删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

黄土塬区夏玉米物质生产及水分利用对品种间作竞争的响应

本站小编 Free考研考试/2022-01-01

王小林1, 2,,
徐伟洲1, 2,
张雄1,
张岁岐3,,
1.榆林学院生命科学学院 榆林 719000
2.陕西省陕北矿区生态修复重点实验室 榆林 719000
3.西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室 杨凌 712100
基金项目: 国家科技支撑计划项目2015BAD22B01
黄土高原土壤侵蚀与旱地农业国家重点实验室特别资助项目A314021403-C5
陕西省科技厅创新团队项目2013KCT-2
陕西省教育厅专项17JK0904

详细信息
作者简介:王小林, 主要从事水分生理生态和高产高效生物学基础研究。E-mail: wangxl0915@yulinu.edu.cn
通讯作者:张岁岐, 主要从事植物水分生理生态研究。E-mail: sqzhang@ms.iswc.ac.cn
中图分类号:S181

计量

文章访问数:1041
HTML全文浏览量:4
PDF下载量:1330
被引次数:0
出版历程

收稿日期:2017-07-31
录用日期:2017-09-13
刊出日期:2018-03-01

Responses of dry matter distribution and water use of summer maize (Zea mays L.) to intercropped cultivars competition on the Loess Plateau of China

WANG Xiaolin1, 2,,
XU Weizhou1, 2,
ZHANG Xiong1,
ZHANG Suiqi3,,
1. College of Life Sciences, Yulin University, Yulin 719000, China
2. Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin 719000, China
3. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China
Funds: the National Key Technologies R&D Program of China2015BAD22B01
the Special Funds of Scientific Research Programs of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau of ChinaA314021403-C5
Shaanxi Provincial Science and Technology Innovation Group Fund2013KCT-2
the Special Project of Education Department of Shaanxi Province17JK0904

More Information
Corresponding author:ZHANG Suiqi, E-mail: sqzhang@ms.iswc.ac.cn


摘要
HTML全文
(7)(1)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:品种间作竞争具有优化作物个体形态特征和生物量分配的生态效应。综合干旱环境、密度和降雨年际变化影响下的品种间作生物量分配机制研究,可为旱区作物增产增效栽培提供理论依据。试验于2011年(降雨量645.0 mm,湿润年份)和2012年(降雨量497.1 mm,干旱年份)调查了两个玉米品种(‘郑单958’和‘沈单16号’)、两种密度(4.5万株·hm-2和7.5万株·hm-2)隔行间作处理下,地上部生物量和地下部根系形态特征,并分析了品种间作下生物量分配策略、根系竞争机制与产量、水分利用效率的关系。结果显示:1)干旱显著降低玉米根系表面积(SA),低密度间作下‘沈单16号’扬花期SA显著降低而‘郑单958’显著增加,高密度间作‘郑单958’的SA显著下降25.3%,间作下根系对于水资源的竞争随种植密度的增加而加剧;两个种植密度和两个不同降雨年份,间作系统0~20 cm土层根长密度(RLD)显著增加,增加种植密度和雨水亏缺,刺激根系向深层土壤生长,导致30~40 cm土层RLD的增加,且‘郑单958’的RLD增加幅度远高于‘沈单16号’。2)间作竞争下生物量积累具有品种差异,‘郑单958’集中在营养生长期,而‘沈单16号’集中在生殖生长期;且随种植密度的增加,间作栽培下单株生物量显著降低。3)群体收获指数(HI)在高密度间作下,两个不同降雨年份出现平均6.0%的增加幅,雨水充足促进群体HI的提升;根冠比因降雨和种植密度而变,雨水充足、低密度间作下根冠比较大,干旱和高密度下资源竞争造成‘郑单958’根冠比显著下降。4)干旱年份玉米品种间作增产优势显著,高、低密度间作增产率分别为10.3%和21.4%,水分利用效率(WUE)分别增加28.2%和42.0%;且‘郑单958’增产和增效能力分别较‘沈单16号’高17.6%和50.0%。综上所述,品种间作栽培下‘郑单958’具有更合理的地上部生物量分配和响应机制,其根系通过减少冗余生长,降低资源消耗来应对土壤干旱,高效的根系自我调节能力和生物量分配机制在间作系统产量形成和WUE提升中起到了关键作用。
关键词:夏玉米/
品种间作/
生物量分配/
资源竞争/
水分利用效率/
半干旱地区/
黄土塬区
Abstract:On the Loess Plateau, maize morphological structure and yield performance are restricted by low rainfall and limited soil nutrient. Resource competition in intercroped cultivation have a postive effect on individual establishment and biomass allocation of maize cultivars. It was necessary to research root morphology and biomass allocation of maize under the combined effect of rainfall, planting density and intercropping for exploring effects of intercropping models on grain yield and water use efficiency (WUE) of maize in the Loess Plateau. To this end, a field experiment was conducted at Changwu Agri-ecological Station in the Loess Plateau, Chinese Academy of Science which is located in the classic dry farmming region in the semi-arid region of the Loess Plateau in Northwest China. Two maize cultivars ('Z958' and 'S16a') were intercroped under two planting densities (45 000 plants·hm-2 and 75 000 plants·hm-2) with 1:1 lines ratio. The aboveground and belowground growth and biomass accumulation were investigated at different growth stages of maize in tow rainfall year types, 2011 with rainfall of 647 mm and 2012 with rainfall 497 mm. The study also measured and analyzed the correlation among biomass allocation, root distribution, grain yield and WUE. The results showed that:1) soil water deficiency had a negative effect on root surface area (SA) of 'S16a' at flowering stage under low intercropped planting density. Also while SA of 'Z958' decreased by 30.5% under high intercropping density, WUE increased with increasing intercropping density. After two years of experimentation, root length density (RLD) in the 0-20 cm soil layer significantly increased under 'Z958' and 'S16a' intercropping. Also with increasing planting denstiy, rainwater deficiency led to deeper root growth to enhance water uptake. This in turn enhanced root competition for water and eventually obviously increased RLD in the 30-40 cm soil layer. Root distribution of 'Z958' was higher than that of 'S16a' for the two planting densities. 2) Biomass accumulation under two cultivars intercropping was genotypically different, with enhanced 'Z958' growth during vegetative period and enhanced 'S16a' growth during reproductive period. The individual biomass of two maize cultivars decreased with increasing intercropping density. The increase in dry weight at reproductive growth period was higher for 'S16a' than for 'Z958' in 2011 under low intercropped planting density. With high density and drought condition, individual biomass accumulation decreased under maize cultivars intercropping after flowering. 3) There was on average 6.0% increase in harvest index (HI) under high intercropping density and HI increased with increasing rainfall. Root and shoot growth was normal due to light competition under sufficient precipitation and low planting density. Soil drought and high intercropping density resulted in significant decrease in root to shoot rate (RSR) of 'Z958' as root competition for water increased. 4) In drought year (2011), competitive advantage was fully apparent in the two cultivars intercropping system, with yield and WUE increases of respectively 10.3% and 21.4%, 28.2% and 42.0% under two intercropping densities. Furthermore, yield and WUE of intercropped 'Z958' were 17.6% and 50.0% higher than that of 'S16a' for the two-year experimental period. Finally, 'Z958' showed rational biomass distribution and response to soil drought when intercropped with 'S16a' via reducing redundant root growth and decreasing excessive resouces use. Effective root morphological adjustment and biomass distribution of 'Z958' were responsible for the yield and WUE increase.
Key words:Summer maize/
Cultivar intercropping/
Dry matter distribution/
Resource competition/
Water use efficiency/
Semi-arid region/
Loess highland

HTML全文


图1试验区长武生态农业试验站2011—2012年玉米生育期降雨与日平均温度的变化
Figure1.Changes of precipitation and daily temperature during maize growth period in 2011 and 2012 at the experiment site in Changwu Eco-agricultural Experimental Station, Chinese Academy of Sciences


下载: 全尺寸图片幻灯片


图2玉米品种'郑单958'(Z958)和'沈单16号'(S16)间作模式及根系取样点(P1, P2, P3)位置
Figure2.Sketch map of mixed cropping pattern of maize varieties 'Z958' and 'S16' and positions (P1, P2, P3) of root sampling


下载: 全尺寸图片幻灯片


图32011年(A, B)和2012年(C, D)不同种植密度下品种间作对玉米生育期单株生物量积累的影响
A1B1-A1(B1)表示两玉米品种(A, '郑单958'; B, '沈单16号')低密度(1, 45 000株×hm-2)间作下的'郑单958'('沈单16号'); A2B2-A2(B2)表示两玉米品种(A, '郑单958'; B, '沈单16号')高密度(2, 75 000株×hm-2)间作下的'郑单958'('沈单16号'); CK-A1(B1, A2, B2)分别表示两种密度下的两玉米品种的单作。柱状图上不同小写字母表示相同生育期不同处理间差异显著(P<0.05)。V6: 6叶期; V12: 12叶期; VT:抽穗期; R1:灌浆期; R3:乳熟期; R5:蜡熟期; R6:成熟期。
Figure3.Effect of two maize cultivars intercropping on dry matter accumulation per plant at different maize growth stages in 2011 (A, B) and 2012 (C, D)
A1B1-A1(B1) represents maize cultivar 'Z958'('S16') in intercropping system of 'Z958' and 'S16' with low planting density (1, 45 000 plants×hm-2). A2B2-A2 (B2) represents maize cultivar 'Z958'('S16') in intercropping systems of 'Z958' and 'S16' with high planting density (2, 75 000 plants×hm-2). CK-A1(B1) and CK-A2(B2) indicate monoculture of 'Z958'('S16') under low (1, 45 000 plants×hm-2) and high (2, 75 000 plants×hm-2) planting densities, respectively. V6: 6-leaf stage; V12: 12-leaf stage; VT: tasseling stage; R1: pustulation stage; R3: milking stage; R5: dough stage; R6: mature stage. Different lowercase letters above histograms at the same growth stage indicate significant differences among treatments at 0.05 level.


下载: 全尺寸图片幻灯片


图42011年和2012年间作下玉米收获指数(HI)的变化
A1B1、A2B2表示两玉米品种(A, '郑单958'; B, '沈单16号')低密度(1, 45 000株×hm-2)和高密度(2, 75 000株×hm-2)间作; CK-A1(B1, A2, B2)分别表示两种密度下的两玉米品种的单作。柱状图上不同小写字母表示不同年份不同处理间差异显著(P<0.05)。
Figure4.Changes of harvested index (HI) of maize cultivars intercropping systems in 2011 and 2012
A1B1 and A2B2 represent maize cultivars 'Z958' and 'S16' intercropping systems with low (1, 45 000 plants×hm-2) and high (2, 75 000 plants×hm-2) planting densities. CK-A1(B1) and CK-A2(B2) indicate mono-cultured 'Z958'('S16') under low (1, 45 000 plants×hm-2) and high (2, 75 000 plants×hm-2) planting densities, respectively. Different lowercase letters above histograms indicate significant differences among treatments in different years at 0.05 level.


下载: 全尺寸图片幻灯片


图52011年和2012年品种间作下玉米扬花期总根系表面积
A1B1-A1(B1)表示两玉米品种(A, '郑单958'; B, '沈单16号')低密度(1, 45 000株×hm-2)间作下的'郑单958'('沈单16号'); A2B2-A2(B2)表示两玉米品种(A, '郑单958'; B, '沈单16号')高密度(2, 75 000株×hm-2)间作下的'郑单958'('沈单16号'); CK-A1(B1, A2, B2)分别表示两种密度下的两玉米品种的单作。柱状图上不同小写字母表示不同年份不同处理间差异显著(P<0.05)。
Figure5.Root surface areas of maize cultivars in intercropping systems at maize flowering stage in 2011 and 2012
A1B1-A1(B1) represents maize cultivar 'Z958'('S16') in intercropping system of 'Z958' and 'S16' with low planting density (1, 45 000 plants×hm-2). A2B2-A2(B2) represents maize cultivar 'Z958'('S16') in intercropping system of 'Z958' and 'S16' with high planting density (2, 75 000 plants×hm-2). CK-A1(B1) and CK-A2(B2) indicate mono-cultured 'Z958'('S16') under low (1, 45 000 plants×hm-2) and high (2, 75 000 plants×hm-2) planting densities, respectively. Different lowercase letters above histograms indicate significant differences among treatments in different years at 0.05 level.


下载: 全尺寸图片幻灯片


图62011年(A, B)和2012年(C, D)两品种间作下玉米扬花期根长密度(RLD)的垂直分布
A1B1-A1(B1)表示两玉米品种(A, '郑单958'; B, '沈单16号')低密度(1, 45 000株×hm-2)间作下的'郑单958'('沈单16号'); A2B2-A2(B2)表示两玉米品种(A, '郑单958'; B, '沈单16号')高密度(2, 75 000株×hm-2)间作下的'郑单958'('沈单16号'); CK-A1(B1, A2, B2)分别表示两种密度下的两玉米品种的单作。柱状图上不同小写字母表示相同土层不同处理间差异显著(P<0.05)。
Figure6.Vertical distribution of root length density (RLD) of maize cultivars in intercropping systems at maize flowering stage in 2011 (A, B) and 2012 (C, D)
A1B1-A1(B1) represents maize cultivar 'Z958'('S16') in intercropping system of 'Z958' and 'S16' with low planting density (1, 45 000 plants×hm-2). A2B2-A2(B2) represents maize cultivar 'Z958'('S16') in intercropping system of 'Z958' and 'S16' with high planting density (2, 75 000 plants×hm-2). CK-A1(B1) and CK-A2(B2) indicate monocultured 'Z958'('S16') under low (1, 45 000 plants×hm-2) and high (2, 75 000 plants×hm-2) planting densities, respectively. Different lowercase letters above histograms for the same soil depth indicate significant differences among treatments at 0.05 level.


下载: 全尺寸图片幻灯片


图72011年和2012年两玉米品种间作下根冠比的变化
A1B1-A1(B1)表示两玉米品种(A, 郑单958; B, 沈单16号)低密度(1, 45 000株×hm-2)间作下的'郑单958'('沈单16号'); A2B2-A2(B2)表示两玉米品种(A, 郑单958; B, 沈单16号)高密度(2, 75 000株×hm-2)间作下的'郑单958'('沈单16号'); CK-A1(B1, A2, B2)分别表示两种密度下的两玉米品种的单作。柱状图上不同小写字母表示不同年份不同处理间差异显著(P<0.05)。
Figure7.Root to shoot ratio (RSR) of maize cultivars in intercropping systems in 2011 and 2012
A1B1-A1(B1) represents maize cultivar 'Z958'('S16') in intercropping system of 'Z958' and 'S16' with low planting density (1, 45 000 plants×hm-2). A2B2-A2(B2) represents maize cultivar 'Z958'('S16') in intercropping system of 'Z958' and 'S16' with high planting density (2, 75 000 plants×hm-2). CK-A1(B1) and CK-A2(B2) indicate mono-cultured 'Z958'('S16') under low (1, 45 000 plants×hm-2) and high (2, 75 000 plants×hm-2) planting densities, respectively. Different lowercase letters above histograms indicate significant differences among treatments in different years at 0.05 level.


下载: 全尺寸图片幻灯片

表1不同密度品种间作下玉米产量、耗水量(ET)和水分利用效率(WUE)的差异
Table1.Differences in yield, water consumption (ET) and water use efficiency (WUE) between monoculture and intercropping of two maize cultivars under two planting densities
处理
Treatment
产量?Yield 耗水量
Water consumption (ET) (mm)
水分利用效率?Water use efficiency (WUE)
数值
Value (t×hm-2)
增长率
Increasing rate (%)
数值
Value (t×hm-2)
增长率
Increasing rate (%)
数值
Value (kg×hm-2×mm-1)
增长率
Increasing rate (%)
数值
Value (kg×hm-2×mm-1)
增长率
Increasing rate (%)
2011 2012 2011 2012 2011 2012
A1B1 9.13c 0.7 13.85c 21.4 353.14ab 345.34c 25.84c 1.0 40.10ab 42.0
A2B2 12.92b -2.0 15.42a 10.3 352.87ab 351.01bc 36.62ab -0.2 43.93a 28.8
CK-A1 9.09c 11.45d 347.99b 361.49b 26.12c 32.69d
CK-B1 9.11c 12.57c 360.06a 373.98ab 25.31c 33.61d
CK-A2 14.13a 14.35b 368.47a 383.10a 38.36a 37.45c
CK-B2 12.12b 14.99b 345.14b 380.48a 35.11ab 39.39bc
密度?Density (D) ** NS *
年份?Year (Y) ** NS *
D × Y * NS *
同列不同字母表示间作与单作处理间差异显著(P<0.05);增长率表示相同年份、相同密度下间作产量和水分利用效率(WUE)相对于单作的增长率(%); ***表示在P<0.05和P<0.01水平显著; NS表示不显著。Different letters in the same column mean significant differences between intercropping system and monoculture at 0.05 level. The increase rate of yield and WUE is increase of intercropping system compared with monoculture in the same year and under the same density. * and ** indicate significant effects at P<0.05 and P<0.01; NS indicates non-significant effect.


下载: 导出CSV

参考文献(28)
[1]刘天学, 李潮海, 付景, 等.不同基因型玉米间作的群体质量[J].生态学报, 2009, 29(11):6302-6309 doi: 10.3321/j.issn:1000-0933.2009.11.067
LIU T X, LI C H, FU J, et al. Population quality of different maize (Zea mays L.) genotypes intercropped[J]. Acta Eco-logica Sinica, 2009, 29(11):6302-6309 doi: 10.3321/j.issn:1000-0933.2009.11.067
[2]史振声, 朱敏, 李凤海, 等.玉米不同品种间作的增产效果研究[J].玉米科学, 2008, 16(2):107-109 http://www.cnki.com.cn/Article/CJFDTotal-YMKX200802030.htm
SHI Z S, ZHU M, LI F H, et al. Research on yield-increasing of different kinds of maize[J]. Journal of Maize Sciences, 2008, 16(2):107-109 http://www.cnki.com.cn/Article/CJFDTotal-YMKX200802030.htm
[3]朱敏, 史振声, 李凤海, 等.不同基因型玉米混作研究初报[J].中国种业, 2010, (8):63-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzy201008025
ZHU M, SHI Z S, LI F H, et al. Research on mixed cropping of different maize hybrids[J]. China Seed Industry, 2010, (8):63-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzy201008025
[4]李潮海, 苏新宏, 孙敦立.不同基因型玉米间作复合群体生态生理效应[J].生态学报, 2002, 22(12):2096-2103 doi: 10.3321/j.issn:1000-0933.2002.12.012
LI C H, SU X H, SUN D L. Ecophysiological characterization of different maize (Zea mays L.) genotypes under mono-or inter-cropping conditions[J]. Acta Ecologica Sinica, 2002, 22(12):2096-2103 doi: 10.3321/j.issn:1000-0933.2002.12.012
[5]刘天学, 王振河, 董朋飞, 等.玉米间作系统的生理生态效应研究进展[J].玉米科学, 2007, 15(5):114-116 https://www.wenkuxiazai.com/doc/b9760283e53a580216fcfe6b.html
LIU T X, WANG Z H, DONG P F, et al. Research progress of physiological and ecological effects in maize intercropping system[J]. Journal of Maize Sciences, 2007, 15(5):114-116 https://www.wenkuxiazai.com/doc/b9760283e53a580216fcfe6b.html
[6]WEINER J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(4):207-215 doi: 10.1078/1433-8319-00083
[7]贾风勤, 张娜, 纳森巴特.干旱地区不同生境庭荠生物量的分布研究[J].西南林业大学学报, 2017, 37(2):128-134 http://www.cqvip.com/QK/95928A/201702/671743005.html
JIA F Q, ZHANG N, NASEN BATE. Study on biomass dis-tribution of Alyssum desertorum under different habitats in arid area[J]. Journal of Southwest Forestry University, 2017, 37(2):128-134 http://www.cqvip.com/QK/95928A/201702/671743005.html
[8]王小林, 张岁岐.黄土塬区不同玉米品种间作的竞争力表现[J].中国生态农业学报, 2013, 21(11):1403-1410 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20131113&flag=1
WANG X L, ZHANG S Q. Competitiveness of intercropped maize cultivars in the Loess Plateau, China[J]. Chinese Jour-nal of Eco-Agriculture, 2013, 21(11):1403-1410 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20131113&flag=1
[9]谢然, 陶冶, 常顺利.四种一年生荒漠植物构件形态与生物量间的异速生长关系[J].生态学杂志, 2015, 34(3):648-655 http://www.cje.net.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=7403
XIE R, TAO Y, CHANG S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbatunggut Desert, China[J]. Chinese Journal of Ecology, 2015, 34(3):648-655 http://www.cje.net.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=7403
[10]刘文辉, 张英俊, 师尚礼, 等.高寒地区燕麦(Avena sativa L.)人工草地生物量分配对施肥和混播措施的响应[J].植物营养与肥料学报, 2017, 23(2):398-407 doi: 10.11674/zwyf.16190
LIU W H, ZHANG Y J, SHI S L, et al. Effect of variety, fer-tilization and mixture sowing on oat biomass allocation in the alpine cultivated pasture[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2):398-407 doi: 10.11674/zwyf.16190
[11]王杨, 徐文婷, 熊高明, 等.檵木生物量分配特征[J].植物生态学报, 2017, 41(1):105-114 http://www.plant-ecology.com/EN/article/downloadArticleFile.do?attachType=PDF&id=11971
WANG Y, XU W T, XIONG G M, et al. Biomass allocation patterns of Loropetalum chinense[J]. Chinese Journal of Plant Ecology, 2017, 41(1):105-114 http://www.plant-ecology.com/EN/article/downloadArticleFile.do?attachType=PDF&id=11971
[12]王小林, 张岁岐, 王淑庆.不同密度下品种间作对玉米水分平衡的影响[J].中国生态农业学报, 2013, 21(2):171-178 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013205&flag=1
WANG X L, ZHANG S Q, WANG S Q. Effects of cultivars intercropping on maize water balance under different planting densities[J]. Chinese Journal of Eco-Agriculture, 2013, 21(2):171-178 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013205&flag=1
[13]赵春玲. 双基因型玉米间作品种组合及行比模式研究[D]. 郑州: 河南农业大学, 2010: 32-34
ZHAO C L. Study on model of variety combination and row ratio for maize intercropping with double-genotypes[D]. Zhengzhou: Henan Agricultural University, 2010: 32-34
[14]罗永开, 方精云, 胡会峰.山西芦芽山14种常见灌木生物量模型及生物量分配[J].植物生态学报, 2017, 41(1):115-125 https://mall.cnki.net/huiyi-OGSJ200909001047.html
LUO Y K, FANG J Y, HU H F. Biomass estimation models and allocation patterns of 14 shrub species in Mountain Luya, Shanxi, China[J]. Chinese Journal of Plant Ecology, 2017, 41(1):115-125 https://mall.cnki.net/huiyi-OGSJ200909001047.html
[15]张维, 杨晓绒, 贾娜尔·阿汗, 等.新疆伊犁河岸小叶白蜡复叶构件生物量分配[J].干旱区研究, 2016, 33(1):114-119 http://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201411008.htm
ZHANG W, YANG X R, JIANAER AHAN, et al. Biomass allocation among components of compound leaves of Fraxinus sogdiana in Yili River Reaches, Xinjiang[J]. Arid Zone Research, 2016, 33(1):114-119 http://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201411008.htm
[16]FUJITA Y, VENTERINK H O, VAN BODEGOM P M, et al. Low investment in sexual reproduction threatens plants adapted to phosphorus limitation[J]. Nature, 2014, 505(7481):82-86 doi: 10.1038/nature12733
[17]陈哲, 伊霞, 陈范骏, 等.玉米根系对局部氮磷供应响应的基因型差异[J].植物营养与肥料学报, 2017, 23(1):83-90 doi: 10.11674/zwyf.16077
CHEN Z, YI X, CHEN F J, et al. Differential response of maize roots to heterogeneous local nitrogen and phosphorus supply and genotypic differences[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1):83-90 doi: 10.11674/zwyf.16077
[18]史振声, 朱敏, 李凤海, 等.玉米不同品种间作增产机制[J].种子, 2008, 27(12):1-4 http://www.cqvip.com/qk/90095x/200812/29279273.html
SHI Z S, ZHU M, LI F H, et al. Mechanism of yield-increasing in different height maize cultivars inter-planting system[J]. Seed, 2008, 27(12):1-4 http://www.cqvip.com/qk/90095x/200812/29279273.html
[19]廖荣伟, 刘晶淼, 白月明, 等.玉米生长后期的根系分布研究[J].中国生态农业学报, 2014, 22(3):284-291 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014305&flag=1
LIAO R W, LIU J M, BAI Y M, et al. Spatial distribution and temporal variation of maize root in the soil under field conditions[J]. Chinese Journal of Eco-Agriculture, 2014, 22(3):284-291 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014305&flag=1
[20]杨弦, 郭焱培, 安尼瓦尔·买买提, 等.中国北方温带灌丛生物量的分布及其与环境的关系[J].植物生态学报, 2017, 41(1):22-30 doi: 10.17521/cjpe.2016.0199
YANG X, GUO Y P, MOHHAMOT ANWAR, et al. Distri-bution of biomass in relation to environments in shrublands of temperate China[J]. Chinese Journal of Plant Ecology, 2017, 41(1):22-30 doi: 10.17521/cjpe.2016.0199
[21]HAMMER G L, DONG Z S, MCLEAN G, et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt?[J] Crop Science, 2009, 49(1):299-312 doi: 10.2135/cropsci2008.03.0152
[22]赵宏魁, 马真, 张春辉, 等.种植密度和施氮水平对燕麦生物量分配的影响[J].草业科学, 2016, 33(2):249-258 doi: 10.11829/j.issn.1001-0629.2015-0361
ZHAO H K, MA Z, ZHANG C H, et al. The reproductive al-location of Avena sativa under different planting densities and nitrogen addition treatments[J]. Pratacultural Science, 2016, 33(2):249-258 doi: 10.11829/j.issn.1001-0629.2015-0361
[23]刘梅, 吴广俊, 路笃旭, 等.不同年代玉米品种氮素利用效率与其根系特征的关系[J].植物营养与肥料学报, 2017, 23(1):71-82 doi: 10.11674/zwyf.16158
LIU M, WU G J, LU D X, et al. Improvement of nitrogen use efficiency and the relationship with root system characters of maize cultivars in different years[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1):71-82 doi: 10.11674/zwyf.16158
[24]徐军, 陈海玲, 李清河, 等.土壤水分含量对白刺幼苗表型可塑性生长的影响[J].西北林学院学报, 2017, 32(2):101-105
XU J, CHEN H L, LI Q H, et al. Phenotypic plasticity of Nitraria tangutorum response to water change[J]. Journal of Northwest Forestry University, 2017, 32(2):101-105
[25]张荣, 张大勇, 原保忠, 等.半干旱区春小麦品种竞争能力与产量关系的研究[J].植物生态学报, 1999, 23(3):205-210 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwstxb199903002
ZHANG R, ZHANG D Y, YUAN B Z, et al. A study of the relationship between competitive ability and productive per-formance of spring wheat in semi-arid regions of Loess Plateau[J]. Acta Phytoecologica Sinica, 1999, 23(3):205-210 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwstxb199903002
[26]冯萌, 于成, 林丽果, 等.灌溉和施氮对河西走廊紫花苜蓿生物量分配与水分利用效率的影响[J].中国生态农业学报, 2016, 24(12):1623-1632 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161205&flag=1
FENG M, YU C, LIN L G, et al. Effects of water and nitrogen fertilizer on biomass distribution and water use efficiency of alfalfa (Medicago sativa) in Hexi Corridor[J]. Chinese Journal of Eco-Agriculture, 2016, 24(12):1623-1632 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161205&flag=1
[27]王一帆, 秦亚洲, 冯福学, 等.根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响[J].作物学报, 2017, 43(5):754-762 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201705014
WANG Y F, QIN Y Z, FENG F X, et al. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system[J]. Acta Agronomica Sini-ca, 2017, 43(5):754-762 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201705014
[28]宋振伟, 齐华, 张振平, 等.春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异[J].作物学报, 2012, 38(12):2267-2277 doi: 10.3969/j.issn.1000-2561.2012.12.028
SONG Z W, QI H, ZHANG Z P, et al. Effects of plant density on agronomic traits and yield in spring maize Zhongdan 909 and their regional differences in Northeast China[J]. Acta Agronomica Sinica, 2012, 38(12):2267-2277 doi: 10.3969/j.issn.1000-2561.2012.12.028

相关话题/生态 植物 图片 土壤 资源