删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

CO<sub>2</sub>浓度升高条件下不同程度豌豆蚜危害对紫花苜蓿叶片营养物质和次生代谢物质的影响

本站小编 Free考研考试/2022-01-01

孙倩,
张廷伟,
魏君玉,
吕雨晴,
刘长仲,
甘肃农业大学植物保护学院/甘肃省农作物病虫害生物防治工程实验室 兰州 730070
基金项目: 国家自然科学基金项目31660522

详细信息
作者简介:孙倩, 主要研究方向为有害生物综合治理。E-mail:15002552924@139.com
通讯作者:刘长仲, 主要研究方向为有害生物综合治理。E-mail:liuchzh@gsau.edu.cn
中图分类号:S433.3

计量

文章访问数:615
HTML全文浏览量:3
PDF下载量:466
被引次数:0
出版历程

收稿日期:2018-04-25
录用日期:2018-09-05
刊出日期:2019-01-01

Effects of elevated CO2 concentration on nutrients and secondary metabolites in Medicago sativa leaf under different damage degrees of pea aphid (Acyrthosiphon pisum, Hemiptera: Aphididae)

SUN Qian,
ZHANG Tingwei,
WEI Junyu,
LYU Yuqing,
LIU Changzhong,
College of Plant Protection, Gansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou 730070, China
Funds: the National Natural Science Foundation of China31660522

More Information
Corresponding author:LIU Changzhong, E-mail:liuchzh@gsau.edu.cn


摘要
HTML全文
(0)(4)
参考文献(39)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:由于人类大量开采使用石油、煤炭、天然气等化石燃料,使大气CO2浓度升高,这不但加速全球变暖,还将影响地球上动植物的生存和分布,从而对整个生态系统产生深远影响。为探明CO2浓度升高与豌豆蚜(Acyrthosiphon pisum)虫口密度对紫花苜蓿(Medicago sativa)叶片内化学物质的影响,明确CO2浓度升高和蚜虫密度在紫花苜蓿生理生化中的作用,试验在CO2光照培养箱内设置380 μL·L-1(对照)、550 μL·L-1和750 μL·L-1 3个CO2浓度培育苜蓿幼苗并接入10日龄成蚜10头·株-1、20头·株-1、30头·株-1,并以0头·株-1作为空白对照,1周后测定植物体内营养物质和次生代谢物质含量。结果表明,随CO2浓度升高,蚜虫密度为30头·株-1时紫花苜蓿可溶性蛋白、可溶性糖以及淀粉含量均上升,在750 μL·L-1 CO2浓度下分别比CK上升11.62倍、0.49倍和0.24倍;黄酮、总酚和简单酚含量也显著上升。随蚜虫危害程度加重,同一CO2浓度下紫花苜蓿淀粉、简单酚含量先上升后下降,高CO2浓度蚜虫密度为30头·株-1时比0头·株-1时可溶性糖、总酚以及单宁含量上升1.66倍、1.49 mg·g-1和1.09 mg·g-1,差异均显著(P < 0.05)。说明具有固氮作用的豆科植物更易于适应CO2浓度升高的变化,从而在受到刺吸胁迫后增强自身诱导抗虫性以抵御害虫为害。
Abstract:Due to massive exploitation and use of fossil fuel such as petroleum, coal and natural gas, atmospheric CO2 concentration has been increasing, which not only accelerated global warming, but also affected the survival and distribution of animals and plants on the earth with far-reaching impacts on the ecosystem. This research was carried out to explore the effects of elevated CO2 concentration and pest population density of Acyrthosiphon pisum on chemical substances in the leaves of Medicago sativa. The objective was assessed the effects of elevated CO2 concentration and pea aphid density on the physiology and biochemistry of M. sativa. The nutrients and secondary metabolites in M. sativa leaves were determined by cultivating M. sativa seedlings attacked by 10-day old pea aphids of 10 head·plant-1, 20 head·plant-1, 30 head·plant-1 and 0 head·plant-1 (CK) for one week under three CO2 concentrations[380 μL·L-1 (CK), 550 μL·L-1 and 750 μL·L-1] in CO2 gradient chamber. The results indicated that the contents of soluble protein, soluble carbohydrate and starch increased after aphid sucking of 30 head·plant-1 with increasing CO2 concentration. At 750 μL·L-1 CO2 concentration, they were respectively 11.62 times, 0.49 times and 0.24 times higher than those under CK, respectively. Also the contents of flavone, total polyphenols and simple phenols increased significantly. Furthermore, the contents of starch and simple phenols increased and then decreased with increasing degree of damage under the same CO2 concentration. Comparatively, contents of soluble carbohydrate, total polyphenols and tannin were significant differences between aphid densities of 30 head·plant-1 and 0 head·plant-1, which increased by 1.66 times, 1.49 mg·g-1 and 1.09 mg·g-1 (P < 0.05) compared with those of CK under the highest level of CO2 concentration. The results indicated that nitrogen fixing legume plants were more likely to adapt to increased CO2 concentration and thereby enhanced self-induced resistance to insect pests.

HTML全文

表1CO2浓度升高对不同豌豆蚜危害程度苜蓿叶片营养物质含量的影响
Table1.Effects of elevated CO2 concentration on nutrients contents in Medicago staiva leaves under different damage degrees of pea aphid
CO2浓度
CO2 concentration (μL·L-1)
豌豆蚜密度
Pea aphid density (head·plant-1)
可溶性蛋白质含量
Soluble protein content (mg·g-1)
可溶性糖含量
Soluble carbohydrate content (mg·g-1)
淀粉含量
Starch content (mg·g-1)
380 (CK) 0 2.99±0.37Ca 1.90±0.51Bc 1.52±0.08Cd
10 3.41±0.33Ca 2.31±0.34Bc 1.77±0.05Cc
20 1.84±0.55Cb 3.15±0.73Ab 3.52±0.22Ba
30 0.81±0.30Cc 4.99±0.70Ca 2.62±0.13Bb
550 0 7.46±0.24Bb 2.20±0.43Bc 2.21±0.04Bc
10 8.49±0.38Ba 2.87±0.36Ab 3.07±0.79Bb
20 6.32±0.62Bc 3.46±0.39Ab 3.74±0.30Ba
30 6.23±0.78Bc 6.09±1.10Ba 3.30±0.15Aab
750 0 12.07±0.76Ab 2.80±0.55Ac 2.54±0.17Ad
10 13.06±0.32Aa 3.13±0.36Ac 3.26±0.05Ac
20 10.80±0.57Ac 3.84±0.95Ab 4.40±0.52Aa
30 10.22±0.11Ac 7.45±0.22Aa 3.25±0.12Ab
表中数据为平均值±标准差; 数据后同列不同小写字母表示同一CO2浓度不同豌豆蚜危害程度之间差异显著(P < 0.05), 不同大写字母表示同一豌豆蚜危害程度不同CO2浓度之间差异显著(P < 0.05)。Data in the table are mean ± SD. Different lowercase letters in the same column show significant differences among different damaged degrees of pea aphid under the same CO2 concentration at 0.05 level, while different capital letters show significant differences on the same damaged degree among different CO2 concentrations at 0.05 level.


下载: 导出CSV
表2CO2浓度、豌豆蚜危害程度及其交互作用对紫花苜蓿叶片营养物质含量影响的方差分析
Table2.Two-factor ANOVA results for effects of CO2 concentration, damage degree of pea aphid and their interaction on nutrients contents in leaves of Medicago staiva
营养物质
Nutrient
CO2浓度
CO2 concentration
豌豆蚜密度
Pea aphid density
交互作用
Interaction
F P F P F P
可溶性蛋白质Soluble protein 137.82 < 0.01** 77.29 < 0.01** 0.73 0.49
可溶性糖Soluble carbohydrate 0.01 0.99 269.19 < 0.01** 3.11 0.05
淀粉Starch 6.33 < 0.01** 43.29 < 0.01** 0.70 0.50
*和**分别表示显著(P < 0.05)和极显著(P < 0.01)影响。* and ** show significant (0.05 level) and extremely significant (0.01 level) effect, respectively.


下载: 导出CSV
表3CO2浓度升高对不同豌豆蚜危害程度苜蓿叶片次生代谢物质含量的影响
Table3.Effects of elevated CO2 concentration on secondary metabolites contents in Medicago staiva leaves under different damage degrees of pea aphid
CO2浓度
CO2 concentration (μL·L-1)
豌豆蚜密度
Pea aphid density (head·plant-1)
黄酮含量
Flavone content (mg·g-1)
总酚含量
Total polyphenols content (mg·g-1)
简单酚含量
Simple phenols content (mg·g-1)
单宁含量
Tannin content (mg·g-1)
380 (CK) 0 2.38±0.12Bc 2.35±0.06Bc 0.89±0.09Bc 1.47±0.09Ab
10 2.71±0.06Bbc 2.11±0.07Cd 1.22±0.02Cb 0.89±0.05Cc
20 2.56±0.16Bb 3.11±0.09Cb 1.63±0.07Ca 1.47±0.08Cb
30 3.11±0.29Aa 3.52±0.15Aa 0.86±0.03Cc 2.66±0.13Aa
550 0 2.69±0.09Ab 2.88±0.06Ac 1.17±0.04Ac 1.71±0.06Ab
10 3.31±0.14Aa 2.84±0.03Bc 1.44±0.05Bb 1.40±0.05Ba
20 2.64±0.10ABb 3.35±0.04Bb 1.71±0.03Ba 1.64±0.06Bb
30 3.12±0.16Aa 3.81±0.05Ba 1.16±0.04Bc 2.66±0.07Aa
750 0 2.93±0.16Ab 2.93±0.66Ac 1.26±0.27Ac 1.67±0.40Ac
10 3.48±0.13Aa 3.97±0.06Ab 1.63±0.02Ab 2.35±0.06Ab
20 2.83±0.04Ab 3.79±0.06Ab 1.88±0.02Aa 1.91±0.05Aac
30 2.91±0.08Ab 4.42±0.09Aa 1.66±0.01Ab 2.76±0.09Aa
表中数据为平均值±标准差; 数据后同列不同小写字母表示同一CO2浓度不同豌豆蚜危害程度之间差异显著(P < 0.05), 不同大写字母表示同一豌豆蚜危害程度不同CO2浓度之间差异显著(P < 0.05)。Data in the table are mean ± SD. Different lowercase letters in the same column show significant differences among different damaged degrees of pea aphid under the same CO2 concentration at 0.05 level, while different capital letters show significant differences on the same damaged degree among different CO2 concentrations at 0.05 level.


下载: 导出CSV
表4CO2浓度、豌豆蚜危害程度及其交互作用对紫花苜蓿叶片次生代谢物质含量影响的方差分析
Table4.Two-factor ANOVA results for effects of CO2 concentration, degrees of damaged of the pea aphid and their interaction on secondary metabolites in leaves of Medicago staiva
次生代谢物
Secondary compound
CO2浓度
CO2 concentration
豌豆蚜密度
Pea aphid density
交互作用
Interactions
F P F P F P
黄酮Flavone 6.90 < 0.01** 2.38 0.13 3.62 0.05
总酚Total polyphenols 12.63 < 0.01** 157.72 < 0.01** 1.27 0.29
简单酚Simple phenols 0.88 0.42 5.85 < 0.01** 1.98 0.15
单宁Tannin 5.00 < 0.01** 65.15 < 0.01** 0.96 0.39
*和**分别表示显著(P < 0.05)和极显著(P < 0.01)影响。* and ** show significant (0.05 level) and extremely significant (0.01 level) effect, respectively.


下载: 导出CSV

参考文献(39)
[1]BERNACCHI C J, KIMBALL B A, QUARLES D R, et al. Decreases in stomatal conductance of soybean under open-air elevation of[CO2] are closely coupled with decreases in ecosystem evapotranspiration[J]. Plant Physiology, 2007, 143(1):134-144 http://www.jstor.org/stable/40065221
[2]梁千慧, 刘锦春, 高凯敏, 等. 6种草本植物对"过去-现在-未来"CO2浓度的生长响应[J].西南大学学报:自然科学版, 2017, 39(1):61-68 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnnydxxb201701010
LIANG Q H, LIU J C, GAO K M, et al. The growth responses of six herbs on the "past-present-future" CO2 concentration[J]. Journal of Southwest University:Natural Science Edition, 2017, 39(1):61-68 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnnydxxb201701010
[3]CHEN F J, WU G, GE F, et al. Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm[J]. Entomologia Experimentalis et Applicata, 2005, 115(2):341-350 doi: 10.1111/eea.2005.115.issue-2
[4]VAN OIJEN M, SCHAPENDONK A H C M, JANSEN M J H, et al. Do open-top chambers overestimate the effects of rising CO2 on plants? An analysis using spring wheat[J]. Global Change Biology, 1999, 5(4):411-421 doi: 10.1046/j.1365-2486.1999.00233.x
[5]WU G, CHEN F J, GE F, et al. Effects of elevated carbon dioxide on the growth and foliar chemistry of transgenic Bt cotton[J]. Journal of Integrative Plant Biology, 2007, 49(9):1361-1369 doi: 10.1111/jipb.2007.49.issue-9
[6]VETELI T O, KUOKKANEN K, JULKUNEN-TⅡTTO R, et al. Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry[J]. Global Change Biology, 2002, 8(12):1240-1252 doi: 10.1046/j.1365-2486.2002.00553.x
[7]吴坤君.大气中CO2含量增加对植物-昆虫关系的影响[J].应用生态学报, 1993, 4(2):198-202 doi: 10.3321/j.issn:1001-9332.1993.02.003
WU K J. Effect of elevated levels of atmospheric CO2 on plant-insect interaction[J]. Chinese Journal of Applied Ecology, 1993, 4(2):198-202 doi: 10.3321/j.issn:1001-9332.1993.02.003
[8]陈法军, 吴刚, 戈峰.春小麦对大气CO2浓度升高的响应及其对麦长管蚜生长发育和繁殖的影响[J].应用生态学报, 2006, 17(1):91-96 doi: 10.3321/j.issn:1001-9332.2006.01.019
CHEN F J, WU G, GE F. Responses of spring wheat to elevated CO2 and their effects on Sitobion avenae aphid growth, development and reproduction[J]. Chinese Journal of Applied Ecology, 2006, 17(1):91-96 doi: 10.3321/j.issn:1001-9332.2006.01.019
[9]陈法军, 吴刚, 戈峰.在高CO2浓度下生长的小麦对棉铃虫生长发育和繁殖的影响[J].昆虫学报, 2004, 47(6):774-779 doi: 10.3321/j.issn:0454-6296.2004.06.014
CHEN F J, WU G, GE F. Growth, development and reproduction of the cotton bollworm, Helicoverpa armigera (Hübner) reared on milky grains of wheat grown in elevated CO2 concentration[J]. Acta Entomologica Sinica, 2004, 47(6):774-779 doi: 10.3321/j.issn:0454-6296.2004.06.014
[10]陈法军, 戈峰, 刘向辉.棉花对大气CO2浓度升高的响应及其对棉蚜种群发生的作用[J].生态学报, 2004, 24(5):991-996 doi: 10.3321/j.issn:1000-0933.2004.05.020
CHEN F J, GE F, LIU X H. Responses of cotton to elevated CO2 and the effects on cotton aphid occurrences[J]. Acta Ecologica Sinica, 2004, 24(5):991-996 doi: 10.3321/j.issn:1000-0933.2004.05.020
[11]钱蕾, 蒋兴川, 刘建业, 等.大气CO2浓度升高对西花蓟马生长发育及其寄主四季豆营养成分的影响[J].生态学杂志, 2015, 34(6):1553-1558 http://d.old.wanfangdata.com.cn/Periodical/stxzz201506011
QIAN L, JIANG X C, LIU J Y, et al. Effect of elevated CO2 concentration on development of the western flower thrips, Frankliniella occidentalis (Thysanoptera:Thripidae) and nutrients of their host plant, Phaseolus vulgaris[J]. Chinese Journal of Ecology, 2015, 34(6):1553-1558 http://d.old.wanfangdata.com.cn/Periodical/stxzz201506011
[12]AGRELL J, ANDERSON P, OLESZEK W, et al. Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton[J]. Journal of Chemical Ecology, 2004, 30(11):2309-2324 doi: 10.1023/B:JOEC.0000048791.74017.93
[13]孙倩, 张廷伟, 吕雨晴, 等. CO2浓度升高对红色型豌豆蚜生物学特性的影响[J].昆虫学报, 2018, 61(8):968-975 http://d.old.wanfangdata.com.cn/Periodical/kcxb201808010
SUN Q, ZHANG T W, LYU Y Q, et al. Effects of CO2 enrichment on the biological characteristics of the red morph of the pea aphid, Acyrthosiphon pisum (Hemiptera:Aphididae)[J]. Acta Entomologica Sinica, 2018, 61(8):968-975 http://d.old.wanfangdata.com.cn/Periodical/kcxb201808010
[14]刘兴平, 戈峰, 陈春平, 等.我国松树诱导抗虫性研究进展[J].林业科学, 2003, 39(5):119-128 doi: 10.3321/j.issn:1001-7488.2003.05.018
LIU X P, GE F, CHEN C P, et al. Progress in induced resistance of pines[J]. Scientia Silvae Sinicae, 2003, 39(5):119-128 doi: 10.3321/j.issn:1001-7488.2003.05.018
[15]张思禄.竹篦舟蛾危害对毛竹次生物质及营养物质的影响[J].竹子研究汇刊, 2008, 27(2):21-24 doi: 10.3969/j.issn.1000-6567.2008.02.005
ZHANG S L. The effect of the damage caused by Besaia goddrica (Schaus) on the content of main secondary substance and nutrition substance of Phyllostachys heterocycla cv. pubescens[J]. Journal of Bamboo Research, 2008, 27(2):21-24 doi: 10.3969/j.issn.1000-6567.2008.02.005
[16]曲若轶.茶黄蓟马危害对银杏生长及生理生化的影响[D].泰安: 山东农业大学, 2009: 29-32
QU R Y. Effects of Scirtothrips dorsalis Hood damage on Ginkgo biloba L. growth, physiological and biochemical characteristics[D]. Tai'an: Shandong Agricultural University, 2009: 29-32
[17]从春蕾, 郅军锐, 谢路飞, 等.西花蓟马为害对菜豆叶绿素及营养物质含量的影响[J].植物保护, 2013, 39(2):20-24 doi: 10.3969/j.issn.0529-1542.2013.02.004
CONG C L, ZHI J R, XIE L F, et al. Effects of Frankliniella occidentalis feeding on the chlorophyll and nutrients in the leaves of Phaseolus vulgaris[J]. Plant Protection, 2013, 39(2):20-24 doi: 10.3969/j.issn.0529-1542.2013.02.004
[18]吴梅梅, 杨丽荣, 杨小振, 等.蚜虫侵染对西瓜幼苗生理生化指标的影响[J].果树学报, 2015, 32(5):943-949 http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201505035.htm
WU M M, YANG L R, YANG X Z, et al. Effect of aphid invasion on physiological and biochemical indexes in watermelon seedling stage[J]. Journal of Fruit Science, 2015, 32(5):943-949 http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201505035.htm
[19]高俊凤.植物生理学实验指导[M].北京:高等教育出版社, 2006:142-143
GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing:Higher Education Press, 2006:142-143
[20]张志良, 瞿伟菁.植物生理学实验指导[M]. 3版.北京:高等教育出版社, 2003:127-133
ZHANG Z L, QU W J. The Experimental Guide for Plant Physiology[M]. 3rd ed. Beijing:Higher Education Press, 2003:127-133
[21]康新平, 热娜·卡斯木, 龚兰新.正交试验考察新疆锁阳中总黄酮的提取工艺[J].新疆师范大学学报:自然科学版, 2008, 27(3):70-72 http://d.old.wanfangdata.com.cn/Periodical/xjsfdxxb200803021
KANG X P, KASIMU R, GONG L X. On the extraction technology of the total flavones of Xinjiang's Cynomorium songaricum Rupr.[J]. Journal of Xinjiang Normal University:Natural Sciences Edition, 2008, 27(3):70-72 http://d.old.wanfangdata.com.cn/Periodical/xjsfdxxb200803021
[22]顾新州.青藏高原高寒地区植物中次生代谢物季节变化及其对小哺乳动物取食行为的影响[D].扬州: 扬州大学, 2009: 19
GU X Z. The effect of plants secondary metabolites on the forage of little herbivorous mammals in Qinghai-Tibet Alpine Meadow Ecosystem[D]. Yangzhou: Yangzhou University, 2009: 19
[23]韩富根, 刘学芝, 焦桂珍.用福林法测定烟叶中总酚含量的探讨[J].河南农业大学学报, 1993, 27(1):95-98 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004450603
HAN F G, LIU X Z, JIAO G Z. The use of Folin method for determining the total phenols content in tobacco leaves[J]. Acta Agriculturae Universitatis Henanensis, 1993, 27(1):95-98 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004450603
[24]DICKE M, VAN POECKE R M P, DE BOER J G. Inducible indirect defence of plants:From mechanisms to ecological functions[J]. Basic and Applied Ecology, 2003, 4(1):27-42 doi: 10.1078/1439-1791-00131
[25]BEZEMER T M, JONES T H. Plant-insect herbivore interactions in elevated atmospheric CO2:Quantitative analyses and guild effects[J]. Oikos, 1998, 82(2):212-222 doi: 10.2307/3546961
[26]COTRUFO M F, INESON P, SCOTT A. Elevated CO2 reduces the nitrogen concentration of plant tissues[J]. Global Change Biology, 1998, 4(1):43-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a67988d4189d10899e758f1ddf0812f
[27]KAROWE D N. Are legume-feeding herbivores buffered against direct effects of elevated carbon dioxide on host plants? A test with the sulfur butterfly, Colias philodice[J]. Global Change Biology, 2007, 13(10):2045-2051 doi: 10.1111/gcb.2007.13.issue-10
[28]任红旭, 陈雄, 吴冬秀. CO2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报, 2001, 27(6):729-736 doi: 10.3321/j.issn:0496-3490.2001.06.008
REN H X, CHEN X, WU D X. Effects of elevated CO2 on photosynthesis and antioxidative ability of broad bean plants grown under drought condition[J]. Acta Agronomica Sinica, 2001, 27(6):729-736 doi: 10.3321/j.issn:0496-3490.2001.06.008
[29]BOTTOMLEY P A, ROGERS H H, PRIOR S A. NMR imaging of root water distribution in intact Vicia faba L. plants in elevated atmospheric CO2[J]. Plant, Cell & Environment, 1993, 16(3):335-338 doi: 10.1111/j.1365-3040.1993.tb00878.x/citedby
[30]陈建明, 俞晓平, 程家安, 等.不同水稻品种受褐飞虱危害后体内生理指标的变化[J].植物保护学报, 2003, 30(3):225-231 doi: 10.3321/j.issn:0577-7518.2003.03.001
CHEN J M, YU X P, CHENG J A, et al. The changes of physiological indexes of different rice varieties after infestation by brown planthopper Nilaparvata lugens (St?l)[J]. Acta Phytophylacica Sinica, 2003, 30(3):225-231 doi: 10.3321/j.issn:0577-7518.2003.03.001
[31]陈清林, 张飞萍, 陈式斌, 等.毛竹尖胸沫蝉危害对毛竹枝、叶蛋白质及可溶性糖含量的影响[J].武夷科学, 2002, 18:51-54 http://d.old.wanfangdata.com.cn/Periodical/wykx200201012
CHEN Q L, ZHANG F P, CHEN S B, et al. Effect of damages of Aphrophora natabitis on the contents of protein and water-soluble sugar in tips and leaves of Phyllostachys heterocycla cv. Pubescens[J]. Wuyi Science Journal, 2002, 18:51-54 http://d.old.wanfangdata.com.cn/Periodical/wykx200201012
[32]陈澄宇, 康志娇, 史雪岩, 等.昆虫对植物次生物质的代谢适应机制及其对昆虫抗药性的意义[J].昆虫学报, 2015, 58(10):1126-1139 http://d.old.wanfangdata.com.cn/Periodical/kcxb201510011
CHEN C Y, KANG Z J, SHI X Y, et al. Metabolic adaptation mechanisms of insects to plant secondary metabolites and their implications for insecticide resistance of insects[J]. Acta Entomologica Sinica, 2015, 58(10):1126-1139 http://d.old.wanfangdata.com.cn/Periodical/kcxb201510011
[33]李明, 曾任森, 骆世明.次生代谢产物在植物抵抗病虫为害中的作用[J].中国生物防治学报, 2007, 23(3):269-273 http://d.old.wanfangdata.com.cn/Periodical/zgswfz200703015
LI M, ZENG R S, LUO S M. Secondary metabolites related with plant resistance against pathogenic microorganisms and insect pests[J]. Chinese Journal of Biological Control, 2007, 23(3):269-273 http://d.old.wanfangdata.com.cn/Periodical/zgswfz200703015
[34]LINDROTH R L, ARTEEL G E, KINNEY K K. Responses of Three Saturniid species to paper birch grown under enriched CO2 atmospheres[J]. Functional Ecology, 1995, 9(2):306-311 http://www.jstor.org/stable/2390578
[35]CHEN F J, WU G, GE F, et al. Relationships between exogenous-toxin quantity and increased biomass of transgenic Bt crops under elevated carbon dioxide[J]. Ecotoxicology and Environmental Safety, 2011, 74(4):1074-1080 doi: 10.1016/j.ecoenv.2011.02.001
[36]BRYANT J P, CHAPIN Ⅲ F S, KLEIN D R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory[J]. Oikos, 1983, 40(3):357-368 doi: 10.2307/3544308
[37]戴沿海.松突圆蚧为害对马尾松针叶主要次生物质的影响[J].华东昆虫学报, 2006, 15(2):103-106 http://d.old.wanfangdata.com.cn/Periodical/hdkcxb200602006
DAI Y H. The injury influences of Hemiberlesia pitysophila on the secondary metabolites content of needle-leaves of Pinus massoniana[J]. Entomological Journal of East China, 2006, 15(2):103-106 http://d.old.wanfangdata.com.cn/Periodical/hdkcxb200602006
[38]吴兴德.栗瘿蜂危害下锥栗叶片中单宁含量的变化[J].福建林学院学报, 2005, 25(4):365-367 http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb200504017
WU X D. The fluctuation of tannin content in leaves of Castanea Henryi damaged by Dryocosmus Kuriphilus[J]. Journal of Fujian College of Forestry, 2005, 25(4):365-367 http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb200504017
[39]张飞萍, 邓秀明, 陈清林, 等.毛竹尖胸沫蝉危害对毛竹枝叶黄酮和单宁含量的影响[J].竹子研究汇刊, 2003, 22(1):43-46 doi: 10.3969/j.issn.1000-6567.2003.01.009
ZHANG F P, DENG X M, CHEN Q L, et al. Effects of Aphrophora natabitis' damage on the contents of flavone and tannin in tips and leaves of Phyllostachys pubescens[J]. Journal of Bamboo Research, 2003, 22(1):43-46 doi: 10.3969/j.issn.1000-6567.2003.01.009

相关话题/植物 昆虫 物质 大气 生理