陆大克1,
王贺正1,
贾付俊1,
陈明灿1
1.河南科技大学农学院 洛阳 471003
2.扬州大学江苏省作物遗传生理重点实验室 扬州 225009
基金项目: 国家自然科学基金项目U1304316
河南省教育厅科学技术研究重点项目13A210266
江苏省作物栽培生理重点实验室开放基金027388003K11009
河南科技大学学科提升计划A13660002
详细信息
作者简介:徐国伟, 主要从事作物栽培生理研究。E-mail:gwxu2007@163.com
中图分类号:S312计量
文章访问数:824
HTML全文浏览量:1
PDF下载量:1112
被引次数:0
出版历程
收稿日期:2017-09-30
录用日期:2017-12-29
刊出日期:2018-04-01
Coupling effect of alternate wetting and drying irrigation and nitrogen rate on organic acid in rice root secretion at heading stage
XU Guowei1, 2,,,LU Dake1,
WANG Hezheng1,
JIA Fujun1,
CHEN Mingcan1
1. College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
2. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
Funds: the National Natural Science Foundation of ChinaU1304316
the Key Project for Science and Technology Research of Department of Education of Henan Province13A210266
the Open Foundation for Key Laboratory of Cultivation and Physiology of Jiangsu Province027388003K11009
the Henan University of Science and Technology Discipline Improvement and Promotion Plan A13660002
More Information
Corresponding author:XU Guowei, E-mail:gwxu2007@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:以水稻品种‘连粳7号’为试验材料进行盆栽试验,设置不施氮(0N,0 kg·hm-2)、中氮(MN,240 kg·hm-2)和高氮(HN,360 kg·hm-2)3种施氮水平及浅水层灌溉(0 kPa)、轻度干湿交替灌溉(-20 kPa)和重度干湿交替灌溉(-40 kPa)3种灌溉方式,研究不同水氮处理对水稻抽穗期根系分泌有机酸总量和组分变化、氨基酸含量及水稻氮肥农学利用率与偏生产力的影响及其耦合效应,探索水氮耦合机理,为水稻氮素高效利用及根际生态提供理论及科学依据。结果表明:轻度干湿交替灌溉增加了水稻根系酒石酸、柠檬酸、草酸、苹果酸、琥珀酸、总有机酸、氨基酸分泌量,分别较浅水层灌溉增加13.2%、8.7%、27.3%、40.0%、6.7%、6.3%及6.4%,水稻氮肥农学利用效率及偏生产力分别增加4.1%及1.7%,显著提高根系分泌有机酸及氨基酸含量;重度干湿交替灌溉减少水稻根系酒石酸、柠檬酸、草酸、苹果酸、琥珀酸的分泌量,显著降低根系分泌有机酸总量、氨基酸含量及水稻的氮肥利用效率。同一水分条件下,施氮显著促进根系酒石酸、乙酸、苹果酸、琥珀酸的分泌,降低了草酸和柠檬酸的分泌量。根系分泌的酒石酸和琥珀酸含量在MN与HN间差异较小。分析表明,根系分泌有机酸总量、氨基酸、苹果酸及琥珀酸的供氮效应为正效应,轻度干湿交替灌溉效应及与供氮的耦合效应为正效应,而重度干湿交替灌溉效应及其与供氮的耦合效应则为负效应。根系分泌的柠檬酸、草酸与氮肥利用率呈显著与极显著正相关,乙酸与氮肥利用间呈显著负相关。结果表明通过轻度干湿交替灌溉与中等施氮调控发挥水肥耦合效应,可以促进水稻根系酒石酸、苹果酸、琥珀酸及氨基酸分泌,提高氮肥利用效率,从而促进水稻高产。
关键词:水稻/
干湿交替灌溉/
水氮耦合/
根系分泌物/
有机酸/
氮肥利用效率
Abstract:Soil water and nitrogen conditions are the principal factors that affect crop growth and formation. Clarifying effects of soil water and nitrogen conditions and their coupling on grain yield of rice (Oryza sativa L.) have significant implications for high production efficiency and yield. There is extensive domestic and foreign research on the interactions of soil water and fertilizer. Specific focus has been put on ground parameters such as crop growth development, dry shoot formation, physiological function, hormone change, nutrient absorption and utilization, water use efficiency, etc. However, there is less work on the characteristics of root secretion, including changes in organic acids in roots. Research on the relationship between organic acid content and nitrogen utilization and the related interactions is also inconsistent and therefore inconclusive. The purpose of this study was to investigate the performance of root secretion under different nitrogen and water regimes and analyze the effect of the interaction of alternate wetting and drying irrigation and nitrogen levels. To that end, a pot-soil experiment was conducted using a mid-season japonica rice cultivar 'Lianjing 7' under different nitrogen rates[0N, MN (240 kg·hm-2) and HN (360 kg·hm-2)] and three irrigation regimes[keeping water (0 kPa), alternate wetting and moderate drying (-20 kPa) and alternate wetting and severe drying (-40 kPa)] in 2015 and 2016. The results showed that there was remarkable interaction between nitrogen rate and irrigation regime with the results similar for the two years. Under the same nitrogen rate, tartaric acid, citric acid, oxalic acid, malic acid, succinic acid, total organic acid and amino acid secretion of rice root at heading stage were higher (respectively by 13.2%, 8.7%, 27.3%, 40.0%, 6.7%, 6.3% and 6.4%) in treatment of alternate wetting and moderate drying than in treatment of keeping water flood irrigation. The nitrogen agronomic utilization and partial productivity of rice were increased by 4.1% and 1.7% respectively. The secretion amounts of tartaric acid, citric acid, oxalic acid, malic acid and succinic acid at heading stage decreased (respectively by 16.4%, 4.5%, 12.8%, 41.7% and 5.6%) under the treatment of alternate wetting and severe drying than under the treatment of keeping water. This also reduced total organic acid and amino acid in roots and overall nitrogen use efficiency. Under the same irrigation condition, nitrogen application accelerated the root secretion of tartaric acid, acetic acid, malic acid and succinic acid, but decreased the secretion of oxalic acid and citric acid at heading stage of rice. The differences in tartaric acid, acetic acid, malic acid and succinic acid secretion by roots were small between MN and HN treatments. Nitrogen application has positive effects on total organic acid, amino acid, malic acid, succinic acid secretion. Also its interaction effect with alternate wetting and moderate drying was positive, while the interaction effect with alternate wetting and sever was negative. Correlation analysis indicated that citric and oxalic acids secretion by rice roots was significantly positively correlated with nitrogen utilization. However, acetic acid was negatively correlated with nitrogen use efficiency. The results of the study suggest that increasing root secretion capacity through appropriate regulation of irrigation coupled with nitrogen rate increased nitrogen use efficiency and thereby promoted high yield of rice.
Key words:Rice/
Alternate wetting and drying irrigation/
Water and nitrogen interaction/
Root secretion/
Organic acid/
Nitrogen effi-ciency
HTML全文

图1干湿交替灌溉与施氮量耦合对水稻抽穗期根系分泌有机酸总量及氨基酸含量的影响
0N:不施氮肥; MN:施氮肥240 kg(N)∙hm–2; HN:施氮肥360 kg(N)∙hm–2。不同字母表示不同处理间0.05水平差异显著。
Figure1.Effect of alternate wetting and drying irrigation and nitrogen application on total organic acid and amino acid contents in root secretion at heading stage of rice
0N: no nitrogen application; MN: nitrogen application rate of 240 kg(N)∙hm–2; HN: nitrogen application rate of 360 kg(N)∙hm–2. Different letters mean significant differences among treatments at P < 0.05.


图2干湿交替灌溉与施氮量耦合对水稻抽穗期根系分泌物有机酸含量的影响
0N:不施氮肥; MN:施氮肥240 kg(N)∙hm–2; HN:施氮肥360 kg(N)∙hm–2。不同字母表示不同处理间0.05水平差异显著。
Figure2.Effects of alternate wetting and drying irrigation and nitrogen application on organic acids contents in root secretion of rice at heading stage
0N: no nitrogen applied; MN: nitrogen 240 kg(N)∙hm–2; HN: nitrogen 360 kg(N)∙hm–2. Different letters mean significant differences among treatments at P < 0.05.


图3水稻抽穗期根系分泌的有机酸与氮素农学利用率的相关性
Figure3.Correlations between organic acids in root secretion at heading stage with nitrogen agronomic efficiency of rice


图4水稻抽穗期根系分泌的有机酸与氮素偏生产力的相关性分析
Figure4.Correlations of organic acids in root secretion at heading stage with nitrogen partial factor productivity of rice

表1干湿交替灌溉与施氮量耦合对水稻根系分泌物有机酸总量及氨基酸效应的影响
Table1.Interaction effect of alternate wetting and drying irrigation and nitrogen application on total organic acid and amino acid contents of rice root secretion at heading stage
项目 Item | 效应 Effect | MN | HN | |||
轻度干湿交替灌溉 Alternate wetting and moderate drying irrigation | 重度干湿交替灌溉 Alternate wetting and severe drying irrigation | 轻度干湿交替灌溉 Alternate wetting and moderate drying irrigation | 重度干湿交替灌溉 Alternate wetting and severe drying irrigation | |||
有机酸总量 Total organic acid content | 供氮效应N supplied effect | 10.52a | 7.03b | 9.18a | 5.19b | |
控水效应Water stress effect | 1.72a | -4.14b | 1.54a | -4.84b | ||
耦合效应Coupling effect | 1.36a | -2.12b | 1.18a | -2.82b | ||
氨基酸 Amino acid content | 供氮效应N supplied effect | 1.34a | 0.90b | 1.17a | 0.66b | |
控水效应Water stress effect | 0.22a | -0.53b | 0.20a | -0.62b | ||
耦合效应Coupling effect | 0.17a | -0.27b | 0.15a | -0.36b | ||
MN:施氮肥240 kg(N)?hm–2; HN:施氮肥360 kg(N)?hm–2。同行不同字母表示0.05水平差异显著。MN: nitrogen 240 kg(N)?hm–2; HN: nitrogen 360 kg(N)?hm–2. Values in the same line followed by different letters are significantly different at P < 0.05. |

表2抽穗期水氮耦合对水稻根系分泌物有机酸效应的影响
Table2.Interaction effects of alternate wetting and drying irrigation and nitrogen application on organic acids of root secretion of rice at heading stage
项目 Item | 效应 Effect | MN | HN | |||
轻度干湿交替灌溉 Alternate wetting and moderate drying irrigation | 重度干湿交替灌溉 Alternate wetting and severe drying irrigation | 轻度干湿交替灌溉 Alternate wetting and moderate drying irrigation | 重度干湿交替灌溉 Alternate wetting and severe drying irrigation | |||
酒石酸 Tartaric acid | 供氮效应N supplied effect | 0.09a | 0.09a | 0.10a | 0.08a | |
控水效应Water stress effect | 0.04a | -0.13b | 0.04a | -0.15b | ||
耦合效应Coupling effect | 0.05a | -0.03c | 0.01b | -0.02bc | ||
柠檬酸 Citric acid | 供氮效应N supplied effect | -0.02a | -0.02a | -0.01a | -0.06b | |
控水效应Water stress effect | 0.05a | -0.05b | 0.06a | -0.04b | ||
耦合效应Coupling effect | 0.01b | 0.01b | 0.05a | 0.01b | ||
乙酸 Acetic acid | 供氮效应N supplied effect | 0.01a | 0.01a | 0.01a | 0.04a | |
控水效应Water stress effect | -0.01a | -0.01a | -0.02a | -0.04a | ||
耦合效应Coupling effect | 0.01a | 0.02a | -0.01a | 0.02a | ||
草酸 Oxalic acid | 供氮效应N supplied effect | -0.04b | -0.01a | -0.06b | -0.06b | |
控水效应Water stress effect | 0.09b | -0.12c | 1.00a | -0.15c | ||
耦合效应Coupling effect | 0.05a | 0.03a | 0.01a | 0.01a | ||
苹果酸 Malic acid | 供氮效应N supplied effect | 0.16a | 0.09b | 0.13a | 0.06b | |
控水效应Water stress effect | 0.10b | -0.09c | 1.00a | -0.09c | ||
耦合效应Coupling effect | 0.04a | -0.04b | 0.04a | -0.04b | ||
琥珀酸 Succinic acid | 供氮效应N supplied effect | 0.12b | 0.06c | 1.00a | 0.04c | |
控水效应Water stress effect | 0.09a | -0.04b | 0.09a | -0.03b | ||
耦合效应Coupling effect | 0.06a | -0.01b | 0.06a | -0.03b | ||
MN:施氮肥240 kg(N)?hm–2; HN:施氮肥360 kg(N)?hm–2。同行不同字母表示0.05水平差异显著。MN: nitrogen application rate of 240 kg(N)?hm–2; HN: nitrogen application rate of 360 kg(N)?hm–2. Values in the same line followed by different letters are significantly different at P < 0.05. |

表3干湿交替灌溉与施氮量耦合对水稻产量及氮素利用的影响
Table3.Effect of alternate wetting and drying irrigation and nitrogen application on grain yield and nitrogen use efficiency of rice
处理Treatment | 每盆施氮量 Total N fertilizer per pot (g) | 每盆水稻产量 Rice yield per pot (g) | 氮肥农学利用率 Agronomic efficiency of N fertilizer [kg(grain)·kg-1] | 氮肥偏生产力 Partial factor productivity of N fertilizer [kg(grain)·kg-1] | |
施氮量 N application (g?kg-1) | 灌溉 Irrigation | ||||
0 | 保持水层 Keeping water | 0 | 31.7±1.5d | — | — |
轻度干湿交替灌溉 Alternate wetting and moderate drying irrigation | 0 | 32.3±1.7d | — | — | |
重度干湿交替灌溉 Alternate wetting and severe drying irrigation | 0 | 24.1±1.0f | — | — | |
240 | 保持水层 Keeping water | 1.77 | 51.9±2.4a | 24.2±0.8a | 44.1±1.8a |
轻度干湿交替灌溉 Alternate wetting and moderate drying irrigation | 1.77 | 52.7±2.6a | 25.2±1.2a | 44.8±2.3a | |
重度干湿交替灌溉 Alternate wetting and severe drying irrigation | 1.77 | 37.6±1.5c | 16.3±0.6b | 32.0±1.4b | |
360 | 保持水层 Keeping water | 2.65 | 50.6±2.3ab | 15.1±0.7b | 28.6±1.2c |
轻度干湿交替灌溉 Alternate wetting and moderate drying irrigation | 2.65 | 51.3±2.5ab | 15.7±1.0b | 29.1±0.6c | |
重度干湿交替灌溉 Alternate wetting and severe drying irrigation | 2.65 | 29.1±1.1e | 4.0±0.4c | 16.5±0.9d | |
同列不同字母表示0.05水平差异显著。Values in the same column followed by different letters are significantly different at 0.05 level. |

参考文献
[1] | 康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究, 1998, 16(1):11-17 http://www.cqvip.com/qk/94737X/199801/2941592.html KANG S Z. New agricultural sci-technological revolution and development of Chinese water-saving agriculture in 21st century[J]. Agricultural Research in the Arid Areas, 1998, 16(1):11-17 http://www.cqvip.com/qk/94737X/199801/2941592.html |
[2] | 姚锋先. 不同水氮管理对水稻生长和水氮效率影响的生理机制研究[D]. 武汉: 华中农业大学, 2011 YAO F X. Studies on physiological mechanism of rice growth and water-and nitrogen-use efficiency under different water and nitrogen regimes[D]. Wuhan: Huazhong Agricultural University, 2011 |
[3] | PENG S B. Water resources strategy and agricultural devel-opment in China[J]. Journal of Experimental Botany, 2011, 62(6):1709-1713 doi: 10.1093/jxb/err049 |
[4] | NALLEY L, LINQUIST B, KOVACS K, et al. The economic viability of alternative wetting and drying irrigation in Ar-kansas rice production[J]. Agronomy Journal, 2015, 107(2):579-587 doi: 10.2134/agronj14.0468 |
[5] | 钟楚, 曹小闯, 朱练峰, 等.稻田干湿交替对水稻氮素利用率的影响与调控研究进展[J].农业工程学报, 2016, 32(19):139-147 doi: 10.11975/j.issn.1002-6819.2016.19.020 ZHONG C, CAO X C, ZHU L F, et al. A review on effects and regulation of paddy alternate wetting and drying on rice nitrogen use efficiency[J]. Transactions of the CSAE, 2016, 32(19):139-147 doi: 10.11975/j.issn.1002-6819.2016.19.020 |
[6] | WANG Z Q, ZHANG W Y, BEEBOUT S S, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates[J]. Field Crops Research, 2016, 193:54-69 doi: 10.1016/j.fcr.2016.03.006 |
[7] | KUKAL S S, AGGARWAL G C. Puddling depth and inten-sity effects in rice-wheat system on a sandy loam soil:Ⅱ water use and crop performance[J]. Soil and Tillage Research, 2003, 74(1):37-45 doi: 10.1016/S0167-1987(03)00124-7 |
[8] | BOUMAN B A M. A conceptual framework for the im-provement of crop water productivity at different spatial scales[J]. Agricultural Systems, 2007, 93(1/3):43-60 doi: 10.1007/s40030-015-0113-3 |
[9] | RAHMAN M R, BULBUL S H. Effect of alternate wetting and drying (AWD) irrigation for Boro rice cultivation in Bangladesh[J]. Agriculture, Forestry and Fisheries, 2014, 3(2):86-92 doi: 10.11648/j.aff.20140302.16 |
[10] | PAN J F, LIU Y Z, ZHONG X H, et al. Grain yield, water productivity and nitrogen use efficiency of rice under differ-ent water management and fertilizer-N inputs in South Chi-na[J]. Agricultural Water Management, 2017, 184:191-200 doi: 10.1016/j.agwat.2017.01.013 |
[11] | 中华人民共和国国家统计局. 国家数据[DB/OL]. 2015. http://data.stats.gov.cn/easyquery.htm?cn=C01 National Bureau of Statistics of China. National data[DB/OL]. 2015. http://data.stats.gov.cn/easyquery.htm?cn=C01 |
[12] | ZHANG W F, DOU Z X, HE P, et al. New technologies re-duce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21):8375-8380 doi: 10.1073/pnas.1210447110 |
[13] | 朱兆良, 金继运.保障我国粮食安全的肥料问题[J].植物营养与肥料学报, 2013, 19(2):259-273 doi: 10.11674/zwyf.2013.0201 ZHU Z L, JIN J Y. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2):259-273 doi: 10.11674/zwyf.2013.0201 |
[14] | 戢林, 李廷轩, 张锡洲, 等.水稻氮高效基因型根系分泌物中有机酸和氨基酸的变化特征[J].植物营养与肥料学报, 2012, 18(5):1046-1055 http://plantnutrifert.org/CN/abstract/abstract2957.shtml JI L, LI T X, ZHANG X Z, et al. Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency[J]. Plant Nutrition and Fertilizer Science, 2012, 18(23):1046-1055 http://plantnutrifert.org/CN/abstract/abstract2957.shtml |
[15] | 徐国伟, 李帅, 赵永芳, 等.秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究[J].草业学报, 2014, 23(2):140-146 doi: 10.11686/cyxb20140217 XU G W, LI S, ZHAO Y F, et al. Effects of straw returning and nitrogen fertilizer application on root secretion and ni-trogen utilization of rice[J]. Acta Prataculturae Sinica, 2014, 23(2):140-146 doi: 10.11686/cyxb20140217 |
[16] | IKKA T, OGAWA T, LI D H, et al. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh.[J]. Phytochemistry, 2013, 94:142-147 doi: 10.1016/j.phytochem.2013.06.016 |
[17] | 陆文龙, 王敬国, 曹一平, 等.低分子量有机酸对土壤磷释放动力学的影响[J].土壤学报, 1998, 35(4):493-500 doi: 10.11766/trxb199707120408 LU W L, WANG J G, CAO Y P, et al. Kinetics of phosphorus release from soils, as affected by organic acids with low-molecular-weight[J]. Acta Pedologica Sinica, 1998, 35(4):493-500 doi: 10.11766/trxb199707120408 |
[18] | 吴林坤, 林向民, 林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报, 2014, 38(3):298-310 http://www.docin.com/p-776362071.html WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3):298-310 http://www.docin.com/p-776362071.html |
[19] | TAGHIPOUR M, JALALI M. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents[J]. Chemosphere, 2016, 155:395-404 doi: 10.1016/j.chemosphere.2016.04.063 |
[20] | 常二华, 张慎凤, 王志琴, 等.结实期氮磷营养水平对水稻根系和籽粒氨基酸含量的影响[J].作物学报, 2008, 34(4):612-618 http://d.wanfangdata.com.cn/Periodical_zuowxb200804012.aspx CHANG E H, ZHANG S F, WANG Z Q, et al. Effect of ni-trogen and phosphorus on the amino acids in root exudates and grains of rice during grain filling[J]. Acta Agronomica Sinica, 2008, 34(4):612-618 http://d.wanfangdata.com.cn/Periodical_zuowxb200804012.aspx |
[21] | 刘立军, 常二华, 范苗苗, 等.结实期钾、钙对水稻根系分泌物与稻米品质的影响[J].作物学报, 2011, 37(4):661-669 https://mall.cnki.net/lunwen-2008087078.html LIU L J, CHANG E H, FAN M M, et al. Effects of potassium and calcium on root exudates and grain quality during grain filling[J]. Acta Agronomica Sinica, 2011, 37(4):661-669 https://mall.cnki.net/lunwen-2008087078.html |
[22] | 胡田田, 康绍忠, 高明霞, 等.玉米根系分区交替供应水、氮的效应与高效利用机理[J].作物学报, 2004, 30(9):866-871 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb200409004 HU T T, KANG S Z, GAO M X, et al. Effects and mecha-nisms of alternate water and nitrogen supply to partial root zone of maize[J]. Acta Agronomica Sinica, 2004, 30(9):866-871 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb200409004 |
[23] | HENRY A, DOUCETTE W, NORTON J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environmental Quality, 2007, 36(3):904-912 doi: 10.2134/jeq2006.0425sc |
[24] | 徐国伟, 吕强, 陆大克, 等.干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响[J].作物学报, 2016, 42(10):1495-1505 http://www.cnki.com.cn/Article/CJFDTotal-MLWZ201506005.htm XU G W, LYU Q, LU D K, et al. Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity[J]. Acta Agronomica Sinica, 2016, 42(10):1495-1505 http://www.cnki.com.cn/Article/CJFDTotal-MLWZ201506005.htm |
[25] | 刘立军, 王康君, 卞金龙, 等.水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系[J].作物学报, 2014, 40(11):1999-2007 http://www.cnki.com.cn/Article/CJFDTotal-XBZW201411015.htm LIU L J, WANG K J, BIAN J L, et al. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology[J]. Acta Agronomica Sinica, 2014, 40(11):1999-2007 http://www.cnki.com.cn/Article/CJFDTotal-XBZW201411015.htm |
[26] | 陈新红. 土壤水分与氮素对水稻产量和品质的影响及其生理机制[D]. 扬州: 扬州大学, 2004 CHEN X H. Effects of soil moisture and nitrogen nutrient on grain yield and quality of rice and their physiological mechanism[D]. Yangzhou: Yangzhou University, 2004 |
[27] | 樊小林, 史正军, 吴平.水肥(氮)对水稻根构型参数的影响及其基因型差异[J].西北农林科技大学学报:自然科学版, 2002, 30(2):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbnydxxb200202001 FAN X L, SHI Z J, WU P. Effects of nitrogen fertilizer on parameters of rice (Oryza sativa L.) root architecture and their genotypic difference[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry:Natural Science Edition, 2002, 30(2):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbnydxxb200202001 |
[28] | 徐国伟, 王贺正, 尼娇娇, 等.水氮耦合对郑麦9023结实期叶片衰老及产量的影响[J].草业学报, 2015, 24(11):137-145 doi: 10.11686/cyxb2015070 XU G W, WANG H Z, NI J J, et al. Effect of water and ni-trogen coupling on leaf senescence and yield of Zhengmai 9023 wheat during the grain-filling stage[J]. Acta Pratac-ulturae Sinica, 2015, 24(11):137-145 doi: 10.11686/cyxb2015070 |
[29] | 兰忠明, 林新坚, 张伟光, 等.缺磷对紫云英根系分泌物产生及难溶性磷活化的影响[J].中国农业科学, 2012, 45(8):1521-1531 http://d.wanfangdata.com.cn/Periodical_zgnykx201208008.aspx LAN Z M, LIN X J, ZHANG W G, et al. Effect of P defi-ciency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble phosphorus[J]. Scientia Agricultura Sinica, 2012, 45(8):1521-1531 http://d.wanfangdata.com.cn/Periodical_zgnykx201208008.aspx |
[30] | 王秀娟, 袁兴福, 娄春荣, 等.不同氮钾用量对番茄生长和叶片超微结构的影响[J].中国土壤与肥料, 2014, (3):44-48 doi: 10.11838/sfsc.20140309 WANG X J, YUAN X F, LOU C R, et al. Effects of N, K amount on tomato growth and leaf ultrastructure[J]. Soil and Fertilizer Sciences in China, 2014, (3):44-48 doi: 10.11838/sfsc.20140309 |
[31] | 林碧英, 张瑜, 毛美华.不同施肥水平对温室樱桃番茄果实品质的影响[J].中国农学通报, 2010, 26(4):137-141 http://www.cqvip.com/QK/91831X/201004/33012102.html LIN B Y, ZHANG Y, MAO M H. Effects of different fertili-zation levels on the quality of greenhouse cherry tomato[J]. Chinese Agricultural Science Bulletin, 2010, 26(4):137-141 http://www.cqvip.com/QK/91831X/201004/33012102.html |
[32] | 刘艳, 岳鑫, 陈贵林.水分胁迫对甘草叶片和根系细胞超微结构与膜脂过氧化的影响[J].草业学报, 2010, 19(6):79-86 doi: 10.11686/cyxb20100611 LIU Y, YUE X, CHEN G L. Effects of water stress on ultra-structure and membrane lipid peroxidation of leaf and root cells of Glycyrrhiza uralensis[J]. Acta Prataculturae Sinica, 2010, 19(6):79-86 doi: 10.11686/cyxb20100611 |
[33] | YANG J C, ZHANG H, ZHANG J H. Root morphology and physiology in relation to the yield formation of rice[J]. Jour-nal of Integrative Agriculture, 2012, 11(6):920-926 doi: 10.1016/S2095-3119(12)60082-3 |
[34] | ZHOU N, LIU P, WANG Z Y, et al. The effects of rapeseed root exudates on the forms of aluminum in aluminum stressed rhizosphere soil[J]. Crop Protection, 2011, 30(6):631-636 doi: 10.1016/j.cropro.2011.02.011 |
[35] | BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8):478-486 doi: 10.1016/j.tplants.2012.04.001 |
[36] | LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27):11192-11196 doi: 10.1073/pnas.0704591104 |