branches. V: variety; H: warming. Different lowercase letters in the same column indicate significant differences among treatments of the same variety at 0.05 level. |

参考文献
[1] | LEE J, NADOLNYAK D A, HARTARSKA V M. Impact of climate change on agricultural production in Asian countries: Evidence from panel study[C]//Southern Agricultural Economics Association Annual Meeting. Birmingham, AL: Southern Agricultural Economics Association, 2012: 4-7 |
[2] | 秦大河, STOCKER T. IPCC第五次评估报告第一工作组报告的亮点结论[J].气候变化研究进展, 2014, 10(1): 1-6 doi: 10.3969/j.issn.1673-1719.2014.01.001 QIN D H, STOCKER T. Highlights of the IPCC working group Ⅰ fifth assessment report[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(1): 1-6 doi: 10.3969/j.issn.1673-1719.2014.01.001 |
[3] | 任国玉, 初子莹, 周雅清, 等.中国气温变化研究最新进展[J].气候与环境研究, 2005, 10(4): 701-716 http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200504001 REN G Y, CHU Z Y, ZHOU Y Q, et al. Recent progresses in studies of regional temperature changes in China[J]. Climatic and Environmental Research, 2005, 10(4): 701-716 http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200504001 |
[4] | 孔庆平.我国海岛棉生产概况及比较优势分析[J].中国棉花, 2002, 29(12): 19-23 doi: 10.3969/j.issn.1000-632X.2002.12.008 KONG Q P. Production situation and comparative advantage analysis of island cotton in China[J]. China Cotton, 2002, 29(12): 19-23 doi: 10.3969/j.issn.1000-632X.2002.12.008 |
[5] | 曹吉强, 徐红, 李群华.新疆长绒棉生产调研[J].中国棉花, 2011, 38(5): 6-8 http://d.old.wanfangdata.com.cn/Periodical/zgmh201105002 CAO J Q, XU H, LI Q H. Investigation on the long-staple cotton production in Xinjiang[J]. China Cotton, 2011, 38(5): 6-8 http://d.old.wanfangdata.com.cn/Periodical/zgmh201105002 |
[6] | 田立文, 崔建平, 郭仁松, 等.新疆长绒棉生产历史回顾与现状分析[A].中国农学会棉花分会.中国农学会棉花分会2016年年会论文汇编[C].中国农学会棉花分会: 《棉花学报》编辑部, 2016: 7 TIAN L W, CUI J P, GUO R S, et al. Research on history review and actuality analysis of ELS cotton production in Xinjing[A]. Cotton Branch of China Agricultural Association. Compilation of papers for the 2016 Annual meeting of Cotton Branch of China Agricultural Association[C]. Cotton Branch of China Agricultural Association: Editorial Department of Cotton Journal, 2016: 7 |
[7] | 贺新颖, 周治国, 王友华, 等.铃期增温对棉花产量、品质的影响及其生理机制[J].应用生态学报, 2013, 24(12): 3501-3507 http://d.old.wanfangdata.com.cn/Periodical/yystxb201312024 HE X Y, ZHOU Z G, WANG Y H, et al. Effect of increased temperature in boll period on fiber yield and quality of cotton and its physiological mechanism[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3501-3507 http://d.old.wanfangdata.com.cn/Periodical/yystxb201312024 |
[8] | SINGH R P, PRASAD P V V, SUNITA K, et al. Influence of high temperature and breeding for heat tolerance in cotton: A review[J]. Agronomy Journal, 2007, 93: 313-385 doi: 10.1016/S0065-2113(06)93006-5 |
[9] | 宋桂成, 王苗苗, 曾斌, 等.高温对棉花生殖过程的影响[J].核农学报, 2016, 30(2): 404-411 http://d.old.wanfangdata.com.cn/Periodical/hnxb201602026 SONG G C, WANG M M, ZENG B, et al. The effects of high-temperature on reproductive process in upland cotton[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(2): 404-411 http://d.old.wanfangdata.com.cn/Periodical/hnxb201602026 |
[10] | GUINN G. Abscission of cotton floral buds and bolls as influenced by factors affecting photosynthesis and respiration[J]. Crop Science, 1974, 14(2): 291-293 doi: 10.2135/cropsci1974.0011183X001400020036x |
[11] | SNIDER J L, OOSTERHUIS D M, SKULMAN B W, et al. Heat stress-induced limitations to reproductive success in Gossypium hirsutum[J]. Physiologia Plantarum, 2009, 137(2): 125-138 doi: 10.1111/j.1399-3054.2009.01266.x |
[12] | KUMAR R, SARAWGI A K, RAMOS C, et al. Partitioning of dry matter during drought stress in rainfed lowland rice[J]. Field Crops Research, 2006, 96(2/3): 455-465 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3cc22c8be60a3e7027b8078978272254 |
[13] | OOSTERHUIS D M. Day or night high temperatures: A major cause of yield variability[J]. Cotton Grower, 2002, 46: 8-9 |
[14] | LOKA D A, OOSTERHUIS D M. Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content[J]. Environmental and Experimental Botany, 2010, 68(3): 258-263 doi: 10.1016/j.envexpbot.2010.01.006 |
[15] | 马辉, 戴路, 龙朝宇.高温对棉花生殖器官和纤维发育的影响及应对措施[J].中国棉花, 2017, 44(4): 38-39 doi: 10.3969/j.issn.1003-0662.2017.04.021 MA H, DAI L, LONG C Y. Effects of high temperature on cotton reproductive organs and fiber development and countermeasures[J]. China Cotton, 2017, 44(4): 38-39 doi: 10.3969/j.issn.1003-0662.2017.04.021 |
[16] | 孙啸震, 张黎妮, 戴艳娇, 等.花铃期增温对棉花干物重累积的影响及其生理机制[J].作物学报, 2012, 38(4): 683-690 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201204014 SUN X Z, ZHANG L N, DAI Y J, et al. Effect of increased canopy temperature on cotton plant dry matter accumulation and its physiological mechanism[J]. Acta Agronomica Sinica, 2012, 38(4): 683-690 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201204014 |
[17] | 余新隆, 易先达.高温对棉花花药开裂影响的观察[J].湖北农业科学, 2004, (2): 39 doi: 10.3969/j.issn.0439-8114.2004.02.014 YU X L, YI X D. Observing the cotton anther slit affected by high temperature[J]. Hubei Agricultural Sciences, 2004, (2): 39 doi: 10.3969/j.issn.0439-8114.2004.02.014 |
[18] | SHI P H, ZHU Y, TIAN Y C, et al. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice[J]. Environmental and Experimental Botany, 2016, 132: 28-41 doi: 10.1016/j.envexpbot.2016.08.006 |
[19] | PETTIGREW W T. Moisture deficit effects on cotton lint yield, yield components, and boll distribution[J]. Agronomy Journal, 2004, 96(2): 377-383 doi: 10.2134/agronj2004.3770 |
[20] | 杨威, 朱建强, 吴启侠, 等.花铃期短期渍水和高温对棉花叶片光合特性、膜脂过氧化代谢及产量的影响[J].棉花学报, 2016, 28(5): 504-512 http://d.old.wanfangdata.com.cn/Periodical/mhxb201605010 YANG W, ZHU J Q, WU Q X, et al. The effect of short-term waterlogging and high temperature on photosynthesis, membrane lid peroxidation metabolism, and yield during cotton flowering and boll-forming[J]. Cotton Science, 2016, 28(5): 504-512 http://d.old.wanfangdata.com.cn/Periodical/mhxb201605010 |
[21] | 彭世杰, 周仲华, 蒋杰, 等.花铃期增温对棉花生理指标和产量性状的影响[J].作物研究, 2016, 30(2): 123-126 http://d.old.wanfangdata.com.cn/Periodical/zuowuyj201602005 PENG S J, ZHOU Z H, JIANG J, et al. Effects of cotton physiology and yield under warming during the flower and boll stage[J]. Crop Research, 2016, 30(2): 123-126 http://d.old.wanfangdata.com.cn/Periodical/zuowuyj201602005 |
[22] | BROOK K D, HEARN A B, KELLY C F. Response of cotton to damage by insect pests in Australia: Pest management trials[J]. Journal of Economic Entomology, 1992, 85(4): 1356-1367 doi: 10.1093/jee/85.4.1356 |
[23] | CONATY W C, TAN D K Y, CONSTABLE G A, et al. Genetic variation for waterlogging tolerance in cotton[J]. Journal of Cotton Science, 2008, 12: 53-61 http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201406021 |
[24] | 薛晓萍, 王建国, 郭文琦, 等.氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响[J].生态学报, 2006, 26(11): 3631-3640 doi: 10.3321/j.issn:1000-0933.2006.11.015 XUE X P, WANG J G, GUO W Q, et al. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering[J]. Acta Ecologica Sinica, 2006, 26(11): 3631-3640 doi: 10.3321/j.issn:1000-0933.2006.11.015 |
[25] | COTTEE N S, BANGE M P, WILSON L W, et al. Developing controlled environment screening for high-temperature tolerance in cotton that accurately reflects performance in the field[J]. Functional Plant Biology, 2012, 39: 670-678 doi: 10.1071/FP12094 |
[26] | REDDY K R, KAKANL V G, ZHAO D, et al. Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance[J]. Photochemistry and Photobiology, 2004, 79(5): 416-427 doi: 10.1562/2003-11-19-RA.1 |
[27] | SNIDER J L, OOSTERHUIS D M, KAWAKAMI E M, et al. Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils[J]. Journal of Plant Physiology, 2011, 168(5): 441-448 doi: 10.1016/j.jplph.2010.08.003 |
[28] | OOSTERHUIS D M, SNIDER J L. High temperature stress on floral development and yield of cotton[M]. Cordova: The Cotton Foundation, 2011: 1-24 |
[29] | 冯波, 李升东, 孔令安, 等.灌浆初期高温胁迫对不同耐热性小麦品种形态和产量的影响[J].中国生态农业学报, 2019, 27(3): 451-461 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0312&flag=1 FENG B, LI S D, KONG L A, et al. Effect of high temperature stress at early grain-filling stage on plant morphology and grain yield of different heat-resistant varieties of wheat[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 451-461 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0312&flag=1 |
[30] | NAKANO H, MAKINO A, MAE T. Effects of panicle removal on the photosynthetic characteristics of the flag leaf of rice plants during the ripening stage[J]. Plant and Cell Physiology, 1995, 36(4): 653-659 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002842236 |
[31] | KATO M, KOBAYASHI K, OGISO E, et al. Photosynthesis and dry-matter production during ripening stage in a female-sterile line of rice[J]. Plant Production Science, 2004, 7(2): 184-188 doi: 10.1626/pps.7.184 |
[32] | BANGE M P, MILROY S P, THONGBAI P. Growth and yield of cotton in response to waterlogging[J]. Field Crops Research, 2004, 88(2/3): 129-142 doi: 10.1016-j.fcr.2003.12.002/ |
[33] | UNGAR E D, WALLACH D, KLETTER E. Cotton response to bud and boll removal[J]. Agronomy Journal, 1987, 79(3): 491-497 doi: 10.2134/agronj1987.00021962007900030017x |
[34] | SADRAS V O. Compensatory growth in cotton after loss of reproductive organs[J]. Field Crops Research, 1995, 40(1): 1-18 doi: 10.1016/0378-4290(94)00088-T |
[35] | 张凯, 王润元, 王鹤龄, 等.温度升高和降水减少对半干旱区春小麦生长发育及产量的协同影响[J].中国生态农业学报, 2019, 27(3): 413-421 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0308&flag=1 ZHANG K, WANG R Y, WANG H L, et al. Influence of climate warming and rainfall reduction on semi-arid wheat production[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 413-421 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0308&flag=1 |
[36] | KUAI J, ZHOU Z G, WANG Y H, et al. The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position[J]. European Journal of Agronomy, 2015, 67: 61-74 doi: 10.1016/j.eja.2015.03.005 |
[37] | ROBERTS E M, RAO N R, HUANG J Y, et al. Effects of cycling temperatures on fiber metabolism in cultured cotton ovules[J]. Plant Physiology, 1992, 100(2): 979-986 doi: 10.1104/pp.100.2.979 |