刘灵1, 2,,,
陈丽萍2,
陈明爱2,
陈玲2
1.广西师范大学 珍稀濒危动植物生态与环境保护教育部重点实验室 桂林 541004
2.广西师范大学生命科学学院 桂林 541004
基金项目: 广西自然科学基金项目2013GXNSFAA019094
广西高校科学技术研究重点项目ZD2014015
桂林市科学研究与技术开发计划项目20120119-4
详细信息
作者简介:胡振兴, 主要研究方向为植物营养与环境生态。E-mail:huzx1985@163.com
通讯作者:刘灵, 主要研究方向为植物生理与微生物生态学。E-mail:ll904@163.com
中图分类号:S565.1;S154.1计量
文章访问数:963
HTML全文浏览量:0
PDF下载量:1816
被引次数:0
出版历程
收稿日期:2017-06-05
录用日期:2018-01-09
刊出日期:2018-04-01
Effects of arbuscular mycorrhizal fungi on antioxidant metabolism and rhizo-spheric micro-organism of soybean (Glycine max) under drought stress
HU Zhenxing1, 2,,LIU Ling1, 2,,,
CHEN Liping2,
CHEN Ming'ai2,
CHEN Ling2
1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guilin 541004, China
2. College of Life Science, Guangxi Normal University, Guilin 541004, China
Funds: the Natural Science Foundation of Guangxi2013GXNSFAA019094
the Key Program of Science and Technology of Guangxi UniversitiesZD2014015
the Scientific Research and Technical Development Plan Program of Guilin20120119-4
More Information
Corresponding author:LIU Ling, E-mail:ll904@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:丛枝菌根真菌(AMF)可促进作物营养吸收和提高抗逆性,成为寄主抵御干旱胁迫的有效途径。为探明AMF提高大豆抗旱性的机制,以‘桂春豆103’为材料接种幼套近明囊霉(Claroideoglomus etunicatum,简写为C.e),研究干旱条件下C.e对田间大豆叶抗氧化酶及根围土中C/N/P循环相关酶活性等的影响,并用变性梯度凝胶电泳等方法探索土壤微生物群落结构的变化。结果表明:干旱处理前,接种C.e(+AM)处理大豆SOD、POD活性及游离脯氨酸(FP)含量,磷酸酶、蔗糖酶和脲酶活性,土壤细菌、真菌和放线菌数量及物种多样性、丰富度和群落均匀度指数,大豆生物量和株高均显著高于(-AM)处理(P < 0.05),MDA含量显著降低(P < 0.05)。干旱(D)处理后,+AM+D处理的上述各项指标,除MDA含量比-AM+D或+AM处理分别显著降低或升高(P < 0.05),FP含量比两处理显著提高(P < 0.05)外,其余指标值及细菌和真菌rDNA条带数均比-AM+D处理显著升高,比+AM处理显著下降(P < 0.05)。-AM+D与-AM处理的细菌和真菌群落均分别聚类于两不同分支,+AM与+AM+D处理聚于同一分支。可见,+AM+D处理能显著促进大豆抗氧化酶系统活性,维持较强的活性氧清除和渗透调节能力,缓解干旱对土壤酶活性的抑制,保持较高的细胞膜稳定性、土壤微生物数量和群落多样性,有利于C/N/P循环转化,提高抗旱性,最终促进大豆生长。本研究可为促进农业生态系统可持续发展奠定基础。
关键词:大豆/
丛枝菌根真菌/
干旱胁迫/
抗氧化代谢/
根围土壤微生物
Abstract:Arbuscular mycorrhizal fungi (AMF) not only improves nutrient absorption, but also enhances the resistance of host plant to stress such as drought. AMF inoculation has become one of the effective ways to resist drought stress. To explore the drought resistance mechanism of soybeans (Glycie max) inoculated with AMF, an experiment involving soybean variety 'Guichundou 103' as material was conducted. After inoculation with Claroideoglomus etunicatum (C.e), the effects of C.e on activities of antioxidant enzymes and C/N/P-cycle-related enzymes were investigated by collecting rhizospheric soil of soybean under drought stress. The changes in bacterial and fungal community diversities in rhizospheric soil were analyzed by denaturing gel gradient electrophoresis (DGGE) and other technologies. The results showed that activities of SOD, POD, sucrase, urease and phosphatase, free proline (FP) content, number and indexes of Shannon-Wiener diversity, richness and evenness of microorganisms in rhizospheric soil, as well as biomass and plant height of soybean with C.e inoculation (+AM) treatment were significantly higher than those without C.e inoculation (-AM) treatment under normal water supply condition. On the contrary, MDA content decreased significantly. Under drought stress (+D), MDA content with +AM treatment was lower and higher than that with -AM+D and +AM treatment, respectively. FP content was both higher than those of two treatments. The other indexes mentioned above along with band numbers of rDNA fragments of rhizospheric soil bacteria and fungi population were significantly higher than those with -AM+D treatment, and lower than those with +AM treatment. The bacterial and fungal communities of rhizospheric soil of -AM and -AM+D treatments belonged to different groups, while those of +AM treatment were clustered together with those of +AM+D treatment. In conclusion, +AM+D treatment obviously promoted the activities of antioxidant enzyme system, alleviated inhibition of drought on soil enzyme activities, kept high stability of cell membrane system, retained high population number and microbial structure diversity, promoted circulation and transformation of C, N and P in rhizospheric soil, improved drought resistance and effectively stimulated soybean growth. These results will lay a critical foundation for promoting sustainable development of agroecological systems.
Key words:Soybean (Glycie max)/
Arbuscular mycorrhizal fungi (AMF, Claroideoglomus etunicatum)/
Drought stress/
Antioxidant metabolism/
Rhizospheric soil microorganism
HTML全文
图1干旱胁迫下接种丛枝菌根真菌对大豆叶片抗氧化酶活力及游离脯氨酸和MDA含量的影响
+AM:接种C.e处理; +AM+D:接种C.e干旱处理;-AM:不接种C.e;-AM+D:不接种C.e干旱处理。不同小写字母表示处理间差异显著(P < 0.05)。
Figure1.Influence of inoculation of arbuscular mycorrhizal fungi on activities of antioxidant enzymes and free proline and MDA contents in soybean leaves under drought stress
+AM: arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation; +AM+D: +AM and drought stress;-AM: no arbuscular mycorrhizal fungi;-AM+D:-AM and drought stress. Different lowercase letters indicate significant differences among treatments at P < 0.05.
下载: 全尺寸图片幻灯片
图2干旱胁迫下接种丛枝菌根真菌对大豆根围土壤酶活性的影响
+AM:接种C.e处理; +AM+D:接种C.e干旱处理;-AM:不接种C.e;-AM+D:不接种C.e干旱处理。不同小写字母表示处理间差异显著(P < 0.05)。
Figure2.Influence of inoculation of arbuscular mycorrhizal fungi on enzymes activities in rhizospheric soil of soybean under drought stress
+AM: arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation; +AM+D: +AM and drought stress;-AM: no arbuscular mycorrhizal fungi;-AM+D:-AM and drought stress. Different lowercase letters indicate significant differences among treatments at P < 0.05.
下载: 全尺寸图片幻灯片
图3大豆根围土壤细菌16S rDNA PCR产物的DGGE指纹图谱(A)及聚类分析图(B)
+AM:接种C.e处理; +AM+D:接种C.e干旱处理;-AM:不接种C.e;-AM+D:不接种C.e干旱处理。
Figure3.DGGE fingerprint profile (A) and diagram of cluster analysis (B) of PCR products of 16S rDNA fragments of bacteria from rhizospheric soil of soybean inoculated with arbuscular mycorrhizal fungi under drought stress
+AM: arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation; +AM+D: +AM and drought stress;-AM: no arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation;-AM+D:-AM and drought stress.
下载: 全尺寸图片幻灯片
图4干旱胁迫和接种丛枝菌根真菌下大豆根围土壤真菌18S rDNA PCR产物的DGGE指纹图谱(A)及聚类分析图(B)
+AM:接种C.e处理; +AM+D:接种C.e干旱处理;-AM:不接种C.e;-AM+D:不接种C.e干旱处理。
Figure4.DGGE fingerprint profile (A) and diagram of cluster analysis (B) of PCR products of 18S rDNA fragments of fungi from rhizospheric soil of soybean inoculated with arbuscular mycorrhizal fungi under drought stress
+AM: arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation; +AM+D: +AM and drought stress;-AM: no arbuscular mycorrhizal fungi; -AM+D:-AM and drought stress.
下载: 全尺寸图片幻灯片
表1干旱胁迫下接种丛枝菌根真菌对大豆根围土壤中可培养微生物数量的影响
Table1.Influence of inoculation of arbuscular mycorrhizal fungi on cultural microbial population of rhizospheric soil of soybean under drought stress
处理 Treatment | 细菌Bacteria | 放线菌Actinomycetes | 真菌Fungi | |||||
×105 (CFU·g–1) | % | ×104 (CFU·g–1) | % | ×103 (CFU·g–1) | % | |||
+AM | 12.90±0.27a | 120.56 | 9.96±0.72a | 115.94 | 6.00±0.39a | 118.81 | ||
+AM+D | 11.43±0.44b | 106.82 | 7.68±0.43c | 89.41 | 4.41±0.36de | 87.33 | ||
-AM | 10.70±0.18c | 100.00 | 8.59±0.35b | 100.00 | 5.05±0.38bc | 100.00 | ||
-AM+D | 9.93±0.23d | 92.80 | 6.93±0.26d | 80.68 | 4.08±0.58e | 80.79 | ||
+AM:接种C.e处理; +AM+D:接种C.e干旱处理; -AM:不接种C.e; -AM+D:不接种C.e干旱处理。不同小写字母表示处理间差异显著(P < 0.05)。+AM: arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation; +AM+D: +AM and drought stress; -AM: no arbuscular mycorrhizal fungi; -AM+D: -AM and drought stress. Different lowercase letters indicate significant differences among treatments at P < 0.05. |
下载: 导出CSV
表2干旱胁迫下接种丛枝菌根真菌对大豆根围土壤细菌DGGE条带的物种多样性、丰富度和均匀度指数的影响
Table2.Influence of inoculation of arbuscular mycorrhizal fungi on indexes of Shannon-Wiener (H), richness (S) and evenness (EH) of bacterial DGGE bands in rhizospheric soil of soybean under drought stress
处理 Treatment | 多样性指数Diversity index | 丰富度指数Richness index | 均匀度指数Evenness index | |||||
数值Value | % | 数值Value | % | 数值Value | % | |||
+AM | 3.33 | 106.05 | 31 | 119.23 | 0.971 | 100.62 | ||
+AM+D | 3.01 | 95.86 | 24 | 92.31 | 0.947 | 98.13 | ||
-AM | 3.14 | 100.00 | 26 | 100.00 | 0.965 | 100.00 | ||
-AM+D | 2.89 | 92.04 | 21 | 80.77 | 0.949 | 98.34 | ||
+AM:接种C.e处理; +AM+D:接种C.e干旱处理; -AM:不接种C.e; -AM+D:不接种C.e干旱处理。不同小写字母表示处理间差异显著(P < 0.05)。+AM: arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation; +AM+D: +AM and drought stress; -AM: no arbuscular mycorrhizal fungi; -AM+D: -AM and drought stress. Different lowercase letters indicate significant differences among treatments at P < 0.05. |
下载: 导出CSV
表3干旱胁迫下接种丛枝菌根真菌对大豆根围土壤真菌DGGE条带的物种多样性、丰富度和均匀度指数的影响
Table3.Influence of inoculation of arbuscular mycorrhizal fungi on indexes of Shannon-Wiener (H), richness (S) and evenness (EH) of fungi DGGE bands in rhizospheric soil of soybean under drought stress
处理 Treatment | 多样性指数Diversity index | 丰富度指数Richness index | 均匀度指数Evenness index | |||||
数值Value | % | 数值Value | % | 数值Value | % | |||
+AM | 2.54 | 115.45 | 15 | 140.00 | 0.94 | 97.92 | ||
+AM+D | 2.36 | 107.27 | 13 | 130.00 | 0.92 | 95.83 | ||
-AM | 2.20 | 100.00 | 10 | 100.00 | 0.96 | 100.00 | ||
-AM+D | 1.98 | 90.00 | 8 | 80.00 | 0.95 | 98.96 | ||
+AM:接种C.e处理; +AM+D:接种C.e干旱处理; -AM:不接种C.e; -AM+D:不接种C.e干旱处理。不同小写字母表示处理间差异显著(P < 0.05)。+AM: arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation; +AM+D: +AM and drought stress; -AM: no arbuscular mycorrhizal fungi; -AM+D: -AM and drought stress. Different lowercase letters indicate significant differences among treatments at P < 0.05. |
下载: 导出CSV
表4干旱胁迫下接种丛枝菌根真菌对大豆生长特征的影响
Table4.Influence of inoculation of arbuscular mycorrhizal fungi on growth characteristics of soybean under drought stress
处理 Treatment | 株高 Height (cm) | 生物量 Plant biomass (g) |
+AM | 68.135±2.163a | 82.513±2.615a |
+AM+D | 63.482±2.375ab | 56.126±1.374b |
-AM | 55.369±2.108c | 35.752±1.819c |
+AM:接种C.e处理; +AM+D:接种C.e干旱处理; -AM:不接种C.e。不同小写字母表示处理间差异显著(P < 0.05)。+AM: arbuscular mycorrhizal fungi Claroideoglomus etunicatum inoculation; +AM+D: +AM and drought stress; -AM: no arbuscular mycorrhizal fungi. Different lowercase letters indicate significant differences among treatments at P < 0.05. |
下载: 导出CSV
参考文献
[1] | 杨鹏辉, 李贵全, 郭丽, 等.干旱胁迫对不同抗旱大豆品种花荚期质膜透性的影响[J].干旱地区农业研究, 2003, 21(3):127-130 http://www.cqvip.com/QK/94737X/2003003/8354376.html YANG P H, LI G Q, GUO L, et al. Effect of drought stress on plasma mambrane permeality of soybean varieties during flowering-poding stage[J]. Agricultural Research in the Arid Areas, 2003, 21(3):127-130 http://www.cqvip.com/QK/94737X/2003003/8354376.html |
[2] | 卢琼琼, 宋新山, 严登华.干旱胁迫对大豆苗期光合生理特性的影响[J].中国农学通报, 2012, 28(9):42-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201209009 LU Q Q, SONG X S, YAN D H. Effects of drought stress on photosynthetic physiological characteristics in soybean seedling[J]. Chinese Agricultural Science Bulletin, 2012, 28(9):42-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201209009 |
[3] | GRüMBERG B C, URCELAY C, SHROEDER M A, et al. The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean[J]. Biology and Fertility of Soils, 2015, 51(1):1-10 doi: 10.1007/s00374-014-0942-7 |
[4] | 舒波, 李伟才, 刘丽琴, 等.丛枝菌根(AM)真菌与共生植物物质交换研究进展[J].植物营养与肥料学报, 2016, 22(4):1111-1117 doi: 10.11674/zwyf.14538 SHU B, LI W C, LIU L Q, et al. Progress on material ex-change between arbuscular mycorrhizal (AM) fungi and host plant:A review[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4):1111-1117 doi: 10.11674/zwyf.14538 |
[5] | 韦莉莉, 卢昌熠, 丁晶, 等.丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J].生态学报, 2016, 36(14):4233-4243 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201614003.htm WEI L L, LU C Y, DING J, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dy-namics in plant-soil-microbe system[J]. Acta Ecologica Sinica, 2016, 36(14):4233-4243 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201614003.htm |
[6] | RUIZ-LOZANO J M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for mo-lecular studies[J]. Mycorrhiza, 2003, 13(6):309-317 doi: 10.1007/s00572-003-0237-6 |
[7] | ABBASPOUR H, SAEIDI-SAR S, AFSHARI H, et al. Tol-erance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions[J]. Journal of Plant Physiology, 2012, 169(7):704-709 doi: 10.1016/j.jplph.2012.01.014 |
[8] | LI T, HU Y J, HAO Z P, et al. First cloning and characteriza-tion of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices[J]. New Phytologist, 2013, 197(2):617-630 doi: 10.1111/nph.2012.197.issue-2 |
[9] | 李涛, 杜娟, 郝志鹏, 等.丛枝菌根提高宿主植物抗旱性分子机制研究进展[J].生态学报, 2012, 32(22):7169-7176 https://www.researchgate.net/publication/258200978_congzhijungentigaosuzhuzhiwukanghanxingfenzijizhiyanjiujinzhan LI T, DU J, HAO Z P, et al. Molecular basis for enhancement of plant drought tolerance by arbuscular mycorrhizal symbiosis:A mini-review[J]. Acta Ecologica Sinica, 2012, 32(22):7169-7176 https://www.researchgate.net/publication/258200978_congzhijungentigaosuzhuzhiwukanghanxingfenzijizhiyanjiujinzhan |
[10] | 马坤, 杨建军, 李璐, 等.接种丛枝菌根真菌对干旱胁迫下木棉幼苗地上部水分供应的影响[J].北方园艺, 2017, (16):95-101 http://wap.cnki.net/lunwen-1011403011.html MA K, YANG J J, LI L, et al. Inoculation of arbuscula my-corrhizal fungi improved water supply in aboveground part of Bombax ceiba seedling under drought stress[J]. Northern Horticulture, 2017, (16):95-101 http://wap.cnki.net/lunwen-1011403011.html |
[11] | BáRZANA G, AROCA R, PAZ J A, et al. Arbuscular my-corrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions[J]. Annals of Botany, 2012, 109(5):1009-1017 doi: 10.1093/aob/mcs007 |
[12] | GONG M G, TANG M, CHEN H, et al. Effects of two Glo-mus species on the growth and physiological performance of Sophora davidii seedlings under water stress[J]. New For-ests, 2013, 44(3):399-408 http://www.doc88.com/p-3147108345450.html |
[13] | 张亚敏, 马克明, 李芳兰, 等.干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究[J].生态学报, 2016, 36(11):3329-3337 http://www.cnki.com.cn/Article/CJFDTotal-STXB201611022.htm ZHANG Y M, MA K M, LI F L, et al. Arbuscular mycorrhizal fungi (AMF) promotes Bauhinia faberi var. Microphylla seedling growth under drought stress conditions[J]. Acta Ecologica Sinica, 2016, 36(11):3329-3337 http://www.cnki.com.cn/Article/CJFDTotal-STXB201611022.htm |
[14] | 李芳, 高萍, 段廷玉. AM菌根真菌对非生物逆境的响应及其机制[J].草地学报, 2016, 24(3):491-500 doi: 10.11733/j.issn.1007-0435.2016.03.003 LI F, GAO P, DUAN T Y. Response and mechanism of ar-buscular mycorrhizal fungi to abiotic stress[J]. Acta Agrestia Sinica, 2016, 24(3):491-500 doi: 10.11733/j.issn.1007-0435.2016.03.003 |
[15] | DODD J C, DOUGALL T A, CLAPP J P, et al. The role of arbuscular mycorrhizal fungi in plant community establish-ment at samphire Hoe, Kent, UK-The reclamation plat-form created during the building of the channel tunnel be-tween France and UK[J]. Biodiversity & Conservation, 2002, 11(1):39-58 |
[16] | 宋长青, 吴金水, 陆雅海, 等.中国土壤微生物学研究10年回顾[J].地球科学进展, 2013, 28(10):1087-1105 doi: 10.11867/j.issn.1001-8166.2013.10.1087 SONG C Q, WU J S, LU Y H, et al. Advances of soil micro-biology in the last decade in China[J]. Advances in Earth Science, 2013, 28(10):1087-1105 doi: 10.11867/j.issn.1001-8166.2013.10.1087 |
[17] | 曹宏杰, 倪红伟.土壤微生物多样性及其影响因素研究进展[J].国土与自然资源研究, 2015, (3):85-88 http://www.cnki.com.cn/Article/CJFDTOTAL-GTZY201503024.htm CAO H J, NI H W. Research advances in soil microbial di-versity and its impact factors[J]. Territory & Natural Re-sources Study, 2015, (3):85-88 http://www.cnki.com.cn/Article/CJFDTOTAL-GTZY201503024.htm |
[18] | 贺纪正, 李晶, 郑袁明.土壤生态系统微生物多样性-稳定性关系的思考[J].生物多样性, 2013, 21(4):411-420 http://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201304005.htm HE J Z, LI J, ZHENG Y M. Thoughts on the microbial diversity-stability relationship in soil ecosystems[J]. Biodiversity Science, 2013, 21(4):411-420 http://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201304005.htm |
[19] | 李香真, 郭良栋, 李家宝, 等.中国土壤微生物多样性监测的现状和思考[J].生物多样性, 2016, 24(11):1240-1248 doi: 10.17520/biods.2015345 LI X Z, GUO L D, LI J B, et al. Soil microbial diversity ob-servation in China:Current situation and future considera-tion[J]. Biodiversity Science, 2016, 24(11):1240-1248 doi: 10.17520/biods.2015345 |
[20] | 孙秀秀, 贺超兴, 李衍素, 等. AM真菌对黄瓜根围土壤微生物群落功能的影响[J].菌物学报, 2017, 36(7):892-903 http://manu40.magtech.com.cn/Jwxb/CN/abstract/abstract3514.shtml SUN X X, HE C X, LI Y S, et al. Effects of arbuscular my-corrhizal fungi on microbial community and function in the rhizosphere soil of cucumber plants[J]. Mycosystema, 2017, 36(7):892-903 http://manu40.magtech.com.cn/Jwxb/CN/abstract/abstract3514.shtml |
[21] | 任旭琴, 潘国庆, 陈伯清, 等.丛枝菌根真菌对淮安红椒连作土壤养分和酶活的影响[J].湖北农业科学, 2016, 55(17):4565-4568 https://www.cnki.com.cn/qikan-TRXB200606025.html REN X Q, PAN G Q, CHEN B Q, et al. Effects of arbuscular mycorrhizal fungus (AMF) on soil nutrients and enzyme ac-tivities in continuous cropping greenhouse of Huai'an red pepper[J]. Hubei Agricultural Sciences, 2016, 55(17):4565-4568 https://www.cnki.com.cn/qikan-TRXB200606025.html |
[22] | REQUENA N, PEREZ-SOLIS E, AZCòN-AGUILAR C, et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Envi-ronmental Microbiology, 2001, 67(2):495-498 doi: 10.1128/AEM.67.2.495-498.2001 |
[23] | 林钰. 喀斯特土壤中接种AMF对金橘抗旱性的影响[D]. 桂林: 广西师范大学, 2014: 13-15 LIN Y. Effects of arbuscular mycorrhizal fungi (AMF) on drought resistance of Kumquat in soil from the karst area[D]. Guilin: Gxuangxi Normal University, 2014: 13-15 |
[24] | TROUVELOT A, KOUGH, J L. Mesure du taux de mycorhization VA dun système radiculaire. Recherche des méthodes d'estimation ayant une signification fonctionnelle[M]/Gianinazzi-Pearson V, Gianinazzi S, Eds. The Mycorrhizae: Physiology and Genetics. Paris: INRA Presse, 1986: 217-221 |
[25] | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000:25-38 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000:25-38 |
[26] | 罗海峰, 齐鸿雁, 张洪勋.乙草胺对农田土壤细菌多样性的影响[J].微生物学报, 2004, 44(4):519-522 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_wswxb200404025 LUO H F, QI H Y, ZHANG H X. The impact of acetochl or the bacterial diversity in soil[J]. Acta Microbiologica Sinica, 2004, 44(4):519-522 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_wswxb200404025 |
[27] | 杨尚东, 李荣坦, 谭宏伟, 等.长期单施化肥和有机无机配合条件下红壤蔗区土壤生物学性状及细菌多样性差异[J].植物营养与肥料学报, 2016, 22(4):1024-1030 doi: 10.11674/zwyf.15506 YANG S D, LI R T, TAN H W, et al. Differences of soil bio-logical characteristics and bacterial diversity of sugarcane fields in red soil region affected by long-term single chemical fertilization and chemical organic combined application[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4):1024-1030 doi: 10.11674/zwyf.15506 |
[28] | 陈法霖, 张凯, 郑华, 等. PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J].应用与环境生物学报, 2011, 17(2):145-150 http://www.cibj.com/oa/DArticle.aspx?type=view&id=201006005 CHEN F L, ZHANG K, ZHENG H, et al. Analyzing the effect of mixed decomposition of conifer and broadleaf litters on soil microbial communities by using PCR-DGGE[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(2):145-150 http://www.cibj.com/oa/DArticle.aspx?type=view&id=201006005 |
[29] | 薛冬, 姚槐应, 黄昌勇.茶园土壤微生物群落基因多样性[J].应用生态学报, 2007, 18(4):843-847 http://www.cjae.net/CN/abstract/abstract9827.shtml XUE D, YAO H Y, HUANG C Y. Genetic diversity of mi-crobial communities in tea orchard soil[J]. Chinese Journal of Applied Ecology, 2007, 18(4):843-847 http://www.cjae.net/CN/abstract/abstract9827.shtml |
[30] | 吴展才, 余旭胜, 徐源泰.采用分子生物学技术分析不同施肥土壤中细菌多样性[J].中国农业科学, 2005, 38(12):2474-2480 doi: 10.3321/j.issn:0578-1752.2005.12.016 WU Z C, YU X S, XU Y T. Analysis on microbial diversity of different agricultural soils by using molecular biology technique[J]. Scientia Agricultura Sinica, 2005, 38(12):2474-2480 doi: 10.3321/j.issn:0578-1752.2005.12.016 |
[31] | CIAIS P H, REICHSTEIN M, VIOVY N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005, 437(7058):529-533 doi: 10.1038/nature03972 |
[32] | 侯文娟, 高江波, 彭韬, 等.结构-功能-生境框架下的西南喀斯特生态系统脆弱性研究进展[J].地理科学进展, 2016, 35(3):320-330 HOU W J, GAO J B, PENG T, et al. Review of ecosystem vulnerability studies in the karst region of Southwest China based on a structure-function-habitat framework[J]. Progress in Geography, 2016, 35(3):320-330 |
[33] | 钱亦兵, 蒋进, 吴兆宁.艾比湖地区土壤异质性及其对植物群落生态分布的影响[J].干旱区地理, 2003, 26(3):217-222 http://d.wanfangdata.com.cn/Periodical_ghqdl200303004.aspx QIAN Y B, JIANG J, WU Z N. Soil heterogeneity and its impact on ecological distribution of plant community in the Aiby Lake Area[J]. Arid Land Geography, 2003, 26(3):217-222 http://d.wanfangdata.com.cn/Periodical_ghqdl200303004.aspx |
[34] | 吴强盛, 夏仁学. VA菌根与植物水分代谢的关系[J].中国农学通报, 2004, 20(1):188-192 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200401060 WU Q S, XIA R X. The Relation between vesicu-lar-arbuscular mycorrhizae and water metabolism in plants[J]. Chinese Agricultural Science Bulletin, 2004, 20(1):188-192 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200401060 |
[35] | 于会泳, 宋晓丽, 王树声, 等.低分子量有机酸对植烟土壤酶活性和细菌群落结构的影响[J].中国农业科学, 2015, 48(24):4936-4947 doi: 10.3864/j.issn.0578-1752.2015.24.008 YU H Y, SONG X L, WANG S S, et al. Effects of low mo-lecular weight organic acids on soil enzymes activities and bacterial community structure[J]. Scientia Agricultura Sinica, 2015, 48(24):4936-4947 doi: 10.3864/j.issn.0578-1752.2015.24.008 |
[36] | 叶莹莹, 刘淑娟, 张伟, 等.喀斯特峰丛洼地植被演替对土壤微生物生物量碳、氮及酶活性的影响[J].生态学报, 2015, 35(21):6974-6982 http://www.cnki.com.cn/Article/CJFDTotal-STXB201521007.htm YE Y Y, LIU S J, ZHANG W, et al. Dynamics of soil micro-bial biomass and soil enzyme activity along a vegetation res-toration gradient in a karst peak-cluster depression area[J]. Acta Ecologica Sinica, 2015, 35(21):6974-6982 http://www.cnki.com.cn/Article/CJFDTotal-STXB201521007.htm |
[37] | DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502(7473):672-676 doi: 10.1038/nature12670 |
[38] | 罗方舟, 向垒, 李慧, 等.丛枝菌根真菌对旱稻生长、Cd吸收累积和土壤酶活性的影响[J].农业环境科学学报, 2015, 34(6):1090-1095 doi: 10.11654/jaes.2015.06.011 LUO F Z, XIANG L, LI H, et al. Effects of arbuscular my-corrhizal fungi (AMF) on growth and Cd accumulation of upland rice and soil enzyme activities in cadmium contami-nated soil[J]. Journal of Agro-Environment Science, 2015, 34(6):1090-1095 doi: 10.11654/jaes.2015.06.011 |
[39] | LORANGER-MERCIRIS G, BARTHES L, GASTINE A, et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems[J]. Soil Biology and Biochemistry, 2006, 38(8):2336-2343 doi: 10.1016/j.soilbio.2006.02.009 |
[40] | 罗攀, 陈浩, 肖孔操, 等.地形、树种和土壤属性对喀斯特山区土壤胞外酶活性的影响[J].环境科学, 2017, 38(6):2577-2585 https://www.researchgate.net/publication/276381778_Experimento_sobre_a_Influencia_do_pH_na_Corrosao_do_Ferro LUO P, CHEN H, XIAO K C, et al. Effects of topography, tree species and soil properties on soil enzyme activity in karst regions[J]. Environmental Science, 2017, 38(6):2577-2585 https://www.researchgate.net/publication/276381778_Experimento_sobre_a_Influencia_do_pH_na_Corrosao_do_Ferro |
[41] | 李林海, 邱莉萍, 梦梦.黄土高原沟壑区土壤酶活性对植被恢复的响应[J].应用生态学报, 2012, 23(12):3355-3360 http://www.cjae.net/CN/abstract/abstract18850.shtml LI L H, QIU L P, MENG M. Responses of soil enzyme activities to re-vegetation in gully Loess Plateau of Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12):3355-3360 http://www.cjae.net/CN/abstract/abstract18850.shtml |
[42] | 刘方春, 邢尚军, 马海林, 等.持续干旱对樱桃根际土壤细菌数量及结构多样性影响[J].生态学报, 2014, 34(3):642-649 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201403014 LIU F C, XING S J, MA H L, et al. Effects of continuous drought on soil bacteria populations and community diversity in sweet cherry rhizosphere[J]. Acta Ecologica Sinica, 2014, 34(3):642-649 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201403014 |
[43] | DUMBRELL A J, NELSON M, HELGASON T, et al. Idio-syncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi:Is there a role for stochastic processes?[J]. Journal of Ecology, 2010, 98(2):419-428 doi: 10.1111/jec.2010.98.issue-2 |
[44] | WELC M, RAVNSKOV S, KIELISZEWSKA-ROKICKA B, et al. Suppression of other soil microorganisms by mycelium of Arbuscular mycorrhizal fungi in root-free soil[J]. Soil Biology and Biochemistry, 2010, 42(9):1534-1540 doi: 10.1016/j.soilbio.2010.05.024 |
[45] | SCHEUBLIN T R, SANDERS I R, KEEL C, et al. Character-isation of microbial communities colonising the hyphal sur-faces of Arbuscular mycorrhizal Fungi[J]. The ISME Journal, 2010, 4(6):752-763 doi: 10.1038/ismej.2010.5 |
[46] | MIRANSARI M. Interactions between Arbuscular mycorrhi-zal Fungi and soil bacteria[J]. Applied Microbiology and Bi-otechnology, 2011, 89(4):917-930 doi: 10.1007/s00253-010-3004-6 |
[47] | 贺学礼, 高露, 赵丽莉.水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响[J].生态学报, 2011, 31(4):1029-1037 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201104015 HE X L, GAO L, ZHAO L L. Effects of AM fungi on the growth and drought resistance of Seriphidium minchünense under water stress[J]. Acta Ecologica Sinica, 2011, 31(4):1029-1037 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201104015 |
[48] | 朱红惠, 龙良坤, 羊宋贞, 等. AM真菌对青枯菌和根际细菌群落结构的影响[J].菌物学报, 2005, 24(1):137-142 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_jwxt200501023 ZHU H H, LONG L K, YANG S Z, et al. Influence of AM fungus on Ralstonia solanacearum population and bacterial community structure in rhizosphere[J]. Mycosystema, 2005, 24(1):137-142 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_jwxt200501023 |
[49] | 崔婷茹, 于慧敏, 李会彬, 等.干旱胁迫及复水对狼尾草幼苗生理特性的影响[J].草业科学, 2017, 34(4):788-793 http://d.wanfangdata.com.cn/Periodical_xbnyxb201107015.aspx CUI T R, YU H M, LI H B, et al. Effect of drought stress and rewatering on physiological characteristics of Pennisetum alopecuroides seedling[J]. Pratacultural Science, 2017, 34(4):788-793 http://d.wanfangdata.com.cn/Periodical_xbnyxb201107015.aspx |
[50] | 王琰, 陈建文, 狄晓艳.水分胁迫下不同油松种源SOD、POD、MDA及可溶性蛋白比较研究[J].生态环境学报, 2011, 20(10):1449-1453 doi: 10.3969/j.issn.1674-5906.2011.10.011 WANG Y, CHEN J W, DI X Y. A comparative study on the SOD, POD, MDA and dissoluble protein of six provenances of Chinese Pine (Pinus tabulaeformis Carr.) under water stress[J]. Ecology and Environmental Sciences, 2011, 20(10):1449-1453 doi: 10.3969/j.issn.1674-5906.2011.10.011 |