梅丽3,
杨亚东1,
王志敏1,,,
赵沛义2,
高宇2
1.中国农业大学农学院 北京 100193
2.内蒙古农牧业科学院 呼和浩特 010031
3.北京市农技推广站 北京 100029
基金项目: 北京市农村工作委员会科技项目和内蒙古农牧业青年创新基金项目2015QNJJN09
详细信息
作者简介:任永峰, 主要从事旱作农业技术研究。E-mail: renyongfeng@cau.edu.cn
通讯作者:王志敏, 主要从事作物栽培及生理研究。E-mail: zhimin206@263.net
中图分类号:S519计量
文章访问数:1021
HTML全文浏览量:15
PDF下载量:1241
被引次数:0
出版历程
收稿日期:2017-09-18
录用日期:2017-12-26
刊出日期:2018-05-01
Effects of sowing time on agronomic characteristics and yield of quinoa
REN Yongfeng1, 2,MEI Li3,
YANG Yadong1,
WANG Zhimin1,,,
ZHAO Peiyi2,
GAO Yu2
1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
2. Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
3. Beijing Station for Popularizing Agricultural Technique, Beijing 100029, China
Funds: This study was supported by the Science and Technology Project of Beijing Municipal Commission of Rural Affairs and the Young Creative Fund of Agriculture and Animal Husbandry of Inner Mongolia2015QNJJN09
More Information
Corresponding author:WANG Zhimin, E-mail: zhimin206@263.net
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:藜麦具有较高的营养价值和广泛的适应性,近年来在内蒙古地区进行了引种种植,且种植面积逐年扩大。阴山北麓农牧交错区降雨少、蒸发量大、气候条件复杂,限制了藜麦的引种和生物学特性研究。为了深入探讨播种时间对藜麦生长发育的影响和藜麦适宜播期对地区气候条件的响应,于2014-2015年在阴山北麓区进行藜麦播期研究的基础上,于2016年设置10个播期处理S1-S10(早播:S1-S3,4月18-28日;常规:S4-S7,5月3-18日;晚播:S8-S10,5月23日-6月2日),调查不同播期下藜麦的生长、生理及产量。结果表明:1)该地区藜麦成熟所需生长季≥ 10℃积温为2 112~2 214℃,灌浆至成熟期积温≥ 344.2℃,藜麦大田生育期为114~150 d,S10处理(6月2日播种)没有满足该条件籽粒不能正常成熟;2)早播处理营养生长和生殖生长阶段均长于常规和晚播处理,分别多出7.8~14.4 d和9.0~17.8 d;3)处理S1-S5干物质积累量和叶面积指数较高,其中S2(4月23日)干物质量、叶面积指数均最高,与常规处理和晚播处理间均呈极显著差异;4)藜麦开花期存在光合午休现象,处理S2(4月23日)光合性能表现较强,光合速率、气孔导度和蒸腾速率均显著高于其他处理;5)各处理中单株籽粒重和产量均为S2(4月23日)处理最高,与常规和晚播处理间呈极显著差异,S2处理产量比产量最低的S9(5月28日)处理高2.87倍;6)通过对不同播期间降雨和积温气象因子分析发现,积温是影响阴山北麓藜麦生长发育和产量形成的重要气象因子,积温主要通过调节灌浆至成熟期小穗数和单穗重来影响产量。因此,早播有利于藜麦前期干物质量和叶面积形成,增加灌浆期-成熟期积温,促进籽粒养分积累,获得较高的生物产量和经济系数,具有较大的增产潜力。本试验表明阴山北麓区藜麦种植的适宜播期为4月中旬-5月上旬,应合理安排播期,重视积温对藜麦生长发育及产量形成的影响,尤其应重视生育后期低温的制约,是保证藜麦大面积推广的重要措施。
关键词:藜麦/
播期/
生育期/
干物质积累量/
叶面积指数/
产量
Abstract:Quinoa is rich in nutrient and has a wide range of adaptability to climatic conditions. In recent years, it was successfully introduced and planted in Inner Mongolia, and the planting area was increasing year after year. There is a little rainfall in the farming-pastoral zone, however, evaporation in the region is excessive and climatic conditions highly complicated in the northern foothills of Yinshan Mountains, which limit research on the introduction and biological characteristics of quinoa. To explore the effects of sowing time on the growth and climatic conditions of quinoa in the northern foothills of Yinshan Mountains, a field experiment was conducted for the period 2014-2016. On the base of the research results of 2014-2015, in 2016, 10 different sowing times were selected (S1-S10) and the treatments divided into three sowing stages-early sowing (S1-S3 for 18-28 April), conventional sowing (S4-S7 for 3-18 May) and late sowing (S8-S10 for 23 May to 2 June). The growth, physiological and yield characteristics of quinoa were compared in all the 10 treatments. The results showed that:1) accumulated temperature of ≥ 10℃ for the whole life cycle of quinoa was 2 112-2 214℃, and growth period of quinoa was 114-150 days. 2) Early sowing treatments (S1-S3) had a longer period of vegetative and reproductive growth stages than the conventional (greater by 7.8-14.4 d) and late sowing (greater by 9.0-17.8 d) treatments. 3) Dry matter accumulation and leaf area index in treatments S1-S5 were high, with those in treatment S2 significantly higher than in conventional and late sowing treatments. 4) There was midday depression in quinoa photosynthesis at flowering stage and treatment. S2 had a significantly higher ability in terms of photosynthetic performance. Photosynthetic rate, stomatal conductance and transpiration rate of treatment S2 were respectively 3.22-6.32 μmol(CO2)·m-2·s-1, 0.01-0.26 mol(H2O)·m-2·s-1 and 1.52-2.51 mmol(H2O)·m-2·s-1 higher than those of other treatments. 5) The highest spike grain weight (151.78 g per plant) and yield (4 097.97 kg·hm-2) were obtained in treatment S2, which were significantly higher than in the other treatments. Yield in treatment S2 was 2.87 times higher than in treatment S9. 6) In terms of quinoa growth and yield, accumulated temperature was a more critical factor than rainfall in the study area. Accumulated temperature affected yield mainly by regulating the number of spikes and single panicle weight from grain-filling stage to maturity stage of quinoa. Therefore, early sowing was beneficial for good biological morphologic development and it increased leaf area index. Accumulated temperature during grain-filling stage of quinoa was needed for high gain yield and economic coefficient. Our results suggested that the optimum sowing time of quinoa was from mid April to early May in the northern foothills of Yinshan Mountains. Sowing time was the most important factor in quinoa production. Accumulated temperature greatly affected growth and yield formation, which required a specific attention in order to avoid low temperature conditions at later growth stages of quinoa.
Key words:Quinoa/
Sowing date/
Growth period/
Dry matter accumulation/
Leaf area index/
Yield
HTML全文

图1研究区藜麦生育期日平均气温和降雨量
Figure1.Mean daily temperature and precipitation during the growing season of quinoa


图2不同播期处理下藜麦群体干物质积累动态
S1—S10表示播种日期, 分别为4月18日、4月23日、4月28日、5月3日、5月8日、5月13日、5月18日、5月23日、5月28日、6月2日。S1—S10 indicate the sowing dates, which are 18 Apr., 23 Apr., 28 Apr., 3 May, 8 May, 13 May, 18 May, 23 May, 28 May, 2 Jun., respectively.
Figure2.Dynamic changes of dry matter accumulation of quinoa in different sowing dates treatments


图3藜麦叶面积指数与干物质量积累的关系
Figure3.Relationship between leaf area index and dry matter accumulation of quinoa


图4播期对藜麦开花期叶片光合速率(A)、气孔导度(B)、胞间CO2浓度(C)和蒸腾速率(D)的影响
S1—S10表示播种日期, 分别为4月18日、4月23日、4月28日、5月3日、5月8日、5月13日、5月18日、5月23日、5月28日、6月2日。不同小写字母表示同一测定时间不同播期间在0.05水平差异显著。S1—S10 indicate the sowing dates, which are 18 Apr., 23 Apr., 28 Apr., 3 May, 8 May, 13 May, 18 May, 23 May, 28 May, 2 Jun., respectively. Different lowercase letters mean significant differences at the same measuring time among sowing dates treatments at 0.05 level.
Figure4.Effect of sowing date on photosynthesis rate (A), stomatal conductance (B), intercellular CO2 concentration (C), and transpiration rate (D) of quinoa during flowering stage


图5藜麦单株籽粒重与干物质积累相关性分析
Figure5.Correlation analysis of grain weight per plant and dry matter accumulation of quinoa


图6藜麦单株籽粒产量与生育期积温(A)及降雨量(B)相关关系
Figure6.Relationships between grain weight per plant of quinoa with accumulated temperature (A) and precipitation (B)


图7藜麦产量与各生育时期积温相关关系
X1、Y1, …, X6、Y6分别为苗期、分枝期、显穗期、开花期、灌浆期和成熟期积温和成熟期产量; **表示极显著相关(P≤0.01)。
Figure7.Relationships between quinoa yield and accumulated temperature at different growth stages
X1 and Y1, …, X6 and Y6 respectively mean accumulated temperatures at seedling, branch, spike, flowering, filling and maturity stages and yield of quinoa. ** indicates significant correlation at 0.01 level.

表1藜麦生育进程及形态特征
Table1.Development process and morphological characteristics of quinoa
生育时期Growth stage | 时间Time (d) | 藜麦植株形态Morphological characteristics of quinoa |
播种 Sowing | 1 | 播种Seeding |
2 | 种子吸水膨胀Water absorption of seed | |
5 | 发芽—生根Germination and rooting | |
7 | 包被子叶的胚根逐渐展开, 向下生长形成根Radicle of cotyledons gradually unfolds and grows down to form roots | |
9 | 子叶生长同时根系下扎, 胚轴颜色变为紫色Cotyledons grow, roots grow down, and hypocotyl color turns purple | |
苗期 Seedling stage | 12 | 子叶出土Cotyledons unearthed |
16 | 子叶和根系同时生长Cotyledons and roots grow simultaneously | |
25 | 4片叶, 子叶仍呈细长型Four leaves have expended, cotyledons is slender in sharp | |
33 | 6片叶, 叶腋处侧枝叶片发生, 地下部:地上部长度比约为2︰1 Six leaves have expended, leaf axils occur at lateral branches, and ratio of under-ground and above-ground length is about 2︰1 | |
分枝期 Branch stage | 40 | 10片叶, 顶端叶片未展开, 侧枝叶片生长Ten leaves have expended, top leaf has not expanded, and the lateral leaves grow |
50 | 12片叶, 节间开始伸长, 侧枝叶柄开始伸长、叶片增加, 侧枝6片叶时, 侧枝叶腋处小叶发生Twelve leaves have expended, internodes begin to stretch, the lateral petioles begin to elongate and leaf number increases, and follicular axillary lobes occur at the stage with six leaves | |
60 | 节间快速伸长, 株高增加明显, 侧枝茎叶快速生长Internodes elongate rapidly, plant height increases greatly, and the collateral stems and leaves grow quickly | |
显穗期 Spike stage | 64 | 顶穗被近穗部叶片包被, 不可见, 顶穗开始形成Top panicles are covered by the spike leaves, and the top panicle begin to form spikes |
76 | 顶穗逐渐露出, 呈圆锥状, 侧枝穗被近穗部叶包被, 地下部︰地上部长度比约为1︰3 Top panicles expose gradually in coniform, the lateral branch panicles are nearly spike leaves, and ratio of under-ground and above-ground length is about 1︰3 | |
82 | 顶穗形成, 侧枝穗发生, 顶穗穗轴伸长Top panicles have formed, lateral panicles appear, and top panicles are in elongation | |
开花期 Flowering stage | 87 | 顶穗中上部小穗尖出现雄蕊, 花序逐渐开放, 花粉可见Stamens appear in the upper panicles, inflorescence gradually open and pollen is visible |
94 | 顶穗以下穗轴伸长, 顶穗50%开花, 侧枝由下至上小穗相继开花, 穗下伴有小叶发生Spike-stalk under the top panicles is in elongation, 50% of the total panicles is in flowering, the lateral branches is flowering from bottom to top, and spires appear under the spikes | |
99 | 85%穗开花85% of the total spikes is in flowering | |
灌浆期 Filling stage | 102 | 顶穗开始灌浆, 同时顶穗、侧枝穗继续开花Top panicles begin to filling, and the top panicles and lateral branch panicles remain flowering |
111 | 顶穗灌浆速率加快, 侧枝穗开始灌浆, 顶穗、侧枝穗开花基本结束Filling rate of the top panicles increases, the lateral panicles begin to filling, and the top and lateral panicles stop flowering | |
139 | 顶穗基本完成灌浆, 侧枝继续灌浆, 顶穗干重与穗鲜重比约1︰3 Top panicles have finished filling and collateral continues filling, and ratio of dry weight to fresh weight of top panicles is about 1︰3 | |
成熟期 Mature stage | 142 | 乳熟期, 籽粒可见, 种皮绿色, 内含物为乳白色Milk stage, grain is visible and seed coat is in green, and the contents is in milky white |
145 | 蜡熟期, 灌浆完成, 籽粒开始变硬, 叶片茎秆和穗仍为绿色, 下部叶片开始变黄Dough stage, filling completes, grains become harden, while leaves, stems, and spike remain green, the lower leaves begin to turn yellow | |
151 | 完熟期, 籽粒变硬饱满, 叶片茎秆枯黄, 穗变红或紫, 开始测产收获Maturity stage with harden and full grains, leaves and stems become yellow and spike turns red or purple, and it is ready for harvesting | |
???时间列为播种后天数(d)。The column of time is days after sowing (d). |

表2不同播期处理下藜麦生育期及持续时间
Table2.Growth stages and durations of quinoa in different sowing date treatments
处理 Treatment | 播种日期 (月/日) Sowing date (month/day) | 苗期 Seedling stage | 分枝期 Branch stage | 显穗期 Spike stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage | 生育期 Growth period (d) |
S1 | 04/18 | 05/12 (24 d) | 06/06 (25 d) | 06/24 (18 d) | 07/20 (26 d) | 07/30 (10 d) | 09/15 (47 d) | 150 |
S2 | 04/23 | 05/15 (22 d) | 06/08 (24 d) | 06/26 (18 d) | 07/22 (26 d) | 08/01 (10 d) | 09/15 (45 d) | 145 |
S3 | 04/28 | 05/23 (25 d) | 06/16 (24 d) | 07/04 (18 d) | 07/30 (26 d) | 08/09 (10 d) | 09/16 (38 d) | 141 |
S4 | 05/03 | 05/25 (22 d) | 06/17 (23 d) | 07/05 (18 d) | 07/31 (26 d) | 08/10 (10 d) | 09/17 (38 d) | 137 |
S5 | 05/08 | 05/30 (22 d) | 06/22 (23 d) | 07/08 (16 d) | 08/03 (26 d) | 08/13 (10 d) | 09/17 (35 d) | 132 |
S6 | 05/13 | 06/01 (19 d) | 06/24 (23 d) | 07/10 (16 d) | 08/05 (26 d) | 08/15 (10 d) | 09/17 (33 d) | 127 |
S7 | 05/18 | 06/05 (18 d) | 06/27 (22 d) | 07/13 (16 d) | 08/08 (26 d) | 08/18 (10 d) | 09/18 (31 d) | 123 |
S8 | 05/23 | 06/08 (16 d) | 06/30 (22 d) | 07/16 (16 d) | 08/11 (26 d) | 08/20 (9 d) | 09/18 (29 d) | 118 |
S9 | 05/28 | 06/12 (15 d) | 07/04 (22 d) | 07/20 (16 d) | 08/15 (26 d) | 08/24 (9 d) | 09/19 (26 d) | 114 |
S10 | 06/02 | 06/17 (15 d) | 07/09 (22 d) | 07/25 (16 d) | 08/20 (26 d) | 08/28 (8 d) | — | — |
???括号外数字为生育期时间(月/日), 括号内数字为相邻生育时期间隔天数。Number out bracket is time of the growth stage in form of ‘month/day’, number in bracket is the days between two growth stages. |

表3播期与生育期持续时间及积温相关关系
Table3.Correlation between sowing date and growth duration, accumulated temperature of different growth stages of quinoa
苗期 Seedling stage | 分枝期 Branch stage | 显穗期 Spike stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage | 全生育期 Growth period | |
持续时间 Duration | -0.941** | -0.940** | -0.853** | 0 | -0.798** | -0.987** | -1.000** |
积温 Accumulated temperature | -0.580 | 0.743* | 0.118 | 0.962** | -0.762* | -0.985** | -0.996** |
*、**分别表示在0.05和0.01水平显著相关。* and ** indicate significant correlation at 0.05 and 0.01 probability levels, respectively. |

表4播期对藜麦生育期积温的影响
Table4.Effect of sowing date on accumulated temperature in growing period of quinoa
℃ | |||||||
处理 Treatment | 苗期 Seedling stage | 分枝期 Branch stage | 显穗期 Spike stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage | 总积温 Total accumulated temperature |
S1 | 271.4cdC | 344.4fD | 288.0eE | 478.1cC | 201.4cdC | 812.1aA | 2 395.4aA |
S2 | 261.4eDE | 350.8defCD | 291.7eE | 484.1cC | 205.6bcBC | 766.7bB | 2 360.3abAB |
S3 | 315.9aA | 348.4efCD | 317.5abAB | 504.8bB | 219.2aA | 608.6cC | 2 314.4bcBC |
S4 | 263.8deCD | 349.2efCD | 322.7aA | 506.3bB | 218.6aA | 598.6 cC | 2 259.2cdCD |
S5 | 296.9bB | 368.0bcB | 292.4eE | 508.7bB | 210.4bB | 540.1dD | 2 216.5dDE |
S6 | 271.6cC | 360.8cdBC | 304.9cdC | 507.8bB | 204.4cdBC | 502.6eE | 2 152.1eEF |
S7 | 273.1cC | 352.4defCD | 313.3bcABC | 513.3bB | 199.4dC | 454.6fF | 2 106.1eF |
S8 | 240.4gF | 355.1deCD | 311.1bcdBC | 533.2aA | 174.4eD | 413.3gG | 2 027.5fG |
S9 | 252.1fE | 373.0bB | 303.4dCD | 539.0aA | 178.6eD | 344.2hH | 1 990.3fG |
S10 | 234.3gF | 408.7aA | 292.9eDE | 542.2aA | 130.5fE | 292.0iI | 1 900.6gH |
???S1—S10表示播种日期, 分别为4月18日、4月23日、4月28日、5月3日、5月8日、5月13日、5月18日、5月23日、5月28日、6月2日。同列不同小写和大写字母分别表示0.05和0.01水平差异显著。S1-S10 indicate the sowing dates, which are 18 Apr., 23 Apr., 28 Apr., 3 May, 8 May, 13 May, 18 May, 23 May, 28 May, 2 Jun., respectively. In the same column, different lowercase and capital letters mean significant differences at 0.05 and 0.01 levels, respectively. |

表5播期对藜麦群体叶面积指数的影响
Table5.Effect of sowing date on leaf area index of quinoa population
m2·m-2 | ||||||
处理 Treatment | 苗期 Seedling stage | 分枝期 Branch stage | 显穗期 Spike stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage |
S1 | 0.090±0.002bC | 0.229±0.009bB | 0.338±0.011cC | 1.123±0.033cdC | 1.664±0.087aA | 1.943±0.087bB |
S2 | 0.110±0.002aA | 0.248±0.014bB | 0.587±0.013aA | 1.592±0.022bB | 1.970±0.074dD | 2.458±0.055aA |
S3 | 0.105±0.006aAB | 0.212±0.016aA | 0.481±0.009bB | 1.421±0.012aA | 1.880±0.071bB | 2.090±0.060cCD |
S4 | 0.100±0.008abABC | 0.171±0.003cC | 0.296±0.007dDE | 0.778±0.006eD | 1.355±0.030eEF | 1.700±0.031eE |
S5 | 0.094±0.004bBC | 0.166±0.012cC | 0.287±0.013dEF | 0.681±0.028dC | 1.249±0.075cC | 1.494±0.071cBC |
S6 | 0.047±0.003cD | 0.122±0.011dD | 0.264±0.007eG | 0.613±0.009cC | 0.913±0.085eE | 1.027±0.059dD |
S7 | 0.019±0.003dE | 0.049±0.005fF | 0.255±0.011eFG | 0.437±0.019eD | 0.655±0.017fgGH | 0.838±0.014eE |
S8 | 0.020±0.002dEF | 0.087±0.006eE | 0.325±0.008cCD | 0.482±0.013gF | 0.711±0.018gH | 0.795±0.054eEF |
S9 | 0.020±0.001eFG | 0.056±0.005fEF | 0.241±0.012eG | 0.530±0.040fE | 0.695±0.055efEFG | 0.660±0.047cC |
S10 | 0±0eG | 0.0370±0.001fF | 0.083±0.007fH | 0.425±0.010gF | 0.615±0.011fFGH | 0.496±0.005fF |
???S1—S10表示播种日期, 分别为4月18日、4月23日、4月28日、5月3日、5月8日、5月13日、5月18日、5月23日、5月28日、6月2日。同列不同小写和大写字母分别表示0.05和0.01水平差异显著。S1-S10 indicate the sowing dates, which are 18 Apr., 23 Apr., 28 Apr., 3 May, 8 May, 13 May, 18 May, 23 May, 28 May, 2 Jun., respectively. In the same column, different lowercase and capital letters mean significant differences at 0.05 and 0.01 levels, respectively. |

表6播期对藜麦群体干物质积累量的影响
Table6.Effect of sowing date on dry matter accumulation of quinoa population
kg·hm-2 | ||||||
处理 Treatment | 苗期 Seedling stage | 分枝期 Branch stage | 显穗期 Spike stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage |
S1 | 159.9±4.5bB | 385.8±14.2bB | 780.2±18.0bB | 1 891.7±36.8bB | 6 055.2±181.2bB | 6 226.4±174.2bB |
S2 | 191.1±3.8aA | 536.3±19.8aA | 1 097.3±7.7aA | 2 404.5±100.6aA | 6 985.1±196.4aA | 8 811.3±206.6aA |
S3 | 144.5±7.8cC | 339.9±6.0cBC | 742.1±6.9bB | 1 843.7±45.9bBC | 5 935.4±149.5bB | 6 029.3±146.1bB |
S4 | 143.4±2.0cC | 334.8±12.2cC | 661.7±23.9cC | 1 627.8±134.2cCD | 5 775.6±121.5bB | 5 806.1±159.4bB |
S5 | 86.3±3.6dD | 113.7±17.2deD | 541.5±28.2dD | 1 623.6±42.2cCD | 4 575.2±54.7cC | 4 738.4±103.4cC |
S6 | 55.2±4.1eE | 116.9±20.7dD | 510.2±15.7dD | 1 520.9±64.9cD | 2 704.5±100.8deDE | 3 524.0±77.3dD |
S7 | 62.3±3.1eE | 49.1±8.9fgEF | 197.7±12.9fF | 895.5±91.9dE | 2 334.3±108.3efEF | 2 592.8±67.5eEF |
S8 | 61.1±1.6eE | 77.0±14.1efDE | 262.1±3.9eE | 819.9±42.5dE | 1 965.3±180.0fgFG | 2 109.9±134.2fFG |
S9 | 5.9±0.9fF | 53.3±4.5fgEF | 201.2±14.1fF | 969.9±48.2dE | 2 871.0±87.2dD | 2 893.2±240.0eE |
S10 | 0±0fF | 23.0±3.6gF | 64.5±7.6gG | 227.9±22.6eF | 1 652.7±149.1gG | 1 728.8±126.5fG |
???S1—S10表示播种日期, 分别为4月18日、4月23日、4月28日、5月3日、5月8日、5月13日、5月18日、5月23日、5月28日、6月2日。同列不同小写和大写字母分别表示0.05和0.01水平差显著异。S1-S10 indicate the sowing dates, which are 18 Apr., 23 Apr., 28 Apr., 3 May, 8 May, 13 May, 18 May, 23 May, 28 May, 2 Jun., respectively. In the same column, different lowercase and capital letters mean significant differences at 0.05 and 0.01 levels, respectively. |

表7播期对藜麦产量性状的影响
Table7.Effect of sowing date on yield and grain weight per plant of quinoa
处理 Treatment | 单株籽粒重 Grain weight per plant (g) | 产量 Yield (kg·hm-2) |
S1 | 144.56±2.58aA | 3 903.12±69.55bB |
S2 | 151.78±2.41aA | 4 097.97±65.00aA |
S3 | 103.00±3.70bB | 2 780.91±99.96cC |
S4 | 85.18±3.22cC | 2 299.77±86.82dD |
S5 | 81.87±2.86cC | 2 210.40±77.34eE |
S6 | 65.07±2.12dD | 1 756.80±57.15fF |
S7 | 48.34±1.51eE | 1 305.18±40.65gG |
S8 | 46.25±1.02efEF | 1 248.84±27.67gG |
S9 | 39.18±2.32fF | 1 057.86±62.76hH |
S10 | — | — |
???S1—S10表示播种日期, 分别为4月18日、4月23日、4月28日、5月3日、5月8日、5月13日、5月18日、5月23日、5月28日、6月2日。同列不同小写、大写字母分别表示0.05和0.01水平差异显著。S1-S10 indicate the sowing dates, which are 18 Apr., 23 Apr., 28 Apr., 3 May, 8 May, 13 May, 18 May, 23 May, 28 May, 2 Jun., respectively. In the same column, different lowercase and capital letters mean significant differences at 0.05 and 0.01 levels, respectively. |

参考文献
[1] | RISI J C, GALWEY N W. Chenopodium grains of the Andes:Inca crops for modern agriculture[J]. Advances in Applied Biology, 1984, 10:145-216 http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=730559 |
[2] | DILLEHAY T D, ROSSEN J, ANDRES T C, et al. Preceramic adoption of peanut, squash, and cotton in Northern Peru[J]. Science, 2007, 316(5833):1890-1893 doi: 10.1126/science.1141395 |
[3] | REPO-CARRASCO R, ESPINOZA C, JACOBSEN S E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Ka?iwa (Chenopodium pallidicaule)[J]. Food Reviews International, 2003, 19(1/2):179-189 doi: 10.1081/FRI-120018884 |
[4] | ABUGOCH JAMES L E. Quinoa (Chenopodium quinoa Willd.):Composition, chemistry, nutritional, and functional properties[J]. Advances in Food and Nutrition Research, 2009, 58:1-31 doi: 10.1016/S1043-4526(09)58001-1 |
[5] | WANG S N, ZHU F. Formulation and quality attributes of quinoa food products[J]. Food and Bioprocess Technology, 2016, 9(1):49-68 doi: 10.1007/s11947-015-1584-y |
[6] | MUNDIGLER N. Isolation and determination of starch from amaranth (Amaranthus cruentus) and quinoa (Chenopodium quinoa)[J]. Starch-St?rke, 1998, 50(2/3):67-69 http://cn.bing.com/academic/profile?id=9e8c8baedd6137af67cf7c10e4b91a89&encoded=0&v=paper_preview&mkt=zh-cn |
[7] | KOZIO? M J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.)[J]. Journal of Food Composition and Analysis, 1992, 5(1):35-68 doi: 10.1016/0889-1575(92)90006-6 |
[8] | F?STE M, ELGETI D, BRUNNER A K, et al. Isolation of quinoa protein by milling fractionation and solvent extraction[J]. Food and Bioproducts Processing, 2015, 96:20-26 doi: 10.1016/j.fbp.2015.06.003 |
[9] | WRIGHT K H, PIKE O A, FAIRBANKS D J, et al. Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds[J]. Journal of Food Science, 2002, 67(4):1383-1385 doi: 10.1111/jfds.2002.67.issue-4 |
[10] | NAVRUZ-VARLI S, SANLIER N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.)[J]. Journal of Cereal Science, 2016, 69:371-376 doi: 10.1016/j.jcs.2016.05.004 |
[11] | DINI I, TENORE G C, DINI A. Nutritional and antinutritional composition of Kancolla seeds:An interesting and underexploited andine food plant[J]. Food Chemistry, 2005, 92(1):125-132 doi: 10.1016/j.foodchem.2004.07.008 |
[12] | VILCACUNDO R, HERNáNDEZ-LEDESMA B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.)[J]. Current Opinion in Food Science, 2017, 14:1-6 https://www.sciencedirect.com/science/article/pii/S2214799316301679 |
[13] | VEGA-GáLVEZ A, MIRANDA M, VERGARA J, et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain:A review[J]. Journal of the Science of Food and Agriculture, 2010, 90(15):2541-2547 doi: 10.1002/jsfa.v90:15 |
[14] | GEISSLER N, HUSSIN S, EL-FAR M M M, et al. Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3(Chenopodium quinoa) and a C4(Atriplex nummularia) halophyte[J]. Environmental and Experimental Botany, 2015, 118:67-77 doi: 10.1016/j.envexpbot.2015.06.003 |
[15] | KOYRO H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L. )[J]. Environmental and Experimental Botany, 2006, 56(2): 136-146 |
[16] | HUCHZERMEYER B, KOYRO H W. Salt and drought stress effects on photosynthesis[M]//PESSARAKLI M. Handbook of Photosynthesis. 2nd ed. New York: CRC Press, 2005: 751-777 |
[17] | SALAZAR-PARRA C, AGUIRREOLEA J, SáNCHEZ-DíAZ M, et al. Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage[J]. Physiologia Plantarum, 2012, 144(2):99-110 doi: 10.1111/ppl.2012.144.issue-2 |
[18] | BOSE J, RODRIGO-MORENO A, SHABALA S. ROS homeostasis in halophytes in the context of salinity stress tolerance[J]. Journal of Experimental Botany, 2014, 65(5):1241-1257 doi: 10.1093/jxb/ert430 |
[19] | BOIS J F, WINKEL T, LHOMME J P, et al. Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature:Effects on germination, phenology, growth and freezing[J]. European Journal of Agronomy, 2006, 25(4):299-308 doi: 10.1016/j.eja.2006.06.007 |
[20] | SUN Y, LIU F, BENDEVIS M, et al. Sensitivity of Two Quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress[J]. Journal of Agronomy and Crop Science, 2014, 200(1):12-23 doi: 10.1111/jac.2013.200.issue-1 |
[21] | JENSEN C R, JACOBSEN S E, ANDERSEN M N, et al. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying[J]. European Journal of Agronomy, 2000, 13(1):11-25 doi: 10.1016/S1161-0301(00)00055-1 |
[22] | BHARGAVA A, SHUKLA S, OHRI D. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.)[J]. Field Crops Research, 2007, 101(1):104-116 doi: 10.1016/j.fcr.2006.10.001 |
[23] | 黄杰, 杨发荣.藜麦在甘肃的研发现状及前景[J].甘肃农业科技, 2015, (1):49-52 http://bianke.cnki.net/Web/Article/GSNK201501020.html HUANG J, YANG F R. Research and prospect of quinoa in Gansu Province[J]. Gansu Agricultural Science and Technology, 2015, (1):49-52 http://bianke.cnki.net/Web/Article/GSNK201501020.html |
[24] | 任永峰, 王志敏, 赵沛义, 等.内蒙古阴山北麓区藜麦生态适应性研究[J].作物杂志, 2016, (2):79-82 http://bianke.cnki.net/Web/Article/ZWZZ201602014.html REN Y F, WANG Z M, ZHAO P Y, et al. Ecological adaptability of quinoa in northern foot of Yinshan in Inner Mongolia[J]. Crops, 2016, (2):79-82 http://bianke.cnki.net/Web/Article/ZWZZ201602014.html |
[25] | JACOBSEN S E. Adaptation of quinoa (Chenopodium quinoa) to Northern European agriculture:Studies on developmental pattern[J]. Euphytica, 1997, 96(1):41-48 doi: 10.1023/A:1002992718009 |
[26] | SOSA-ZUNIGA V, BRITO V, FUENTES F, et al. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale[J]. Annals of Applied Biology, 2017, 171(1):117-124 doi: 10.1111/aab.2017.171.issue-1 |
[27] | 李西文, 陈士林.遮荫下高原濒危药用植物川贝母(Fritillaria cirrhosa)光合作用和叶绿素荧光特征[J].生态学报, 2008, 28(7):3438-3446 https://www.wenkuxiazai.com/doc/87e297b4c77da26925c5b034.html LI X W, CHEN S L. Effect of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Fritillaria cirrhosa[J]. Acta Ecologica Sinica, 2008, 28(7):3438-3446 https://www.wenkuxiazai.com/doc/87e297b4c77da26925c5b034.html |
[28] | 徐俊增, 彭世彰, 魏征, 等.节水灌溉水稻叶片胞间CO2浓度及气孔与非气孔限制[J].农业工程学报, 2010, 26(7):76-80 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB200710007.htm XU J Z, PENG S Z, WEI Z, et al. Intercellular CO2 concentration and stomatal or non-stomatal limitation of rice under water saving irrigation[J]. Transactions of the CSAE, 2010, 26(7):76-80 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB200710007.htm |
[29] | BERTERO H D. Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd.)[J]. Food Reviews International, 2003, 19(1/2):87-97 |
[30] | CURTI R N, DE LA VEGA A J, ANDRADE A J, et al. Adaptive responses of quinoa to diverse agro-ecological environments along an altitudinal gradient in North West Argentina[J]. Field Crops Research, 2016, 189:10-18 doi: 10.1016/j.fcr.2016.01.014 |
[31] | BERTERO H D, KING R W, HALL A J. Photoperiod and temperature effects on the rate of leaf appearance in quinoa (Chenopodium quinoa)[J]. Australian Journal of Plant Physiology, 2000, 27(4):349-356 doi: 10.1071/PP99134 |
[32] | JACOBSEN S E, MONTEROS C, CHRISTIANSEN J L, et al. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages[J]. European Journal of Agronomy, 2005, 22(2):131-139 doi: 10.1016/j.eja.2004.01.003 |
[33] | 薛庆禹, 王靖, 曹秀萍, 等.不同播期对华北平原夏玉米生长发育的影响[J].中国农业大学学报, 2012, 17(5):30-38 XUE Q Y, WANG J, CAO X P, et al. Effect of sowing date and variety on growth and population characteristics of summer maize in North China Plain[J]. Journal of China Agricultural University, 2012, 17(5):30-38 |
[34] | 刘明, 陶洪斌, 王璞, 等.播期对春玉米生长发育与产量形成的影响[J].中国生态农业学报, 2009, 17(1):18-23 https://www.cnki.com.cn/qikan-ZGTN200901006.html LIU M, TAO H B, WANG P, et al. Effect of sowing date on growth and yield of spring-maize[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1):18-23 https://www.cnki.com.cn/qikan-ZGTN200901006.html |
[35] | DE SANTIS G, D'AMBROSIO T, RINALDI M, et al. Heritabilities of morphological and quality traits and interrelationships with yield in quinoa (Chenopodium quinoa Willd.) genotypes in the Mediterranean environment[J]. Journal of Cereal Science, 2016, 70:177-185 doi: 10.1016/j.jcs.2016.06.003 |
[36] | 邢志鹏, 曹伟伟, 钱海军, 等.播期对不同类型机插稻产量及光合物质生产特性的影响[J].核农学报, 2015, 29(3):528-537 doi: 10.11869/j.issn.100-8551.2015.03.0528 XING Z P, CAO W W, QIAN H J, et al. Effect of sowing date on yield and characteristics of photosynthesis and matter production of different types in mechanical transplanted rice[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(3):528-537 doi: 10.11869/j.issn.100-8551.2015.03.0528 |
[37] | 李国瑜, 丛新军, 陈二影, 等.积温和降水量对夏谷生长发育的影响[J].核农学报, 2018, 32(1):165-176 doi: 10.11869/j.issn.100-8551.2018.01.0165 LI G Y, CONG X J, CHEN E Y, et al. Effect of accumulated temperature and precipitation on growth of summer-sowing foxtail millet[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(1):165-176 doi: 10.11869/j.issn.100-8551.2018.01.0165 |
[38] | 郑洪建, 董树亭, 王空军, 等.生态因素对玉米品种生长发育影响及调控的研究[J].山东农业大学学报:自然科学版, 2001, 32(2):117-123 http://www.cnki.com.cn/Article/CJFDTOTAL-SCHO200102001.htm ZHENG H J, DONG S T, WANG K J, et al. Effects of ecological factors on maize (Zea mays L.) growth of different varieties and corresponding regulative measure[J]. Journal of Shandong Agricultural University:Natural Science, 2001, 32(2):117-123 http://www.cnki.com.cn/Article/CJFDTOTAL-SCHO200102001.htm |
[39] | 张石宝, 李树云, 胡丽华, 等.播种季节对玉米生长发育及干物质生产和分配的影响[J].云南植物研究, 2001, 23(2):243-250 http://www.cqvip.com/qk/90913X/200102/5743235.html ZHANG S B, LI S Y, HU L H, et al. The effects of sowing season on growth, development, dry matter production and partition of maize (Zea mays)[J]. Acta Botanica Yunnanica, 2001, 23(2):243-250 http://www.cqvip.com/qk/90913X/200102/5743235.html |
[40] | 肖尧, 熊敏, 丁成龙, 等.播期对高产春玉米产量及光合特性的影响[J].扬州大学学报:农业与生命科学版, 2014, 35(2):65-71 http://www.cnki.com.cn/Article/CJFDTOTAL-JSNX201402014.htm XIAO Y, XIONG M, DING C L, et al. Effects of sowing date on yield and photosynthetic characteristics of spring maize under high yield conditions[J]. Journal of Yangzhou University:Agricultural and Life Science Edition, 2014, 35(2):65-71 http://www.cnki.com.cn/Article/CJFDTOTAL-JSNX201402014.htm |
[41] | 裴雪霞, 王姣爱, 党建友, 等.播期对优质小麦籽粒灌浆特性及旗叶光合特性的影响[J].中国生态农业学报, 2008, 16(1):121-128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200801026 PEI X X, WANG J A, DANG J Y, et al. Characteristics of grain filling and flag leaf photosynthesis of high quality wheat under different planting dates[J]. Chinese Journal of Eco-Agriculture, 2008, 16(1):121-128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200801026 |
[42] | 霍中洋, 姚义, 张洪程, 等.播期对直播稻光合物质生产特征的影响[J].中国农业科学, 2012, 45(13):2592-2606 http://www.cqvip.com/QK/90161X/201213/42649991.html HUO Z Y, YAO Y, ZHANG H C, et al. Effect of sowing date on characteristics of photosynthesis and matter production of direct seeding rice[J]. Scientia Agricultura Sinica, 2012, 45(13):2592-2606 http://www.cqvip.com/QK/90161X/201213/42649991.html |
[43] | 庞春花, 张紫薇, 张永清.水磷耦合对藜麦根系生长、生物量积累及产量的影响[J].中国农业科学, 2017, 50(21):4107-4117 doi: 10.3864/j.issn.0578-1752.2017.21.005 PANG C H, ZHANG Z W, ZHANG Y Q. Effects of water and phosphorus coupling on root growth, biomass allocation and yield of quinoa[J]. Scientia Agricultura Sinica, 2017, 50(21):4107-4117 doi: 10.3864/j.issn.0578-1752.2017.21.005 |
[44] | 王亚梁, 张玉屏, 向镜, 等.籼稻颖花分化与退化对不同播期温光的响应[J].应用生态学报, 2017, 28(11):3571-3580 http://www.cjae.net/CN/abstract/abstract21398.shtml WANG Y L, ZHANG Y P, XIANG J, et al. Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates[J]. Chinese Journal of Applied Ecology, 2017, 28(11):3571-3580 http://www.cjae.net/CN/abstract/abstract21398.shtml |