删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

短期干旱胁迫下棉花气孔表现及光合特征研究

本站小编 Free考研考试/2022-01-01

王凯丽,
高彦钊,
李姗,
张梦璐,
吴智豪,
刘连涛,
孙红春,
李存东,
张永江,
河北农业大学农学院/河北省作物生长调控重点实验室 保定 071001
基金项目: 国家重点研发计划项目2017YFD0201900
河北省自然科学基金项目C2016204004
河北省大学生创新训练项目201710086047
河北省棉花产业技术体系项目HBCT2018040201

详细信息
作者简介:王凯丽, 研究方向为棉花栽培。E-mail:15720004634@163.com
通讯作者:张永江, 主要从事棉花栽培生理研究。E-mail:yongjiangzh@sina.com
中图分类号:S562.01

计量

文章访问数:3268
HTML全文浏览量:16
PDF下载量:2672
被引次数:0
出版历程

收稿日期:2018-10-19
录用日期:2018-11-26
刊出日期:2019-06-01

Response of leaf stomata and photosynthetic parameters to short-term drought stress in cotton (Gossypium hirsutum L.)

WANG Kaili,
GAO Yanzhao,
LI Shan,
ZHANG Menglu,
WU Zhihao,
LIU Liantao,
SUN Hongchun,
LI Cundong,
ZHANG Yongjiang,
College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, China
Funds: the National Key Research and Development Program of China2017YFD0201900
the Natural Science Foundation of Hebei ProvinceC2016204004
the Innovation Training Program for College Students in Hebei201710086047
the Modern Technology System of Agricultural Industry in HebeiHBCT2018040201

More Information
Corresponding author:ZHANG Yongjiang, E-mail:yongjiangzh@sina.com


摘要
HTML全文
(6)(1)
参考文献(23)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:研究气孔对干旱胁迫的响应有助于了解气孔调节真实行为和提高水分利用效率。本研究以‘国欣9号’为供试棉花品种,在人工气候室利用营养液培养,设置加入PEG-6000浓度为0(对照)、1.5%、3.0%和4.5% 4个处理,处理后1~7 d每隔1 d连续测定其气孔形态、光合和叶绿素荧光指标。结果表明:加入PEG-6000 1 d后,随着处理进程的延长,棉花叶片水势、气孔长度、宽度和开度、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)、最大光化学效率(Fv/Fm)和实际光化学量子产量(Yield)均呈下降趋势,气孔密度和非光化学淬灭系数(NPQ)呈上升趋势;不同处理之间,随着干旱胁迫程度增加,也表现出相似趋势。处理后5 d和7 d,与正常处理相比,1.5%、3.0%和4.5%处理棉花气孔长度、宽度、水势、PnGsTrCi均差异显著(P < 0.05),气孔长度降低幅度最小(1.17%~2.61%),Gs降低幅度最大(61.62%~69.09%),Tr降低幅度为37.62%~67.48%。相关分析表明,棉花气孔长度、宽度和开度之间极显著正相关(P < 0.01),气孔宽度和气孔密度不相关。气孔长度、宽度和开度与Pn和Yield极显著正相关(P < 0.01),与NPQ极显著负相关(P < 0.01),与GsTrFv/Fm相关不显著。综上,棉花在PEG-6000诱发干旱后,通过降低气孔开度和增大气孔密度降低净光合速率和气孔导度,叶绿素荧光指标Yield和NPQ比Fv/Fm对干旱更敏感。
关键词:棉花/
气孔形态/
气孔密度/
光合特性/
干旱胁迫/
叶绿素荧光
Abstract:Studying the response of stomata to drought stress can help to understand the behavior of stomatal regulation and improve water utilization efficiency of crops. This study was conducted in an artificial climate chamber using the cotton cultivar 'Guoxin 9'. Four concentrations of PEG 6000[0 (control), 1.5%, 3%, and 4.5%] were added into the nutrient solution. Stomatal morphological parameters, gas exchange parameters, and chlorophyll fluorescence kinetic parameters were measured every two days from the first day to the seventh day of treatment. The results showed that with the elongation of treatment time, the values of leaf water potential, stomatal length, stomatal width, stomatal aperture, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), maximal photochemical efficiency (Fv/Fm), and actual photochemical production quantum (Yield) all decreased to some extent, whereas stomatal density and non-photochemical quenching coefficient (NPQ) increased. Similar trends were observed in different treatments with an increase in drought stress. After 5 d and 7 d of treatment, leaf water potential, stomatal length, stomatal width, Pn, Gs, Tr, and Ci with 1.5%, 3%, and 4.5% PEG 6000 were significantly different from those with the control (P < 0.05). The magnitudes of the declines in leaf stomatal length, Gs, and Tr were 1.17%-2.61%, 61.62%-69.09%, and 37.62%-67.48%, respectively. Correlation analysis revealed that significant positive correlations existed among leaf stomatal length, width, and aperture (P < 0.01). Stomatal width was not significantly correlated with stomatal density. Stomatal length, width, and aperture were positively correlated with Pn and Yield (P < 0.01), negatively correlated with NPQ (P < 0.01), and not significantly correlated with Gs, Tr, or Fv/Fm. These results suggested that the simulated drought induced by PEG 6000 may result in cotton stomatal closure and an increase in stomatal density, along with decreases in net photosynthetic rate and stomatal conductance. Compared with Yield and NPQ, Fv/Fm was less sensitive to drought stress in cotton.
Key words:Cotton/
Stomatal morphology/
Stomatal density/
Photosynthetic characteristics/
Drought stress/
Chlorophyll fluorescence

HTML全文


图1不同PEG-6000浓度处理下棉花叶片水势变化
Figure1.Change of leaf water potential under four PEG-6000 concentrations in cotton


下载: 全尺寸图片幻灯片


图2不同PEG-6000浓度处理1 d后棉花叶片气孔形态变化(A、B、C和D分别对应PEG-6000处理浓度为0、1.5%、3.0%和4.5%)
Figure2.Leaf stomatal morphology of cotton under four PEG-6000 concentrations for 1 day (A: 0; B: 1.5%; C: 3.0% and D: 4.5%)


下载: 全尺寸图片幻灯片


图3不同PEG-6000浓度处理下棉花气孔形态指标的变化(A-D分别为气孔长度、宽度、开度和密度)
Figure3.Leaf stomatal length (A), width (B), aperture (C) and density (D) of cotton under four PEG-6000 concentrations


下载: 全尺寸图片幻灯片


图4不同PEG-6000浓度处理下棉花叶片净光合速率(Pn, A)、气孔导度(Gs, B)、蒸腾速率(Tr, C)和胞间CO2浓度(Ci, D)的变化
Figure4.Leaf net photosynthetic rate (Pn, A), stomatal conductance (Gs, B), transpiration rate (Tr, C) and intercellular CO2 concentration (Ci, D) of cotton leaf under four PEG-6000 concentrations


下载: 全尺寸图片幻灯片


图5不同PEG-6000浓度处理下棉花叶片最大光化学效率(Fv/Fm)
Figure5.Leaf maximal photochemical efficiency of PSⅡ in the dark (Fv/Fm) under four PEG-6000 concentrations in cotton


下载: 全尺寸图片幻灯片


图6不同PEG-6000浓度处理下棉花实际光化学量子产量(Yield, A)和非光化学淬灭(NPQ, B)
Figure6.Photochemical quantum yield (Yield, A) and non-photochemical quenching coefficient (NPQ, B) of cotton under four PEG-6000 concentrations


下载: 全尺寸图片幻灯片

表1棉花气孔形态指标与光合、荧光参数的关系
Table1.Correlation coefficients among leaf stomata morphological parameters, gas exchange and chlorophyll fluorescence parameters under four PEG-6000 concentrations in cotton (n=80)
气孔长度
Stomatal
length
气孔宽度
Stomatal
width
气孔开度
Stomatal
aperture
气孔密度
Stomatal
density
Pn Gs Tr Fv/Fm NPQ Yield
气孔长度?Stomatal length 1.000
气孔宽度?Stomatal width 0.719** 1.000
气孔开度?Stomatal aperture 0.635** 0.669** 1.000
气孔密度?Stomatal density -0.400** -0.223 -0.407** 1.000
Pn 0.557** 0.426** 0.541** -0.307* 1.000
Gs 0.249 0.178 0.174 -0.100 0.357* 1.000
Tr 0.029 0.172 0.234 -0.218 0.274* 0.269 1.000
Fv/Fm 0.147 0.194 0.178 -0.243 0.086 0.211 0.155 1.000
NPQ -0.539** -0.353** -0.408** 0.500** -0.312* -0.397** -0.255 -0.250 1.000
Yield 0.359** 0.434** 0.432** -0.351** 0.217 0.110 0.147 0.117 -0.336** 1.000
Pn:净光合速率; Gs:气孔导度; Tr:蒸腾速率; Fv/Fm:最大光化学效率; NPQ:非光化学淬灭; Yield:实际光化学量子产量。Pn: net photosynthetic rate; Gs: stomatal conductance; Tr: transpiration rate; Fv/Fm: maximal photochemical efficiency of PSⅡ; NPQ: non-photochemical quenching coefficient; Yield: photochemical quantum yield. *: P < 0.05; **: P < 0.01.


下载: 导出CSV

参考文献(23)
[1]HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908 doi: 10.1038/nature01843
[2]李芳兰, 包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学报, 2005, 22(S1):118-127 http://www.cqvip.com/QK/96906X/2005B08/21139456.html
LI F L, BAO W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change[J]. Chinese Bulletin of Botany, 2005, 22(S1):118-127 http://www.cqvip.com/QK/96906X/2005B08/21139456.html
[3]CASSON S A, HETHERINGTON A M. Environmental regulation of stomatal development[J]. Current Opinion in Plant Biology, 2010, 13(1):90-95 doi: 10.1016/j.pbi.2009.08.005
[4]于海秋, 王晓磊, 蒋春姬, 等.土壤干旱下玉米幼苗解剖结构的伤害进程[J].干旱地区农业研究, 2008, 26(5):143-147 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200805030
YU H Q, WANG X L, JIANG C J, et al. Injured process on anatomical structure of maize seedling under soil drought[J]. Agricultural Research in the Arid Areas, 2008, 26(5):143-147 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200805030
[5]张志芬, 刘景辉, 付晓峰, 等.干旱胁迫对燕麦叶片气孔和叶肉细胞超微结构的影响[J].麦类作物学报, 2017, 37(9):1216-1223 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201709012
ZHANG Z F, LIU J H, FU X F, et al. Effect of drought stress on stomata and ultrastructure of mesophyll cells of oat leaf[J]. Journal of Triticeae Crops, 2017, 37(9):1216-1223 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201709012
[6]ZHANG Y L, HU Y Y, LUO H H, et al. Two distinct strategies of cotton and soybean differing in leaf movement to perform photosynthesis under drought in the field[J]. Functional Plant Biology, 2011, 38(7):567-575 doi: 10.1071/FP11065
[7]王春艳, 庞艳梅, 李茂松, 等.干旱胁迫对大豆气孔特征和光合参数的影响[J].中国农业科技导报, 2013, 15(1):109-115 http://d.old.wanfangdata.com.cn/Periodical/zgnykjdb201301024
WANG C Y, PANG Y M, LI M S, et al. Effects of drought stress on soybean stomatal characteristics and photosynthetic parameter[J]. Journal of Agricultural Science and Technology, 2013, 15(1):109-115 http://d.old.wanfangdata.com.cn/Periodical/zgnykjdb201301024
[8]李平, 张永江, 刘连涛, 等.水分胁迫对棉花幼苗水分利用和光合特性的影响[J].棉花学报, 2014, 26(2):113-121 doi: 10.3969/j.issn.1002-7807.2014.02.003
LI P, ZHANG Y J, LIU L T, et al. Effects of water stress on water utilization and leaf photosynthetic characteristics in cotton (Gossypium hirsutum L.) seedlings[J]. Cotton Science, 2014, 26(2):113-121 doi: 10.3969/j.issn.1002-7807.2014.02.003
[9]MASSACCI A, NABIEV S M, PIETROSANTI L, et al. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging[J]. Plant Physiology and Biochemistry, 2008, 46(2):189-195 doi: 10.1016/j.plaphy.2007.10.006
[10]SNIDER J L, OOSTERHUIS D M, COLLINS G D, et al. Field-acclimated Gossypium hirsutum cultivars exhibit genotypic and seasonal differences in photosystem Ⅱ thermostability[J]. Journal of Plant Physiology, 2013, 170(5):489-496 doi: 10.1016/j.jplph.2012.11.004
[11]李东晓, 李存东, 孙传范, 等.干旱对棉花主茎叶片内源激素含量与平衡的影响[J].棉花学报, 2010, 22(3):231-235 doi: 10.3969/j.issn.1002-7807.2010.03.007
LI D X, LI C D, SUN C F, et al. The effects of drought on endogenous hormone contents and balance in main stem leaves of cotton[J]. Cotton Science, 2010, 22(3):231-235 doi: 10.3969/j.issn.1002-7807.2010.03.007
[12]罗宏海, 张亚黎, 张旺锋, 等.新疆滴灌棉花花铃期干旱复水对叶片光合特性及产量的影响[J].作物学报, 2008, 34(1):171-174 doi: 10.3321/j.issn:0496-3490.2008.01.026
LUO H H, ZHANG Y L, ZHANG W F, et al. Effects of rewatering after drought stress on photosynthesis and yield during flowering and boll-setting stage of cotton under-mulch-drip irrigation in Xinjiang[J]. Acta Agronomica Sinica, 2008, 34(1):171-174 doi: 10.3321/j.issn:0496-3490.2008.01.026
[13]MAXWELL K, JOHNSON G N. Chlorophyll fluorescence-A practical guide[J]. Journal of Experimental Botany, 2000, 51(345):659-668 doi: 10.1093/jexbot/51.345.659
[14]CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1):9-23 doi: 10.1111/j.1469-8137.2007.02351.x
[15]杨再强, 谭文, 刘朝霞, 等.土壤水分胁迫对设施番茄叶片气孔特性的影响[J].生态学杂志, 2015, 34(5):1234-1240 http://d.old.wanfangdata.com.cn/Periodical/stxzz201505008
YANG Z Q, TAN W, LIU Z X, et al. Effect of soil water stress on stomatal characters of greenhouse tomato leaves[J]. Chinese Journal of Ecology, 2015, 34(5):1234-1240 http://d.old.wanfangdata.com.cn/Periodical/stxzz201505008
[16]张德巧, 徐增莱, 褚晓芳, 等.蓝莓叶片与抗旱性相关的解剖结构指标研究[J].果树学报, 2008, 25(6):864-867 http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK200806024.htm
ZHANG D Q, XU Z L, CHU X F, et al. Study on leaf anatomical structure indexes related to drought resistance of blueberry[J]. Journal of Fruit Science, 2008, 25(6):864-867 http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK200806024.htm
[17]FRASER L H, GREENALL A, CARLYLE C, et al. Adaptive phenotypic plasticity of Pseudoroegneria spicata:Response of stomatal density, leaf area and biomass to changes in water supply and increased temperature[J]. Annals of Botany, 2009, 103(5):769-775 doi: 10.1093/aob/mcn252
[18]XU Z Z, ZHOU G S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008, 59(12):3317-3325 doi: 10.1093/jxb/ern185
[19]李中华, 刘进平, 谷海磊, 等.干旱胁迫对植物气孔特性影响研究进展[J].亚热带植物科学, 2016, 45(2):195-200 doi: 10.3969/j.issn.1009-7791.2016.02.021
LI Z H, LIU J P, GU H L, et al. Review on the effects of drought stress on plant stomatal characteristics[J]. Subtropical Plant Science, 2016, 45(2):195-200 doi: 10.3969/j.issn.1009-7791.2016.02.021
[20]HUGHES J, HEPWORTH C, DUTTON C, et al. Reducing stomatal density in barley improves drought tolerance without impacting on yield[J]. Plant Physiology, 2017, 174(2):776-787 doi: 10.1104/pp.16.01844
[21]TOMBESI S, NARDINI A, FRIONI T, et al. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine[J]. Scientific Reports, 2015, 5:12449 doi: 10.1038/srep12449
[22]ENNAHLI S, EARL H J. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress[J]. Crop Science, 2005, 45(6):2374-2382 doi: 10.2135/cropsci2005.0147
[23]AHMED S, NAWATA E, HOSOKAWA M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science, 2002, 163(1):117-123 doi: 10.1016/S0168-9452(02)00080-8

相关话题/棉花 图片 指标 结构 植物