删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同年代培育的棉花品种产量性状及氮利用效率特征

本站小编 Free考研考试/2022-01-01

白灯莎·买买提艾力1,,
孙良斌1,
刘忠山3,
冯固2
1.新疆农业科学院核技术生物技术研究所/农业部荒漠绿洲作物生理生态与耕作重点实验室 乌鲁木齐 830091
2.中国农业大学资源与环境学院 北京 100193
3.新疆农业科学院经济作物研究所 乌鲁木齐 830091
基金项目: 国家自然科学基金项目41461051
国家自然科学基金项目U1703232

详细信息
作者简介:白灯莎·买买提艾力, 主要从事棉花施肥方面的研究。E-mail:baidengsha@126.com
中图分类号:S512.1

计量

文章访问数:800
HTML全文浏览量:13
PDF下载量:2803
被引次数:0
出版历程

收稿日期:2018-10-20
录用日期:2019-03-26
刊出日期:2019-06-01

Comparison of yield and nitrogen use efficiency-related traits of cotton cultivars released during the last sixty years

BAIDENGSHA·Maimaitiaili1,,
SUN Liangbin1,
LIU Zhongshan3,
FENG Gu2
1. Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Region, Ministry of Agriculture, Urumqi 830091, China
2. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
3. Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
Funds: the National Natural Science Foundation of China41461051
the National Natural Science Foundation of ChinaU1703232



摘要
HTML全文
(5)(4)
参考文献(31)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:棉花品种培育过程与土壤培肥、栽培技术、气候变化等因素密切相关,品种产量性状的选育也与养分吸收利用性状存在协同选择性。为了理解品种选育过程对棉花养分效率的影响,采用单因素随机区组设计,比较了新疆1950s—2013年不同年代培育的22个棉花品种(系)的产量性状和氮素利用效率的特征,分析了各棉花品种不同生育期生物量积累规律、产量性状和氮素利用效率的差异。结果表明:不同品种生物量、产量、氮素利用效率和氮素偏生产力差异较大,生物量苗期、蕾期、花铃期和吐絮期分别为2.87~11.67 g·株-1、20.8~38.6 g·株-1、42.3~88.3 g·株-1和58.2~120.4 g·株-1,变异系数分别为30.2%、8.2%、5.6%和5.6%。产量构成因素中单株铃数变异系数最大(29.0%),衣分最小(1.0%)。氮素利用效率和氮素偏生产力分别为1.12~4.47 kg·kg-1和2.87~11.67 kg·kg-1,变异系数分别为35.3%和27.6%。氮素偏生产力与生物量、皮棉产量呈极显著正相关。新疆过去60年棉花品种更替过程中,经济系数没有发生明显改变,始终维持在0.20~0.24 g·g-1;棉花皮棉产量性状逐渐提升,由1950s的853.6 kg·hm-2增加到2013年的1 569.8 kg·hm-2;氮素偏生产力和氮素利用效率变化较大,分别由4.12 kg·kg-1增加到7.58 kg·kg-1、由2.32 kg·kg-1增加到3.07 kg·kg-1。基于生物量、产量构成因素、氮肥利用效率和氮素偏生产力等性状指标的综合评价和聚类分析,将22个品种分为氮高效型、氮中效型和氮低效型3组,‘新陆早50号’ ‘新陆早57号’为氮高效型品种。与氮低效型组相比,氮高效型组的品种具有较高的皮棉产量和生物量。通过上述结果可以认为,棉花高产育种过程提高了氮素利用效率和偏生产力。
关键词:棉花育种/
品种/
皮棉产量/
经济系数/
氮利用效率/
氮素偏生产力
Abstract:The cotton breeding process is closely related to the improvement of soil fertility, innovation of culturing technology, climate change, and so on. The selection of lint yield-related traits is connected to the selection of traits of nutrient uptake and use efficiency. To understand the impact of the cotton breeding process on the nutrient efficiency of cotton, 22 cotton varieties released from the 1950s to 2013 in Xinjiang were grown together in a field with a randomized block design. The biomass, lint yield, N content and N use efficiency of each cultivar were analyzed. The results showed that there were significant differences in N use efficiency and partial factor productivity among the analyzed varieties. The biomass of the seeding stage, befuddling stage, flower and boll stage, and boll opening stage were 2.87-11.67 g, 20.8-38.6 g, 42.3-88.3 g, and 58.2-120.4 g per plant, respectively. Coefficients of variation were 30.2%, 8.2%, 5.6%, and 5.6%, respectively. For the yield components, the coefficient of variation of the boll number per plant was the highest (29.0%), and lint percent the lowest (1.0%). The variation of N use efficiency was 1.12-4.47 kg·kg-1, and the partial factor productivity of N (PFPN) was 2.87-11.67 kg·kg-1, with the coefficients of variation of 35.3% and 27.6%, respectively. It showed that PFPN had a significant correlation with biomass and lint cotton yield. The cotton economic coefficient had not changed significantly during the past 60 years and remained in a range of 0.20-0.24 g·g-1. The lint yield of cotton increased gradually from 853.6 kg·hm-2 in the 1950s to 1 569.8 kg·hm-2 in 2013. There were significant changes in PFPN and N use efficiency:these factors increased from 4.12 kg·kg-1 to 5.78 kg·kg-1, and from 2.32 kg·kg-1 to 3.07 kg·kg-1, respectively. Based on lint yield components, N use efficiency and PFPN, the cotton varieties were divided into three groups:a high N efficiency group, a medium N efficiency group, and a low N efficiency group. Cluster analysis showed that 'Xinluzao 50' and 'Xinluzao 57' were the high N efficient varieties. Compared with the low-efficiency cultivar, the high N-efficiency cultivar had a higher lint yield and biomass. It can be concluded that high-yield cultivar selection could improve N use efficiency and PFPN of cotton.
Key words:Cotton breeding/
Cultivars/
Lint yield/
Economic factors/
Nitrogen use efficiency/
Partial factor productivity of nitrogen

HTML全文


图1不同棉花品种不同生育期生物量比较
各品种序号及具体介绍见表 1
Figure1.Comparison of biomasses at different growth stages of different cotton cultivars
Detail information of cultivars is shown in the table 1.


下载: 全尺寸图片幻灯片


图2不同棉花品种氮利用效率(NUE)和氮素偏生产力(PFPN)比较
各品种序号及具体介绍见表 1
Figure2.Comparison of nitrogen use efficiency (NUE) and partial factor productivity of nitrogen (PFPN) of different cotton cultivars
Detail information of cultivars is shown in the table 1.


下载: 全尺寸图片幻灯片


图3不同棉花品种生物量、皮棉产量、氮利用效率的相关性分析
Figure3.Correlation analysis of biomass, lint yield and nitrogen use efficiency (NUE) of different cotton cultivars


下载: 全尺寸图片幻灯片


图4不同品种皮棉产量、生物量、氮偏生产力相关性分析
Figure4.Correlation analysis of lint yield, biomass and nitrogen partial factor productivity (PFPN) of different cotton cultivars


下载: 全尺寸图片幻灯片


图5不同棉花品种氮效率聚类分析结果
各品种序号及具体介绍见表 1
Figure5.Cluster analysis of nitrogen efficiency of different cotton cultivars
Detail information of cultivars is shown in the table 1.


下载: 全尺寸图片幻灯片

表1供试棉花品种及育成年代和单位
Table1.Released (introduced) years and names of breeding institutions of the tested cotton cultivars
编号
No.
品种
Cultivar
育成(引进)年代
Released (introduced)
year
育成单位
Name of breeding institution
1 C-3174 1954 前苏联?Soviet Union
2 KK-1543 1955 前苏联柯尔克孜农业研究所
Soviet Union Kirgiz Agricultural Research Institute
3 108夫108 Fu 1960 前苏联?Soviet Union
4 农垦5号?Nongkeng No. 5 1961 新疆农八师莫二场良种队
Mo’rchang Breeding Group of the Eighth Agricultural Division of Xinjiang
5 车61-72?Che 61-72 1961 新疆农七师车排子试验站
Chepaizi Station of the Seventh Agricultural Division of Xinjiang
6 C-4744 1963 前苏联?Soviet Union
7 新陆早1号?Xinluzao No. 1 1978 新疆农七师下野地试验站
Xiayedi Station of the Seventh Agricultural Division of Xinjiang
8 新陆201?Xinlu 201 1979 新疆农业科学院和巴州农业科学研究所
Xinjiang Academy of Agricultural Sciences and Bazhou Agricultual Institute
9 军棉1号?Junmian No. 1 1979 新疆农二师塔里木良种繁育试验站
Tarim Breeding Experiment Station of the Second Agricultural Division of
Xinjiang
10 新陆早2号?Xinluzao No. 2 1988 石河子棉花研究所?Shihezi Cotton Research Institute
11 塔什干2号?Tashigan No. 2 1991 前苏联?Soviet Union
12 苏K-202?Su K-202 1991 前苏联费尔干试验站?Fergana Test Station of Soviet Union
13 新陆中4号?Xinluzhong No. 4 1992 新疆农业科学院经济作物研究所
Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences
14 新陆早13号?Xinluzao No. 13 2002 新疆农七师农业科学研究所
Agricultural Institute of the Seventh Agricultural Division of Xinjiang
15 新陆早19号?Xinluzao No. 19 2004 石河子棉花研究所?Shihezi Cotton Research Institute
16 新陆早31号?Xinluzao No. 31 2006 新疆奎屯万氏棉种公司?Wanshi Cotton Seed Company in Kuitun, Xinjiang
17 新陆中35号?Xinluzhong No. 35 2007 新疆巴州富全新科种业?Fuquanxinke Seed Industry in Bazhou, Xinjiang
18 新陆中40号?Xinluzhong No. 40 2009 库尔勒市种子公司?Seed Company of Korla City
19 新陆早48号?Xinluzao No. 48 2010 惠远公司?Huiyuan Company
20 新陆早50号?Xinluzao No. 50 2011 新疆农业科学院经济作物研究所
Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences
21 新陆早57号?Xinluzao No. 57 2013 新疆农业科学院经济作物研究所
Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences
22 TM-1 (遗传标准系
Genetic standard system)
美国?USA


下载: 导出CSV
表2不同棉花品种产量及其构成因素
Table2.Yield components of different cotton cultivars
品种编号
No. of cultivar
单株铃数
Boll numbers
per plant
单铃重
Boll weight
(g)
籽棉产量
Seed cotton yield
(kg?hm-2)
衣分
Lint percent
(%)
皮棉产量
Lint cotton yield
(kg?hm-2)
经济系数
Economic coefficient
(g?g-1)
1 2.6±0.32klm 4.29±0.25bcdef 2 146.7±321.6hij 29.1±0.65k 625.5±80.4jk 0.192±0.05gh
2 4.1±0.03efg 4.50±0.03abcde 3 506.5±14.6 de 31.2±1.75ijk 1 095.8±64.8efg 0.250±0.07cde
3 2.1±0.10m 4.72±0.06ab 1 929.6±72.2ij 32.2±0.35hij 620.5±16.6jk 0.166±0.02jkl
4 3.0±0.47jkl 4.71±0.27ab 2 665.9±545.2fgh 31.6±0.60ijk 841.3±159.7ghij 0.203±0.04gh
5 3.6±0.17ghij 4.06±0.05ef 2 826.8±127.7fg 31.5±2.46ijk 889.4±55.6fghi 0.208±0.01hj
6 3.7±0.32ghi 4.91±0.11a 3 505.9±216.9de 29.9±0.64jk 1 048.2±79.2efgh 0.249±0.06efg
7 2.7±0.23klm 4.08±0.01ef 2 125.9±166.8hij 31.8±0.80hijk 675.5±69.3ijk 0.166±0.04ijkl
8 4.3±0.42defg 4.51±0.31abcde 3 721.7±123.2cde 37.5±0.61cde 1 394.2±66.6cd 0.329±0.01hijk
9 5.6±0.15b 4.56±0.22abcd 4 883.0±140.7b 37.0±0.36de 1 807.8±34.5b 0.212±0.03bcde
10 5.3±0.29bc 4.12±0.18def 4 147.9±346.6c 37.0±0.65de 1 533.0±118.9c 0.309±0.01hij
11 2.0±0.14m 4.65±0.11abc 1 808.8±114.0j 32.8±0.53ghi 593.4±46.4k 0.148±0.01kl
12 3.1±0.03ijkl 4.17±0.03def 2 455.4±54.3ghi 31.5±0.63ijk 772.9±14.5ijk 0.119±0.02gh
13 2.4±0.28lm 4.01±0.31f 1 864.2±328.1ij 32.4±1.00hij 604.7±95.6jk 0.116±0.03l
14 3.2±0.17hijk 3.94±0.09f 2 436.0±179.9ghij 34.3±0.47fgh 835.0±68.6hijk 0.168±0.01hi
15 3.9±0.19fgh 4.15±0.08def 3 058.2±98.2efg 39.2±0.76bcd 1 198.5±16.5de 0.205±0.04efg
16 4.1±0.09defg 4.93±0.09a 3 917.1±64.1cd 35.3±0.33efg 1 384.3±34.9cd 0.251±0.05bc
17 4.9±0.21bcd 4.26±0.13cdef 3 968.9±75.2cd 40.0±1.39abc 1 587.5±85.7bc 0.269±0.04hij
18 4.5±0.06def 4.79±0.18a 4 117.9±170.3cd 33.8±0.31fghi 1 390.8±66.2cd 0.249±0.02bcd
19 4.8±0.23cde 4.04±0.07f 3 686.7±139.8cde 39.6±0.87bcd 1 458.7±36.8c 0.249±0.04def
20 6.6±0.44a 4.25±0.10cdef 5 407.7±232.6ab 42.4±0.95a 2 294.8±150.1a 0.236±0.02b
21 6.7±0.41a 4.49±0.03abcde 5 799.4±393.9a 41.6±0.75ab 2 408.9±206.2a 0.314±0.04a
22 3.9±0.14fg 4.21±0.12cdef 3 162.8±40.1ef 35.6±0.30ef 1 124.8±12.7ef 0.282±0.00fgh
平均?Mean 4.0±1.32 4.38±0.31 3 324.4±1 130.1 34.9±3.90 1 190.3±521.29 0.220±0.06
变异系数
Coefficient of
variation (%)
28.96 12.69 1.01 5.66 1.92 111.75
各品种具体介绍见表 1。表中数据为平均值±标准误; 不同小写字母表示不同品种间差异达5%显著水平。Detail information of cultivars is shown in the table 1. Data are means ± SE. Different lowercase letters mean significant differences at 5% leve1 among different cultivars.


下载: 导出CSV
表3不同年代棉花品种氮偏生产力和利用效率变化情况
Table3.Changes in nitrogen partial factor productivity and nitrogen use efficiency of cotton cultivars released in different years
年份
Year
品种数
Cultivars
number
阶段
Stage
生物量
Biomass
(kg?hm-2)
氮素累积量
N accumulation
(kg?hm-2)
经济系数
Economic
coefficient
(g?g-1)
皮棉产量
Lint production
(kg ?hm-2)
氮素偏生产力
Partial factor
productivity of N
(kg?kg-1)
氮利用效率
N use
efficiency
(kg?kg-1)
1954—1973 6 前期?Early stage 12 973.6±533.9b 367.2±11.9b 0.21±0.01a 853.6±82.6b 4.12±0.40b 2.32±0.21a
1974—1993 7 中期?Medium stage 15 646.7±1 709.7ab 451.0±58.6ab 0.20±0.03a 1 054.5±192.1ab 5.09±0.92ab 2.52±0.50a
1994—2013 8 后期?Later stage 17 251.0±1 233.7a 506.4±38.8a 0.24±0.02a 1 569.8±188.3a 7.58±0.91a 3.07±0.24a


下载: 导出CSV
表4不同棉花品种的氮效率综合评价
Table4.Comprehensive evaluation of nitrogen efficiency of different cotton cultivars
品种
编号
No. of
cultivar
评价指标?Evaluation index 隶属函数值?Subordinate function value D 位次
Order
生物量
Biomass
(kg?hm-2)
单株
铃数
Boll
numbers
per plant

铃重
Boll
weight
(g)
籽棉
产量
Seed
cotton
yield

(kg?hm-2)
衣分
Ginning
outtum
(%)
皮棉
产量
Lint
cotton
yield
(kg?hm-2)
氮素偏
生产力
PFPN
(kg?kg-1)
利用
效率
NUE
(kg?kg-1)
u(1) u(2) u(3) u(4) u(5) u(6) u(7) u(8)
1 11 153.5 2.6 4.29 2 146.7 29.1 625.5 3.0 1.9 0 0.124 0.347 0.085 0 0.018 0.017 0.196 0.077 21
2 14 303.3 4.1 4.50 3 506.5 31.2 1 095.8 5.3 3.0 0.265 0.433 0.563 0.426 0.159 0.277 0.276 0.486 0.354 12
3 11 612.9 2.1 4.72 1 929.6 32.2 620.5 3.0 1.9 0.039 0.022 0.783 0.030 0.227 0.015 0.015 0.206 0.083 20
4 13 116.0 3.0 4.71 2 665.9 31.6 841.3 4.1 2.7 0.165 0.197 0.770 0.215 0.182 0.137 0.136 0.393 0.219 15
5 13 564.3 3.6 4.06 2 826.8 31.5 889.4 4.3 2.5 0.203 0.342 0.119 0.255 0.175 0.163 0.163 0.350 0.234 14
6 14 091.6 3.7 4.91 3 505.9 29.9 1 049.2 5.1 3.0 0.247 0.361 0.974 0.426 0.059 0.251 0.251 0.489 0.34 13
7 12 797.4 2.7 4.08 2 125.9 31.8 675.5 3.3 2.2 0.138 0.146 0.144 0.080 0.198 0.045 0.045 0.265 0.118 18
8 11 313.3 4.3 4.51 3 721.7 37.5 1 394.2 6.7 4.8 0.013 0.485 0.568 0.480 0.626 0.441 0.441 0.939 0.496 7
9 23 048.2 5.6 4.56 4 883.0 37.0 1 807.8 8.7 3.1 1.000 0.759 0.615 0.771 0.593 0.669 0.669 0.516 0.703 3
10 13 444.9 5.3 4.12 4 147.8 37.0 1 533.0 7.4 4.4 0.193 0.686 0.184 0.587 0.588 0.518 0.517 0.850 0.561 5
11 12 230.4 2.0 4.65 1 808.8 32.8 593.4 2.9 2.2 0.091 0 0.714 0 0.276 0 0 0.271 0.085 19
12 20 581.9 3.1 4.17 2 455.4 31.5 772.9 3.7 1.4 0.793 0.222 0.234 0.162 0.176 0.099 0.098 0.052 0.200 16
13 16 110.6 2.4 4.01 1 864.2 32.4 604.7 2.9 1.1 0.417 0.085 0.067 0.014 0.248 0.006 0.006 0 0.075 22
14 14 475.4 3.2 3.94 2 435.9 34.3 835.0 4.0 2.2 0.279 0.255 0 0.157 0.386 0.133 0.133 0.274 0.199 17
15 14 883.7 3.9 4.15 3 058.2 39.2 1 198.5 5.8 2.5 0.314 0.388 0.206 0.313 0.756 0.333 0.333 0.358 0.356 10
16 15 626.3 4.1 4.93 3 917.1 35.3 1 384.3 6.7 3.5 0.376 0.450 0.994 0.529 0.466 0.436 0.435 0.615 0.490 9
17 14 732.4 4.9 4.26 3 968.8 40.0 1 587.4 7.7 5.0 0.301 0.604 0.319 0.542 0.816 0.548 0.547 0.999 0.603 4
18 22 124.3 4.5 4.79 4 117.9 33.8 1 390.8 6.7 2.6 0.922 0.524 0.845 0.579 0.348 0.439 0.439 0.365 0.520 6
19 14 833.7 4.8 4.04 3 686.7 39.6 1 458.7 7.0 3.4 0.309 0.581 0.102 0.471 0.784 0.477 0.476 0.589 0.494 8
20 22 905.2 6.6 4.25 5 407.7 42.4 2 294.8 11.1 3.6 0.988 0.982 0.310 0.903 1.000 0.937 0.937 0.631 0.882 2
21 18 426.7 6.7 4.49 5 794.4 41.6 2 408.9 11.6 3.7 0.611 1.001 0.554 1.000 0.935 1.000 1.000 0.660 0.891 1
22 11 203.8 3.9 4.21 3 162.7 35.6 1 124.8 5.4 3.9 0.004 0.403 0.269 0.340 0.483 0.293 0.292 0.709 0.356 13
各品种序号及具体介绍见表 1。PFPN: partial factor productivity of nitrogen. NUE: nitrogen use efficiency. Detail information of cultivars is shown in the table 1.


下载: 导出CSV

参考文献(31)
[1]刘晏良.棉花发展战略研究[M].北京:中国统计出版社, 2006
LIU Y L. Cotton Development Strategy Research[M]. Beijing:China Statistics Press, 2006
[2]艾先涛, 李雪源, 王俊铎, 等.新疆棉花植棉比较效益分析[J].新疆农业科学, 2011, 48(12):2183-2190 doi: 10.6048/j.issn.1001-4330.2011.12.005
AI X T, LI X Y, WANG J D, et al. Innovation of science & tecnology and ascensino of planting cotton comparative benefit in Xinjiang[J]. Xinjiang Agricultural Science, 2011, 48(12):2183-2190 doi: 10.6048/j.issn.1001-4330.2011.12.005
[3]李少昆.关于光合速率与作物产量关系的讨论(综述)[J].石河子大学学报, 1999, 17(增刊):117-126 http://www.cnki.com.cn/Article/CJFDTOTAL-SHZN8S1.025.htm
LI S K. A discussion on the relationship between leaf photosynthetic rate and crop yield[J]. Journal of Shihezi University:Natural Science, 1999, 17(Suppl.):117-126 http://www.cnki.com.cn/Article/CJFDTOTAL-SHZN8S1.025.htm
[4]HIREL B, LE G J, NEY B, et al. The challenge of improving nitrogen use efficiency in crop plants:Towards a more central role for genetic variability and quantitative genetics within integrated approaches[J]. Journal of Experimental Botany, 2007, 58(9):2369-2387 doi: 10.1093/jxb/erm097
[5]INTHAPANYA P, SIPASEUTH S P, SITHATHEP V, et al. Genotype differences in nutrient uptake and utilization for grain yield production of rained lowland rice under fertilized and non-fertilized conditions[J]. Field Crops Research, 2000, 65:57-68 doi: 10.1016/S0378-4290(99)00070-2
[6]米国华, 刘建安, 张福锁.玉米杂交种的氮农学效率及其构成因素剖析[J], 中国农业大学学报, 1998, 3(增刊):97-104 http://d.old.wanfangdata.com.cn/Periodical/beijny201603033
MI G H, LIU J A, ZHANG F S. Analysis on nitrogen agronomic efficiency and its components of maize hybrids[J]. Journal of China Agricultural University, 1998, 3(suppl.):97-104 http://d.old.wanfangdata.com.cn/Periodical/beijny201603033
[7]朱新开, 郭文善, 朱冬梅, 等.不同基因型小麦氮素吸收积累差异研究[J].扬州大学学报:农业与生命科学版, 2005, 26(3):52-57 http://d.old.wanfangdata.com.cn/Periodical/jsnyyj200503013
ZHU X K, GUO W S, ZHU D M, et al. Studies on differences of accumulated N amount in different genotypes of winter wheat[J]. Journal of Yangzhou University:Agricultural and Life Science Edition, 2005, 26(3):52-57 http://d.old.wanfangdata.com.cn/Periodical/jsnyyj200503013
[8]孙传范, 戴廷波, 荆奇, 等.小麦品种氮利用效率的评价指标及其氮营养特性研究[J].应用生态学报, 2004, 15(6):983-987 doi: 10.3321/j.issn:1001-9332.2004.06.014
SUN C F, DAI T B, JING Q, et al. Nitrogen use efficiency and its relationship with nitrogen nutrition characteristics of wheat varieties[J]. Chinese Journal of Applied Ecology, 2004, 15(6):983-987 doi: 10.3321/j.issn:1001-9332.2004.06.014
[9]张锡洲, 阳显斌, 李廷轩, 等.小麦氮素利用效率的基因型差异[J].应用生态学报, 2011, 22(2):369-375 http://d.old.wanfangdata.com.cn/Periodical/tr200306012
ZHANG X Z, YANG X B, LI T X, et al. Genotype difference in nitrogen utilization efficiency of wheat[J].Chinese Journal of Applied Ecology, 2011, 22(2):369-375 http://d.old.wanfangdata.com.cn/Periodical/tr200306012
[10]周顺利, 张福锁, 王兴仁, 等.高产条件下不同品种冬小麦氮素吸收与利用特性的比较研究[J].土壤肥料, 2000, 37(6):20-23 http://d.old.wanfangdata.com.cn/Periodical/trfl200006004
ZHOU S L, ZHANG F S, WANG X R, et al. A comparative study on nitrogen uptake and utilization of winter wheat varieties under high-yield condition[J]. Soil and Fertilizer, 2000, 37(6):20-23 http://d.old.wanfangdata.com.cn/Periodical/trfl200006004
[11]张福锁, 崔振玲, 王激清, 等.中国土壤和植物养分管理现状与改进策略[J].植物学通报, 2007, 24(6):687-694 doi: 10.3969/j.issn.1674-3466.2007.06.001
ZHANG F S, CUI Z L, WANG J Q, et al. Current status of soil and plant nutrient management in China and improvement strategies[J]. Chinese Bulletin of Botany, 2007, 24(6):687-694 doi: 10.3969/j.issn.1674-3466.2007.06.001
[12]DONG H Z, KONG X Q, LI W J, et al. Effoects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two field with varying fertility[J]. Field Crops Research, 2010, 119(1):106-113 doi: 10.1016/j.fcr.2010.06.019
[13]VENVGOPAIAN M V, HEBBAR K B, TIWARY P, et al. Productivity and nitrogen efficiency parameters in cotton cultivars with varying N levels and soil types under rainfed conditions[J]. Acta Agronomical Hangariea, 2007, 55(3):383-391 doi: 10.1556/AAgr.55.2007.3.15
[14]罗新宁, 陈冰, 张巨松, 等.氮肥对不同质地土壤棉花生物量与氮素积累的影响[J].西北农业学报, 2009, 18(4):160-166 http://d.old.wanfangdata.com.cn/Periodical/xbnyxb200904037
LUO X N, CHEN B, ZHANG J S, et al. Effects of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation of cotton plant on different soil textures[J]. Acta Agriculturae Borenli-Occidentalis Sinica, 2009, 18(4):160-166 http://d.old.wanfangdata.com.cn/Periodical/xbnyxb200904037
[15]薛晓萍, 王建国, 郭文琦, 等, 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响[J].生态学报, 2006, 26(11):3631-3640 doi: 10.3321/j.issn:1000-0933.2006.11.015
XUE X P, WANG J G, GUO W Q, et al. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering[J]. Acta Ecologica Sinica, 2006, 26(11):3631-3640 doi: 10.3321/j.issn:1000-0933.2006.11.015
[16]董合忠, 李维江.辛承松.等.不同类型抗虫棉品种的产量表现和氮素营养效率研究[J].植物营养与肥料学报, 2010, 16(4):947-952 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201004025
DONG H Z, LI W J, XIN C S, et al. Genotypic variations of yields and nitrogen nutrition efficiencies in Bt transgenic cotton[J]. Plant Nutrition and Fertilizer Science, 2016, 16(4):947-952 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201004025
[17]徐惠纯, 呼孟银, 李文炳.棉花不同品种氮素营养效率的比较[J].植物营养与肥料学报, 1996, 2(4):370-373 doi: 10.3321/j.issn:1008-505X.1996.04.014
XU H C, HU M Y, LI W B. A comparative study on nitrogen nutrient efficiency of different cotton varieties[J]. Plant Nutrition and Fertilizer Science, 1996, 2(4):370-373 doi: 10.3321/j.issn:1008-505X.1996.04.014
[18]赵一超.不同基因型棉花品种氮效率研究[D].长沙: 湖南农业大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10537-1014182352.htm
ZAO Y C. Study on nitrogen efficiency of different cotton genotypes[D]. Changsha: Hunan Agricultural University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10537-1014182352.htm
[19]张祥, 刘晓飞, 王桂霞, 等.长江流域棉花主推品种氮素吸收与利用效率比较与分类[J].棉花学报, 2012, 24(3):253-258 doi: 10.3969/j.issn.1002-7807.2012.03.009
ZHANG X, LIU X F, WANG G X, et al. Study on nitrogen uptake and use efficiency in different cotton cultivars in the Yangtze River Region[J]. Cotton Science, 2012, 24(3):253-258 doi: 10.3969/j.issn.1002-7807.2012.03.009
[20]韩璐, 张薇.棉花苗期氮营养高效品种筛选[J].中国农学通报, 2011, 27(1):84-88 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201101016
HAN L, ZHANG W. Screening of cotton varieties with high nitrogen efficiency at seedling stage[J]. Chinese Agricultural Science Bulletin, 2011, 27(1):84-88 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201101016
[21]李雪妮, 盛建东, 侯静, 等.不同棉花品种苗期氮效率筛选的初步研究[J].新疆农业大学学报, 2007, 30(3):44-48 doi: 10.3969/j.issn.1007-8614.2007.03.011
LI X N, SHENG J D, HOU J, et al. Screening for nitrogen efficiency in different cotton varieties at seedling stage[J]. Journal of Xinjiang Agricultural University, 2007, 30(3):44-48 doi: 10.3969/j.issn.1007-8614.2007.03.011
[22]叶全宝, 张洪程, 魏海燕, 等.不同土壤及氮肥条件下水稻氮利用效率和增产效应研究[J].作物学报, 2005, 31(11):1422-1428 doi: 10.3321/j.issn:0496-3490.2005.11.006
YE Q B, ZHANG H C, WEI H Y, et al. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions[J]. Acta Agronomic Sinica, 2005, 31(11):1422-1428 doi: 10.3321/j.issn:0496-3490.2005.11.006
[23]周广生, 梅方竹, 周竹青, 等.小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学, 2003, 36(11):1378-1382 doi: 10.3321/j.issn:0578-1752.2003.11.026
ZHOU G S, MEI F Z, ZHOU Z Q, et al. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties[J]. Scientia Agriculture Sinica, 2003, 36(11):1378-1382 doi: 10.3321/j.issn:0578-1752.2003.11.026
[24]江立庚, 戴廷波, 韦善清, 等.南方水稻氮素吸收与利用效率的摹因型差异及评价[J].植物生态学报, 2003, 27(4):466-471 doi: 10.3321/j.issn:1005-264X.2003.04.006
JIANG L G, DAI T B, WEI S Q, et al. Genotypic differences and variation in nitrogen uptake and utilization efficiency in rice[J]. Chinese Journal of Plant Ecology, 2003, 27(4):466-471 doi: 10.3321/j.issn:1005-264X.2003.04.006
[25]徐祥玉, 张敏敏, 翟丙年, 等.夏玉米氮效率基因型差异研究[J].植物营养与肥料学报, 2006, 14(2):258-263 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb200604006
XU X Y, ZHANG M M, ZHAI B N, et al. Genotypic variation in nitrogen use efficiency in summer maize[J]. Plant Nutrition and Fertilizer Science, 2006, 14(2):258-263 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb200604006
[26]何文寿, 陈素生, 康建宏.宁夏春小麦氮素利用效率的基因型差异研究[J].土壤, 2003, 35(6):500-505 doi: 10.3321/j.issn:0253-9829.2003.06.012
HE W S, CHEN S S, KANG J H. Genotypic differences in nitrogen recovery rate in Ningxia[J]. Soils, 2003, 35(6):500-505 doi: 10.3321/j.issn:0253-9829.2003.06.012
[27]李艳, 董中东, 郝西, 等.小麦不同品种的氮素利用效率差异研究[J].中国农业科学, 2007, 40(3):472 doi: 10.3321/j.issn:0578-1752.2007.03.006
LI Y, DONG Z D, HAO X, et al. The studies on genotypic difference of nitrogen utilization efficiency in winter wheat[J]. Scientia Agricultura Sinica, 2007, 40(3):472 doi: 10.3321/j.issn:0578-1752.2007.03.006
[28]孙杰, 褚贵新, 张文辉, 等.北疆棉区棉花品种演替与主要性状演变趋势研究[J].新疆农业科学, 1999, 36(2):51-54 doi: 10.3969/j.issn.1001-4330.1999.02.002
SUN J, CHU G X, ZHANG W H, et al. Succession trend of cotton cultivars and main characters in cotton region of northern Xinjiang[J]. Xinjiang Agricultural Sciences, 1999, 36(2):51-54 doi: 10.3969/j.issn.1001-4330.1999.02.002
[29]艾先涛, 李雪源, 秦文斌, 等.新疆陆地棉育种遗传组分拓展研究[J].分子植物育种, 2005, 3(4):575-578 doi: 10.3969/j.issn.1672-416X.2005.04.022
AI X T, LI X Y, QIN W B, et al. The extend study on genetic composition of upland cotton breeding in Xinjiang[J]. Molecular Plant Breeding, 2005, 3(4):575-578 doi: 10.3969/j.issn.1672-416X.2005.04.022
[30]田海燕, 薛飞, 李艳军, 等.北疆棉花品种主要经济性状演替规律研究[J].西北农业学报, 2007, 16(5):96-99 doi: 10.3969/j.issn.1004-1389.2007.05.023
TIAN H Y, XUE F, LI Y J, et al. Research on main economical characteristics succession of cotton variety in northern of Xinjiang[J]. Northwest Agricultural Sciences, 2007, 16(5):96-99 doi: 10.3969/j.issn.1004-1389.2007.05.023
[31]刁明, 褚贵新.北疆50年来棉花主栽品种库特性演替规律的研究[J].石河子大学学报:自然科学版, 2001, 5(3):182-185 http://d.old.wanfangdata.com.cn/Periodical/shzdxxb200103004
DIAO M, CHU G X. Studies on the evolutionary changes in characters of sink of upland cotton varieties in the course of replacement of varieties in north Xinjiang over the past fifty years[J]. Journal of Shihezi University:Natural Science, 2001, 5(3):182-185 http://d.old.wanfangdata.com.cn/Periodical/shzdxxb200103004

相关话题/棉花 新疆 研究所 农业 营养