删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

2019年中国植物科学若干领域重要研究进展

本站小编 Free考研考试/2022-01-01

左建儒1, 漆小泉2, 林荣呈2, 钱前3, 顾红雅4, 陈凡1, 杨淑华5, 陈之端2, 白永飞2, 王雷2, 王小菁6, 姜里文7, 萧浪涛8, 种康,2,*, 王台,2,*1中国科学院遗传与发育生物学研究所
2中国科学院植物研究所
3中国农业科学院作物科学研究所
4北京大学
5中国农业大学
6华南师范大学
7香港中文大学
8湖南农业大学

Achievements and Advance in Chinese Plant Sciences in 2019

Jianru Zuo1, Xiaoquan Qi2, Rongcheng Lin2, Qian Qian3, Hongya Gu4, Fan Chen1, Shuhua Yang5, Zhiduan Chen2, Yongfei Bai2, Lei Wang2, Xiaojing Wang6, Liwen Jiang7, Langtao Xiao8, Kang Chong,2,*, Tai Wang,2,* 1Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
2Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
4College of Life Sciences, Peking University, Beijing 100871, China
5College of Biological Sciences, China Agricultural University, Beijing 100094, China
6College of Life Sciences, South China Normal University, Guangzhou 510631, China
7The Chinese University of Hong Kong, Shatian, China
8College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China

通讯作者: *E-mail: twang@ibcas.ac.cnE-mail: chongk@ibcas.ac.cn

责任编辑: 孙冬花

Corresponding authors: *E-mail: twang@ibcas.ac.cnE-mail: chongk@ibcas.ac.cn
Online:2020-05-01


摘要
2019年中国植物科学家在国际综合性学术期刊及植物科学主流期刊发表的论文数量大幅增加,在光生物学、植物抗逆和分子进化等若干领域取得了重要成果。其中,硅藻光合膜蛋白超分子结构和功能研究入选2019年度中国科学十大进展和中国生命科学十大进展;植物抗病小体的结构与功能研究入选2019年度中国生命科学十大进展。该文评述了2019年中国科学家在植物科学若干领域取得的重要研究进展,以期追踪和报道当前中国植物科学领域发展的前沿和热点及展示中国科学家所取得的辉煌成果。
关键词: 中国;植物科学;研究进展;2019年

Abstract
Chinese researchers in plant sciences published more original papers in international top journals and mainstream journals of plant science than last year, and made remarkable achievements in several areas. Research on the supramolecular structure and function of diatom photosynthetic membrane proteins was selected in the top 10 achievements in Chinese Sciences in 2019 and the top achievements of Chinese Life Sciences in 2019. Research on the structure and function of plant disease-resistant bodies was selected in the top 10 achievements of Chinese Life Sciences in 2019. In this review, we provide a commentary on the significant progress made by Chinese researchers in plant sciences this year.
Keywords:China;plant science;advance;2019


PDF (912KB)摘要页面多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
左建儒, 漆小泉, 林荣呈, 钱前, 顾红雅, 陈凡, 杨淑华, 陈之端, 白永飞, 王雷, 王小菁, 姜里文, 萧浪涛, 种康, 王台. 2019年中国植物科学若干领域重要研究进展. 植物学报, 2020, 55(3): 257-269 doi:10.11983/CBB20108
Zuo Jianru, Qi Xiaoquan, Lin Rongcheng, Qian Qian, Gu Hongya, Chen Fan, Yang Shuhua, Chen Zhiduan, Bai Yongfei, Wang Lei, Wang Xiaojing, Jiang Liwen, Xiao Langtao, Chong Kang, Wang Tai. Achievements and Advance in Chinese Plant Sciences in 2019. Chinese Bulletin of Botany, 2020, 55(3): 257-269 doi:10.11983/CBB20108


2019年, 我国科学家在CellNatureScience三个国际综合性学术期刊发表论文14篇(去年为11篇), 在Molecular PlantNature PlantsThe Plant CellPlant PhysiologyThe Plant Journal五个植物科学主流期刊发表论文429篇, 与去年(403篇)相比明显增加。近3年的统计数据显示, 2017年中国科学家在这5个主流期刊上发表的研究论文(Article)数占这些期刊总载文(Article)数的30.4%, 2019年则迅速增长至37.5%, 从2017年和2018年的全球第2位, 跃居全球第1 (表1) (数据来源: Web of Science核心合集) (检索时间: 2020年6月17日)。此外, 通过对2017- 2019年我国科学家在这5个主流期刊发表论文的研究材料进行分析, 发现以拟南芥为实验材料的研究呈现逐年递减趋势, 而以作物如水稻、玉米和小麦为材料的研究呈明显上升态势; 且在作物研究中, 以水稻为材料的研究所占比重最大(表2)。此外, 据我刊不完全统计, 2019年中国植物科学家在ScienceCellNature及其系列(Nature PlantsNature GeneticsNature Communication)和PNAS期刊上发表的论文总数为116篇, 与去年(77篇)相比增长了约50%。这些成绩的取得不仅受益于国家政策的支持, 而且与中国科学家持续不断的努力息息相关。

Table 1
表1
表12017-2019年中国与4个欧美国家在5个植物科学主流期刊(MP、NP、PC、PP和PJ)的发文量比较(数据来源: Web of Science核心合集)
Table 1The number of papers published by China, America, Germany, France and UK in five major journals of plant science (MP, NP, PC, PP and PJ) from 2017 to 2019 (data sources: Web of Science)
2017年2018年2019年
文章
数量
所占比例(%)文章
数量
所占比例(%)文章
数量
所占比例(%)
中国35430.440335.742937.5
美国40835.140435.839234.3
德国22419.320217.922419.6
英国14712.613612.113212.0
法国12610.81019.011610.1
Note: When a paper is signed by more than one country, it will be counted into each country once, so the total percentage may be more than 100%. The total number of papers published in five journals (MP, NP, PC, PP and PJ) was 1163 in 2017, 1128 in 2018 and 1144 in 2019, respectively. MP: Molecular Plant; NP: Nature Plants; PC: The Plant Cell; PP: Plant Physiology; PJ: The Plant Journal
注: 文章数量按篇计算, 当1篇文章属于多个国家, 会计入每个国家1次, 分别被算入占比的数值, 所以占比之和大于100%。2017年、2018年和2019年, 5刊(MP、NP、PC、PP和PJ)的总载文(Article)量分别为1163、1128和1144篇。

新窗口打开|下载CSV

Table 2
表2
表22017-2019年中国植物科学家在MP、NP、PC、PP和PJ发表以水稻、玉米、小麦和拟南芥为研究材料的文章数量(数据来源: Web of Science核心合集)
Table 2The number of papers published by Chinese scientists in MP, NP, PC, PP and PJ from 2017 to 2019 using rice, maize, wheat and Arabidopsis as materials (data sources: Web of Science)
2017年2018年2019年
文章
数量
所占比例(%)文章
数量
所占比例(%)文章
数量
所占比例(%)
水稻8821.411124.49822.3
玉米389.2439.55211.8
小麦184.4173.7245.5
拟南芥26865.028462.426560.4
总计412455439
Note: Repeat count for number of articles in the table. MP, NP, PC, PP and PJ are the same as Table 1.
注: 表中文章数量存在重复计数。MP、NP、PC、PP和PJ同表1

新窗口打开|下载CSV

为了帮助读者更好地了解我国植物科学研究的最新前沿和热点, 展示我国植物科学的重要成果, 我们经过专家投票从2019年我国科学家在植物科学领域发表的论文中遴选出29项重要进展, 并对相关进展进行系统评述。需要说明的是这仅代表《植物学报》的观点, 如有不妥请大家谅解。

1 植物基因编辑

1.1 基因组单碱基编辑器

作物农艺性状很多情况下是由基因组中的单个或少数核苷酸突变引起。因此, 基因组中关键核苷酸变异的鉴定与定向修正是植物育种的重要方向。基因组单碱基编辑器的开发, 为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具, 展现了其在植物新品种培育等方面潜在的重大应用价值(Komor et al., 2016; Gaudelli et al., 2017)。单碱基编辑器主要包括胞嘧啶单碱基编辑器(CBE)与腺嘌呤单碱基编辑器(ABE)。目前, CBE与ABE已在多个物种中得到广泛应用, 然而其在体内全基因组范围的脱靶效应还未得到评估(Rees and Liu, 2018)。高彩霞研究组在植物体内利用全基因组测序技术全面分析和比较了BE3 (基于融合rAPOBEC1胞嘧啶脱氨酶的CBE系统)、HF1-BE3 (高保真版本BE3)和ABE系统在基因组水平上的脱靶效应, 发现现有的BE3和HF1-BE3系统可在植物体内造成难以预测的脱靶突变, 需要进一步优化提高其特异性(Jin et al., 2019)。该研究创新性地利用相似遗传背景的克隆植物及全基因组重测序解决了以前大量异质细胞序列分析的复杂性问题。《植物学报》发表专文点评, 认为这一发现对单碱基编辑工具的应用和进一步改进具有重要意义(谢卡斌, 2019)。

1.2 基于RNA模板的植物同源重组修复

自2012年CRISPR/Cas基因组编辑技术被发明以来, 已广泛应用于动物、植物和微生物等诸多物种的基因组编辑。基因组编辑首先在基因组靶向位置产生DNA双链断裂(DNA double-strand break, DSB)。之后, 这些产生的DSB可通过非同源末端连接(NHEJ)或者HDR途径进行修复。NHEJ最常用于移码突变进而破坏基因的功能, HDR则主要用于对靶标序列的精准替换或定点插入。在多数物种中, NHEJ是DSB最主要的修复途径, 而通过HDR途径进行精准修复的概率极低。虽然利用基因枪转化或者双生病毒系统开展植物CRISPR/Cas系统DNA供体的递送, 可提高DNA模板数量进而提高HDR的发生概率, 但如何实现高效率的植物同源重组依然是一个巨大的挑战。夏兰琴研究组与合作者以RNA为同源重组修复(HDR)的模板, 并分别利用核酶自切割和具有RNA/DNA双重切割能力的CRISPR/Cpf1基因编辑系统, 成功获得了后代无转基因成分的抗ALS抑制剂类除草剂水稻植株(Li et al., 2019c)。该研究证明, 除了通常使用的DNA模板, RNA同样可作为植物同源重组修复的模板。在此基础上, 有望解决植物同源重组频率不高的难题, 及加快通过基因编辑技术精准改良农作物重要农艺性状的步伐。

2 作物生物学

2.1 玉米紧凑株型的分子网络

日益增长的世界人口迫切需要利用有限的耕地增加作物产量。而作物产量的高低与光能同化有直接关系, 光能同化高的作物又与株型密切相关。具有更多直立叶片的植株结构能够减少相互遮蔽, 且在增加植株密度条件下仍能维持光合作用的光能捕获, 以此改善叶片氮的积累, 用于籽粒灌浆和增加产量(Pendleton et al., 1968; Stewart et al., 2003; Tilman et al., 2011)。田丰研究组从玉米野生祖先种大刍草中克隆到2个调控叶倾角的主效QTL (UPA1UPA2)。研究表明, 大刍草UPA2等位基因具有与玉米不同的披叶基因DRL1的结合位点, 而DRL1能够与无叶舌基因LG1进行物理互作, 抑制ZmRAVL1介导的LG1激活。ZmRAVL1调控油菜素内酯C6氧化酶基因brd1/UPA1, 改变植株内源的油菜素内酯含量和叶片角度。来自玉米野生祖先大刍草的UPA2等位基因能够减小叶片角度, 但其在玉米驯化过程中丢失。通过将野生UPA2等位基因导入到现在玉米杂交种中和编辑ZmRAVL1基因均能够增强高密度种植玉米的产量(Tian et al., 2019)。该研究克隆了控制玉米紧凑株型和密植增产的关键基因, 建立了玉米紧凑株型的分子调控网络, 为玉米理想株型分子育种及培育密植高产品种奠定了理论和实践基础。《植物学报》发表专文点评, 认为该成果是玉米功能基因组研究的重大进展之一, 也是理论研究指导育种应用的最佳范例之一(刘杰和严建兵, 2019)。

2.2 水稻高产和氮高效基因OsNR2

现代农业中, 氮肥使用为水稻高产发挥了巨大的推动作用, 但氮肥过多施用不仅增加农业成本, 还带来一系列环境问题。水稻土壤的细菌通过硝化作用将约40%的氮转化为硝态氮, 因此, 硝态氮的吸收同化成为影响水稻氮素利用率(NUE)的重要因素。氯酸盐抗性是水稻硝态氮同化效率的指标。Teng等(2006)最早利用DH群体定位到3个氯酸钾抗性QTLs。徐国华研究组相继克隆了多个水稻硝态氮吸收转运基因(Yan et al., 2011)。2015年, 储成才研究组克隆了硝态氮转运蛋白基因OsNRT1.1B (Hu et al., 2015), 为水稻高NUE育种奠定了基础。近期, 钱前研究组与合作者利用水稻9311和日本晴的RIL群体检测到氯酸钾抗性QTLqCR2。他们对其进行精细定位和图位克隆, 发现其编码NAD(P)H依赖型硝酸还原酶OsNR2, 而位于NAD(P)H结合域的精氨酸(籼型)和色氨酸(粳型)的差别是两者酶活性差异的关键。OsNR2基因与OsNRT1.1B基因具有正反馈互作, 在粳稻背景下聚合籼型的这2个基因, 可以获得比导入单基因更高的产量和NUE (Gao et al., 2019)。OsNR2基因的发现为水稻产量可持续增长提供了新的基因资源。

2.3 水稻根系微生物组及氮磷协同利用

植物对氮的利用主要依赖根系从土壤中吸收无机氮, 并在体内同化为有机氮后被利用(Xu et al., 2012)。亚洲栽培稻中, 籼稻的氮利用效率通常高于粳稻, 原因之一是二者吸收和转运无机氮的方式不同。其中, 编码硝酸盐转运蛋白的NRT1.1B基因在籼粳稻之间存在明显分化(Hu et al., 2015)。根系在土壤中招募大量且种属特异的微生物(根系微生物组), 植物调控根系微生物组的机制对植物吸收营养和响应逆境胁迫等生理过程至关重要。白洋研究组与储成才研究组合作揭示了水稻根系微生物组与氮代谢的交互调控机制。他们通过比较田间生长的68个籼稻和27个粳稻品种的根系微生物组, 发现籼稻和粳稻具有显著不同的根系微生物组成, 籼稻比粳稻富集了更多与氮代谢相关的根系微生物, 这与籼稻具有更高的氮利用效率相一致。进一步分析发现, NRT1.1B不同等位形式在富集氮代谢相关根系微生物中具有关键调控作用(Zhang et al., 2019)。该研究为探讨根系微生物与植物互作及其功能提供了理论指导, 为利用益生菌培育氮高效利用水稻奠定了重要理论基础。《植物学报》发表专文点评, 认为该研究揭示了籼稻和粳稻根际微生物分化的分子基础, 展示了利用根际微生物提高水稻营养高效吸收的应用前景(王孝林和王二涛, 2019)。

后续储成才研究组发现膜定位的水稻NRT1.1B可与细胞质定位的抑制蛋白SPX4发生相互作用, 且硝酸盐可增强两者的互作, 并促进SPX4蛋白的降解, 进而激活下游基因的表达, 触发硝酸盐应答反应。NRT1.1B介导SPX4蛋白降解也触发磷饥饿应答基因的表达。因此, 硝酸盐信号可通过NRT1.1B-SPX4同时实现对硝酸盐应答基因和磷饥饿应答基因的协同激活, 从而实现氮磷的营养平衡(Hu et al., 2019a)。该研究既揭示了硝酸盐受体传递信号的重要机制, 也阐明了氮磷协同利用实现植物营养平衡的分子机制, 对植物营养研究具有重要意义。

3 逆境生物学

3.1 生物胁迫

3.1.1 植物“抗病”小体与抗病机制

植物在与病原菌的长期对抗过程中, 进化出了先天免疫系统, 主要由2个先天免疫反应(PTI和ETI)组成(Jones and Dangl, 2006), 而抗病蛋白是植物免疫系统的核心, 但人们对抗病蛋白发挥抗病反应的分子机制仍知之甚少。ZAR1是一类NLR (nucleotide-binding leucine-rich repeat receptors)蛋白, 可与抗病相关蛋白激酶I (RKS1)互作形成未激活的复合体。该复合体可识别十字花科的黄单胞菌属(Xanthomonas campestris pv. campestris)效应因子AvrAC尿苷酸化的PBL2UMP配体, 进而激活下游的抗病信号转导(Lewis et al., 2013; Wang et al., 2015)。柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构。他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态。而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c)。之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”。他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”。遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b)。该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展。《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019)。

柴继杰研究组与合作者利用结构生物学方法发现了FER-LLG1异型复合体识别RALF多肽的分子机制。他们解析了po-FERECD、apoANX1ECD、apo-ANX2ECD、apo-LLG1以及RALF23-LLG2-FERECD的晶体结构, 并利用拟南芥定点突变技术、体内遗传学方法和体外生化手段, 发现RALF的N末端保守结构域是LLG1-3识别的重要区段, LLG1-3识别RALF主要由构象多变的C端结构域控制(Xiao et al., 2019)。该研究揭示了多肽酶类激素RALF被受体激酶和膜锚定蛋白组成的异型复合体识别的分子机制, 是植物免疫学领域和受体激酶相关研究中的一项重要突破。他们提出的受体激酶与膜锚定蛋白异型复合体识别配体的模式是一类崭新的受体识别模式, 为其下游细胞信号转导和抗病反应等相关研究提供了新思路。

3.1.2 玉米纹枯病数量抗性基因ZmFBL41

纹枯病是一种由立枯丝核菌(一类死体营养型(necrotrophic)真菌)引起的病害, 在我国大部分地区以及东南亚、南亚地区广泛分布(赵茂俊等, 2006; Zheng et al., 2013), 主要感染玉米、水稻和大豆等重要作物。储昭辉研究组克隆了抗玉米纹枯病基因ZmFBL41。他们首先利用GWAS方法(Xiao et al., 2017)从380份重测序玉米自交系自然群体中鉴定了28个与玉米纹枯病抗病表型显著相关的SNP位点, 发现最显著的SNP位点ZmFBL41基因编码F-Box蛋白。然后利用玉米转座子插入突变体及该基因在水稻中过表达分析, 发现ZmFBL41是纹枯病的负调控因子。生化实验进一步证明, ZmFBL41蛋白可与木质素合成酶ZmCAD互作, 并介导其泛素化降解。抗病品种中ZmFBL41- LRR的214和217位氨基酸突变会导致ZmCAD的泛素化降解受阻, 从而促进木质素的合成, 增强玉米品种的抗病性(Li et al., 2019b)。《植物学报》发表专文点评, 认为该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源(李伟滔等, 2019)。

3.2 非生物胁迫

3.2.1 植物细胞表面GIPC鞘脂是盐受体

盐胁迫是限制农作物生产的重要环境因子, 严重制约了农业发展(Munns and Tester, 2008)。有研究表明, 盐胁迫诱导[Ca2+]cyt迅速上升(Knight et al., 1997), 激活SOS途径, 增强植物对盐胁迫的耐受性(Zhu, 2016)。然而, 植物如何感受盐胁迫这一科学问题一直未被阐明; 同时, 盐胁迫诱导[Ca2+]cyt迅速上升, 这其中的感受器及其作用的分子机制也未明确。胡章立研究组与合作者发现了植物盐受体GIPC, 并揭示了其作用机制。他们通过遗传筛选分离出盐胁迫诱导[Ca2+]cyt升高的缺陷突变体moca1。图位克隆发现MOCA1编码IPUT1 (inositol phosphorylceramide glucuronosyltransferase 1), 能将GlcA (glucuronic acid)转移到IPC (inositol phosphorylceramide)在细胞质膜外侧形成的鞘脂GIPC (glycosyl inositol phosphorylceramide)。在盐胁迫下, 胞外的Na+结合到植物细胞质膜外侧的GIPC, 引起细胞表面电势变化, 从而打开质膜的Ca2+通道, 导致[Ca2+]cyt增加, 激活SOS通路以适应盐胁迫环境。不同于动物的盐感受离子通道, 植物特异的GIPC鞘脂是非离子通道盐受体(Jiang et al., 2019)。这种盐胁迫响应机制可能意味着脂质参与了对各种环境盐胁迫水平的适应, 可用于提高作物耐盐性, 同时也为进一步揭示植物适应全球环境变化的生理生态效应及分子机制奠定了新的理论基础。

3.2.2 盐胁迫下特异Ca2+信号的产生与调控机制

钙离子(Ca2+)作为第二信使参与胞内众多的生理反应, 植物细胞通过对Ca2+信号的感知、识别与解码, 激活下游通路, 以维持环境胁迫下细胞正常的生命活动(Reddy et al., 2011)。而目前对于特异Ca2+信号的产生及调控机制尚不清楚。Yang和Guo (2018)发现并确立了Ca2+依赖的Na+外排机制, 即SOS (salt overly sensitive)调控途径。但盐胁迫下, SOS途径特异Ca2+信号的产生与调控机制仍不清楚。郭岩研究组揭示了Ca2+依赖激活的SOS途径负调控盐胁迫诱导的[Ca2+]cyt。他们进一步研究发现, AtANN4具有Ca2+通道活性, 促进盐胁迫下Ca2+内向转运, 参与激活SOS途径; SCaBP8介导AtANN4与SOS2互作并增强SOS2对AtANN4的磷酸化修饰, 同时磷酸化修饰后的AtANN4对SCaBP8具有更高的亲和力, 故盐胁迫稳定了SCaBP8-AtANN4-SOS2蛋白复合体。该复合体通过抑制AtANN4的活性(即信号通路的下游组分SCaBP8-SOS2)形成负反馈调控环抑制AtANN4的活性, 最终形成盐胁迫下特异的Ca2+信号, 参与植物长期的盐胁迫响应(Ma et al., 2019)。该研究加深了我们对细胞Ca2+信号转导途径的认识, 及对盐胁迫下特异Ca2+信号调控机制的理解。

3.2.3 植物高温记忆代际传递的机制

高温胁迫也是造成作物产量及品质下降的主要环境因素。植物已经进化出非常复杂的调控机制应对高温胁迫, 如表观遗传修饰的调控(Liu et al., 2015)。有些植物还能够将高温记忆传递给下一代, 形成传代记忆(Lang-Mladek et al., 2010)。然而, 目前高温传代记忆的具体机制及其对植物相关表型的影响仍不清楚。何祖华研究组发现高温造成的提早开花及抗病性降低可以传递给下一代, 表现出传代记忆效应。他们进一步研究发现, 长期的高温能激活HSFA2 (HEAT SHOCK TRANION FACTOR A2), HSFA2进而激活编码H3K27me3的去甲基化酶基因REF6 (RELATIVE OF EARLY FLOWERING 6)和染色质重塑因子基因BRM (BRAHMA)的表达。REF6和BRM反过来降低HSFA2位点上的H3K27me3修饰水平, 从而提高HSFA2的表达, 形成REF6-HSFA2正向反馈环; 同时HSFA2直接激活编码E3泛素连接酶基因SGIP1的表达, SGIP1蛋白参与降解转录后基因沉默(POSTTRANIONAL GENE SILENCE, PTGS)调节因子SGS3 (SUPPRESSOR OF GENE SILENCING 3) (Zhong et al., 2013), 从而抑制ta-siRNAs的产生。REF6-HSFA2反馈环和ta-siRNAs含量下降共同作用, 上调它们的共同靶标HTT5 (HEAT-INDUCED TAS1 TARGET 5)基因的表达, 导致植物提早开花和感病性增加(Liu et al., 2019)。该研究揭示了一个由组蛋白去甲基化酶、染色质重塑因子、转录因子、泛素连接酶和小RNA共同组成的表观调控网络, 维持植物对高温记忆传代的机制。

4 光合作用与光形态建成

4.1 硅藻光合膜蛋白超分子结构

光合作用为地球上几乎所有生物的生存提供了能源和氧气。硅藻是一种重要的水生光合生物, 贡献了地球每年约20%的原初生产力, 并在地球的元素(碳、氮、氧和硅等)循环和气候变化中发挥重要作用, 这与其光合膜蛋白的结构和功能密切相关。硅藻具有特殊的岩藻黄素叶绿素a/c结合蛋白(fucoxanthin- chlorophyll a/c protein, FCP), 该蛋白也属于捕光天线复合物(light-harvesting complex, LHC)家族。因缺乏结构生物学数据, 此前的FCP研究均只能够参考高等植物的LHCII模型(Gundermann and Büchel, 2014)。近期, 匡廷云研究组连续在Science杂志发表了2篇长文, 分别报道了FCP天线晶体结构和PSII- FCP超级复合体的电镜结构。他们解析了硅藻捕光天线膜蛋白(FCP) 1.8?的高分辨率结构, 发现每个FCP单体中结合7个叶绿素a、2个叶绿素c、7个岩藻黄素和1个硅甲藻黄素分子。该结构描绘了叶绿素c和岩藻黄素在光合膜蛋白中的结合细节, 揭示了FCP二聚体的结合方式, 阐明了硅藻高效捕获蓝绿光及高效传递和淬灭激发能的机理(Wang et al., 2019d)。

匡廷云研究组与隋森芳研究组合作利用单颗粒冷冻电镜技术解析了中心纲硅藻的PSII-FCPII超级复合体的3.0?分辨率的三维结构。他们发现硅藻PSII核心3个新蛋白亚基的结构、独特的四聚体FCP-A天线排列方式、复杂的色素网络和多条能量传递途径(Pi et al., 2019), 为破解硅藻高效传递和转化光能以及揭示光保护的机理奠定了结构基础。这两项成果入选2019年度中国科学十大进展、2019年度中国生命科学十大进展、2019年度中国十大海洋科技进展以及2019年度中国海洋与湖沼十大科技进展。

4.2 phyB-BBX4-PIF3介导的红光信号通路

光作为外界环境最重要的信号之一, 调控着植物生命周期中的诸多生长发育过程。不同波长的光信号被植物体内不同的光受体所识别, 启动下游光信号转导途径。其中phyB是最主要的红光受体。红光的照射迅速驱动phyB由pr形式向pfr形式转变, 并由细胞质迁移至细胞核内, 从而与光信号负调控因子PIF3蛋白互作, 促使其在数分钟之内被磷酸化、泛素化及蛋白降解, 最终促进植物的光形态建成(Ni et al., 2014, 2017)。许冬清研究组与邓兴旺研究组合作发现转录因子BBX4是参与红光介导的phyB-PIF3调控途径的一个重要组分。黑暗下, E3泛素化连接酶COP1促进BBX4通过26S蛋白酶水解系统降解。红光下, 位于细胞核内的phyB直接与BBX4互作并稳定它在植物体内的积累, 从而促进下游受BBX4调控的基因表达。同时, BBX4也直接与细胞核内尚存的光信号负调控因子PIF3互作, 以抑制其生物化学活性, 从而负调控PIF3下游目的基因的转录(Heng et al., 2019)。通过两个层面, BBX4增强了phyB参与的红光信号抑制PIF3功能和活性的能力。

4.3 PP6磷酸酶调控的拟南芥暗形态建成

暗形态建成有利于植物萌发出土, 光形态建成则帮助植物进行光合作用并进入自养生长。拟南芥PIF类转录因子是光形态建成中的关键抑制子, 其功能受磷酸化调控。目前, 参与调控PIF磷酸化修饰的激酶已被大量报道, 但调控PIF去磷酸化的磷酸酶却报道较少。代明球研究组与邓兴旺研究组合作揭示了PP6通过控制PIF去磷酸化修饰进而调控植物暗形态建成的分子机制。他们发现PP6两个催化亚基的双突变体fypp1/fypp3在黑暗下呈现短下胚轴和子叶张开的光形态建成表型, 类似于黑暗下生长的pifq (pif1/pif3/ pif4/pif5)四突变体。遗传分析显示, PP6和PIF协同抑制植物在黑暗下的光形态建成。PP6能与PIF3和PIF4蛋白直接互作, 并调控PIF的去磷酸化修饰。实验表明PP6的去磷酸化修饰功能对PIF的转录活性起正调控作用(Yu et al., 2019)。磷酸酶PP6在植物中高度保守(Dai et al., 2012)。该研究为作物耐深播农艺性状的改良提供了基因资源和理论指导。

4.4 拟南芥幼苗顶端弯钩形成与打开的机制

土壤中双子叶植物幼苗的下胚轴顶端发生细胞不对称生长, 形成弯钩状结构, 降低土壤颗粒对幼苗的机械损伤。出土后, 幼苗顶端弯钩附近的不对称生长被迅速消除, 使得子叶充分伸展, 获得更多光照, 快速实现光合自养。之前, 人们利用遗传诱变筛选到1个基因HLS1 (HOOKLESS1)的突变体, 该突变体在黑暗下不能形成顶端弯钩结构, 但是HLS1蛋白发挥作用的分子机制尚不清楚(Lehman et al., 1996)。钟上威研究组发现HLS1蛋白在植物黄化苗体内以多聚形式行使功能, 无法形成多聚体的hls1突变蛋白则完全丧失活性。出土见光后, HLS1在黑暗下形成的多聚体迅速消失。遗传分析显示, HLS1位于红光受体phyB (phytochrome B)的下游, 调控顶端弯钩的形成。phyB在见光后进入细胞核, 通过与HLS1蛋白的直接互作, 将HLS1蛋白从多聚形式裂解为单体形式, 从而迅速抑制HLS1的活性, 促进顶端弯钩打开。该研究发现植物通过HLS1蛋白的多聚和光控解多聚, 实现对幼苗顶端弯钩形成与打开的精确调控(Lyu et al., 2019)。

5 激素生物学

5.1 不依赖于受体TIR1的生长素信号转导

生长素作为植物最重要的激素之一, 调控复杂的植物生长发育过程。经典的生长素信号通路是生长素与其受体TIR1/AFBs结合后, 能稳定其受体与生长素信号抑制因子Aux/IAA蛋白的互作, 且能够泛素化降解Aux/IAA蛋白, 释放出被Aux/IAA蛋白抑制的生长素响应因子ARFs, 从而介导生长素信号的传递(Dharmasiri et al., 2005; Kepinski and Leyser, 2005)。但是否还存在其它信号转导机制目前尚不清楚。徐通达研究组发现拟南芥TMK1介导了生长素对顶端弯钩发育的调控。他们发现非典型Aux/IAA家族成员IAA32和IAA34并不具有与TIR1互作的结构区域, 故不能被TIR1调控; IAA32和IAA34能够与跨膜蛋白激酶TMK1剪切后形成的TMK1C片段互作, 从而感受并响应生长素信号。因此, TIR1和TMK1通过选择不同的IAA蛋白而介导生长素下游信号的传递。此外, 生长素通过TMK1C稳定而非降解IAA32和IAA34蛋白, 并通过ARF转录因子调控下游基因的表达, 在生长素高浓度的部位抑制细胞生长, 从而促进顶端弯钩内外侧的差异性生长(Cao et al., 2019)。《植物学报》发表专文点评, 认为该研究发现了一条独立于经典的受体TIR1的生长素信号通路, 是该领域的突破性进展(胡孔琴和丁兆军, 2019)。

5.2 细胞分裂素调控植物根系向水性生长

根的向水性生长是指植物通过根尖感知土壤中水分梯度, 向着水势较高区域生长的生物学特性, 对植物从土壤中有效获取水分极为重要; 同时, 也是实现节水灌溉、提高干旱地区农业产量的有效途径。然而其调控机理却报道较少。已有研究表明, 植物向性生长, 尤其是向地性和向光性, 主要受生长素的调控(Geisler et al., 2014; Fankhauser and Christie, 2015)。黎家研究组发现模式植物拟南芥根尖的向水性生长受细胞分裂素的调控。在面对不同水势信号时, 根尖两侧细胞分裂速率差异明显, 根尖水势较低一侧的分生区细胞分裂增加, 导致根尖发生向水性弯曲生长。进一步研究发现, 细胞分裂素的差异性分布诱导了其信号下游A类响应因子ARR16及ARR17在根尖分生区两侧的不对称表达, 从而实现对分生区两侧细胞分裂差异的调节(Chang et al., 2019)。该研究揭示了细胞分裂素调控植物根向水性生长的重要机制, 为全面理解植物向性生长提供了新思路, 对培育抗旱保产农作物新品种具有重要的指导作用。

6 生殖生物学

6.1 利用CRISPR创建水稻无融合生殖体系

王克剑研究组通过多重CRISPR-Cas9基因编辑技术, 对杂交稻组合春优84中PAIR1REC8OSD1三个减数分裂相关基因进行编辑, 成功获得了MiMe材料。MiMe在性细胞形成过程中不发生同源染色体重组(homologous recombination), 产生与亲本基因型一致的二倍体配子(Wang et al., 2019a)。已有研究表明, 玉米MTL (MATRILINEAL)基因可诱导产生单倍体(haploid)植株, 与拟南芥中通过CenH3诱导孤雌生殖(parthenogenesis)相比, 其优点是mtl突变体植株自交可直接获得孤雌生殖单倍体后代。水稻中存在玉米MTL的同源基因, 且其生物学功能与玉米MTL相同(Yao et al., 2018)。王克剑研究组通过CRISPR-Cas9系统验证了该基因的功能, 并且成功诱导出单倍体植株。在此基础上, 他们同时对春优84中PAIR1REC8OSD1MTL基因进行编辑, 成功获得了具有无融合生殖现象的Fix (Fixation of hybrids)材料, 并获得与杂交亲本基因型一致的克隆种子。对其二倍体后代进行基因组重测序分析表明, 克隆繁殖的二倍体植株与杂交种春优84基因型一致, 说明杂合背景的基因型能够在不同有性世代间传递(Wang et al., 2019a)。《植物学报》发表专文点评, 认为该研究证实了通过无融合生殖固定水稻杂种优势的可能性, 为实现“一系法”杂种优势利用探索出一种可能的技术路径(薛治慧和种康, 2019)。

6.2 分泌小肽介导的物种遗传隔离

遗传隔离是新物种形成的前提条件。“同种花粉优先”现象就是一种遗传隔离形式, 早在160年前该现象便被达尔文用实验验证了, 但其分子机制目前尚不明确。瞿礼嘉研究组以拟南芥为材料, 证明了一类雌性器官分泌的小肽分子可以增加同种花粉管的竞争能力, 从而促进与亲缘关系相近物种产生遗传隔离(Zhong et al., 2019)。该成果赋予了这类小肽以新的生物学功能, 从分子水平上为可能导致新物种产生的一种遗传隔离现象提供了解释。

7 植物系统进化

7.1 陆生植物祖先适应陆地环境的策略

陆生植物是从水生植物登陆后演化而来, 现在成为地球上植被的主体。这个过程是如何完成的? 其祖先是谁? 程时锋研究组与合作者对轮藻类的部分植物进行了基因组分析, 并将之与陆生植物基因组进行了系统发生学分析。结果发现双星藻科的2个物种(Spirogloea muscicolaMesotaenium endlicherianum)与所有陆生植物共享一个最近的祖先, 且它们的生境与最早登陆的苔藓类植物非常相似。更为重要的是, 这2种藻类植物已有原以为陆生植物特有的逆境响应因子(GRAS和PYL)。继续追溯其来源, 发现这2个基因来自土壤细菌基因的水平转移, 其时间与登陆发生的时间相吻合。这些发现使人们了解了陆生植物可能的祖先特性, 以及最初如何适应由水生到陆生这一巨大的环境变化(Cheng et al., 2019)。

7.2 古老被子植物花部特征的演化

被子植物占现在地球上陆生植物种类的约90%, 其适应性非常广泛。被子植物起源和早期的快速演化一直是科学家研究的重点。睡莲目植物是世界公认的古老被子植物类群之一, 其物种的演化规律受到植物和进化学家的高度关注。张亮生研究组及其合作者对睡莲目中既有颜值又有香气的蓝星睡莲(Nymphaea colorata)基因组进行了深入分析, 并将之与其它19个睡莲科物种的转录组进行比较, 发现花器官形态决定和花发育相关的ABCE类基因在早期被子植物及核心被子植物非常保守, 即它们共用一套系统。而一些与花香相关的基因则有可能在蓝星睡莲中独立演化出来。这些发现为被子植物的早期演化提供了非常重要的信息(Zhang et al., 2020)。《植物学报》发表专文点评, 认为该研究不仅解决了谁是现存最基部被子植物的问题, 也对后续的植物进化分类及重要基因的功能研究有一定的启示(唐嘉瓅等, 2020)。

7.3 被子植物起源时间的 “侏罗纪空缺”

被子植物作为陆地植物中物种最丰富的类群和生态系统的主宰, 其起源与早期演化一直备受关注。同样, 古植物学公认确凿的被子植物化石最早年龄与分子钟估算时间存在巨大差异(Herendeen et al., 2017; Coiro et al., 2019)也引起人们的高度重视, 致使被子植物的起源问题仍悬而未决。李德铢研究组与合作者利用2 881个质体基因组的80个基因, 重建了迄今为止科级水平取样最广泛的高分辨率被子植物质体基因组系统发育树, 并在此基础上结合62个化石标定点估算了科级以上主要分支的分化时间。研究结果表明, 被子植物起源于三叠纪晚期的瑞替期(约209 Ma), 明显早于确切的被子植物冠群最早化石年龄, 并据此提出了被子植物化石记录与分子钟推算时间之间存在“侏罗纪空缺(Jurassic gap)”。此外, 核心被子植物五大分支(金粟兰目、木兰类、单子叶植物、金鱼藻目以及真双子叶植物)之间的关系仍未解决, 这暗示被子植物早期可能发生了辐射演化(Li et al., 2019a)。该研究为今后被子植物演化的比较研究提供了系统发育基因组学框架, 有望更新主流的被子植物系统发育研究组(APG)系统。

7.4 活化石银杏的进化历史

银杏(Ginkgo biloba)是世界上现存最古老的树种之一, 其既是研究物种适应和灭绝规律与机制的活化石, 也是人类保护和复兴濒危物种的正面案例。因此, 研究其种群的进化历史和进化潜力具有重要的科学意义与实践价值。2016年, Guan等(2016)联合发表了银杏基因组草图。2019年, 葛颂研究组与合作者完成了来自全球51个种群的545棵银杏大树的全基因组测序分析, 构建了至今最大的非模式物种遗传数据库。他们通过对种群遗传结构和动态历史模拟分析, 发现银杏在中国存在3个避难所, 且更新世晚期的多次冰期促进了不同避难所之间种群的分化和特有遗传成分的混合, 使得银杏能够在物种水平维持较高的遗传变异。他们还进一步证实了人类在银杏从避难所向中国其它地区及全球迁移过程中的重要作用, 从而揭示了现存银杏全球分布格局的基本成因(Zhao et al., 2019)。该成果为银杏的后续研究建立了进化框架, 为其种质资源开发和精准保护提供了参考依据, 也是其它孑遗物种研究与保护可供借鉴的范例。

7.5 菠萝和四倍体棉花的驯化历史

栽培植物是野生植物经人工培育后适合人类需要的植物。对栽培植物基因组进行研究不仅能揭示其起源和演化, 还能解析其特有的生物性状的遗传和分子机制。菠萝(凤梨)是一种原产于南美的热带水果, 目前全世界的热带地区均有种植。明瑞光研究组与合作者对红苞凤梨(Ananas comosus var. bracteatus)的基因组进行了分析, 并将之与80多个菠萝栽培品种和野生祖先进行比较, 追溯了菠萝驯化史, 发现其既经历了有性生殖过程, 也有“一步到位”的无性繁殖过程, 还找到了基因组中与菠萝特异农艺性状相关的人工选择区段, 为菠萝的遗传育种奠定了科学基础(Chen et al., 2019b)。

棉花的栽培种主要是陆地棉(Gossypium hirsutum)和海岛棉(G. barbadense), 二者均为异源四倍体。前者产量高, 是世界主栽种; 后者纤维长、质量好且抗逆性强, 但产量低。为了解析这些物种差异的遗传和分子机制, 张天真研究组完成了这2个栽培种的高质量从头组装基因组, 通过深入的全基因组比较分析, 发现物种特异的基因表达、基因组结构变异和一些基因家族的扩张是驱动这2个物种形成与进化的动力(Hu et al., 2019b)。

8 植物生态与环境生物学

8.1 亚热带森林群落物种共存的真菌调控机制

经典物种共存理论认为, 病原菌通过降低群落优势种的存活率, 形成同种负密度制约, 促进物种多样性的维持(Janzen, 1970; Connell, 1971)。然而, 除病原菌外, 自然界还广泛分布着可为植物提供养分和保护的共生真菌。迄今为止, 尽管有研究表明共生真菌能够影响植物-土壤的反馈过程(Bever et al., 1997), 但不同功能型土壤真菌调控森林群落物种共存的协同作用机制仍不清楚。马克平研究组基于亚热带森林大样地长期动态监测平台, 将野外动态监测和高通量测序技术相结合, 发现植物同种负密度制约是由有害病原真菌与外生菌根真菌相互作用共同决定, 受同种负密度制约限制较大的物种更容易累积病原真菌, 而能够较快累积外生菌根真菌的植物物种不易受到同种负密度制约的限制(Chen et al., 2019a)。该研究提出了基于外生菌根真菌与病原真菌互作过程影响植物生存的物种共存新模式, 拓展了病原菌驱动的经典物种共存理论框架, 为正确认识全球变化情境下的亚热带森林群落重构以及木本植物多样性纬度梯度格局提供了新思路。

致谢

本刊编辑部在资料收集、统计分析和文字编辑中有重要贡献, 特此致谢!


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

胡孔琴, 丁兆军 (2019). 非TIR1受体依赖型激活生长素信号的新机制
植物学报 54, 293-295.

DOI:10.11983/CBB19063URL [本文引用: 1]
依赖于受体TIR1以及下游Aux/IAAs-ARFs介导的信号通路是目前研究最为深入的生长素信号转导途径。徐通达课题组最新研究发现, 高浓度生长素能够诱导质膜定位的TMK1激酶发生剪切, 导致其羧基(C-)端部分转入细胞核并磷酸化修饰细胞核内的非经典IAA32/34, 后者通过与生长素响应转录因子ARFs互作, 调控下游基因表达, 从而解析了生长素通过TMK1-IAA32/34-ARFs通路调控植物顶端弯钩内外侧差异性生长的分子机制。该研究发现了一条新的生长素TMK1- IAA32/34-ARFs信号途径, 此信号通路独立于经典生长素受体TIR1介导的生长素信号转导通路。

李伟滔, 贺闽, 陈学伟 (2019). ZmFBL41Chang7-2: 玉米抗纹枯病的关键利器
植物学报 54, 547-549.

DOI:10.11983/CBB19166URL [本文引用: 1]
由真菌Rhizoctonia solani引起的纹枯病严重危害玉米(Zea mays)和水稻(Oryza sativa)等作物的安全生产。R. solani的宿主范围广且抗源少, 加之相关的抗性机制研究有限, 导致纹枯病的危害长期得不到有效控制。近期, 中国科学家通过对318份玉米自交系进行全基因组关联分析, 筛选到1个与纹枯病抗性相关的、编码F-box结构域蛋白的候选基因ZmFBL41 (GRMZM2G109140)。ZmFBL41蛋白是SCF (SKP1-Cullin-F-box) E3泛素连接酶复合体的一员, 能介导复合体对肉桂醇脱氢酶ZmCAD的降解, 从而降低木质素的积累, 使玉米易感纹枯病。玉米抗病自交系Chang7-2中, 蛋白ZmFBL41 Chang7-2因2个关键氨基酸的变异, 不能结合并降解底物ZmCAD, 使木质素含量增加, 从而提高玉米对纹枯病的抗性。该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源。

刘杰, 严建兵 (2019). 大刍草稀有等位基因促进玉米密植高产
植物学报 54, 554-557.

DOI:10.11983/CBB19119URL [本文引用: 1]
密植是提高作物单位面积产量、促进粮食增产的重要途径之一。叶夹角是影响玉米(Zea mays)密植的关键因子。中国农业大学田丰课题组最近克隆了2个调控玉米叶夹角的数量性状位点(QTL)——UPA1UPA2, 揭示了这2个位点的功能基因(brd1ZmRAVL1)通过油菜素内酯(BR)信号通路调控叶夹角。UPA2位于ZmRAVL1上游9.5 kb, 可与DRL1蛋白结合。另一个影响玉米叶夹角的蛋白LG1可以激活ZmRAVL1的表达; DRL1蛋白与LG1蛋白直接互作抑制LG1对ZmRAVL1的激活表达。玉米祖先种大刍草(teosinte)的UPA2位点序列与DRL1蛋白结合能力更强, 导致大刍草ZmRAVL1的表达受到更强的抑制, 下调表达的ZmRAVL1进一步使下游基因brd1的表达下调, 进而降低叶环区的内源BR水平, 导致叶夹角变小。将大刍草的UPA2等位基因导入到玉米中或对玉米中ZmRAVL1进行基因编辑, 在密植条件下均可显著提高玉米产量。上述发现为高产玉米品种的分子育种改良提供了重要理论基础和基因资源。

唐嘉瓅, 邱杰, 黄学辉 (2020). 基因组学技术大发展助力园艺植物研究取得新进展
植物学报 55, 1-4.

[本文引用: 1]

王孝林, 王二涛 (2019). 根际微生物促进水稻氮利用的机制
植物学报 54, 285-287.

[本文引用: 1]

夏石头, 李昕 (2019). 开启防御之门: 植物抗病小体
植物学报 54, 288-292.

[本文引用: 1]

谢卡斌 (2019). 中国科学家发现胞嘧啶单碱基编辑工具存在基因组范围的脱靶
植物学报 54, 296-299.

[本文引用: 1]

薛治慧, 种康 (2019). 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展
植物学报 54, 1-3.

[本文引用: 1]

赵茂俊, 高世斌, 张志明, 荣廷昭, 潘光堂 (2006). 拔节期与抽穗期玉米抗纹枯病相关QTL的初步定位
分子细胞生物学报 39, 139-144.

[本文引用: 1]

Bever JD, Westover KM, Antonovics J (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach
J Ecol 85, 561-573.

[本文引用: 1]

Cao M, Chen R, Li P, Yu YQ, Zheng R, Ge DF, Zheng W, Wang XH, Gu YT, Gelová Z, Friml J, Zhang H, Liu RY, He J, Xu TD (2019). TMK1-mediated auxin signaling regulates differential growth of the apical hook
Nature 568, 240-243.

URLPMID:30944466 [本文引用: 1]

Chang JK, Li XP, Fu WH, Wang JW, Yong YY, Shi HY, Ding ZJ, Kui H, Gou XP, He K, Li J (2019). Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana
Cell Res 29, 984-993.

URLPMID:31601978 [本文引用: 1]

Chen L, Swenson NG, Ji NN, Mi XC, Ren HB, Guo LD, Ma KP (2019a). Differential soil fungus accumulation and density dependence of trees in a subtropical forest
Science 366, 124-128.

DOI:10.1126/science.aau1361URLPMID:31604314 [本文引用: 1]
The mechanisms underlying interspecific variation in conspecific negative density dependence (CNDD) are poorly understood. Using a multilevel modeling approach, we combined long-term seedling demographic data from a subtropical forest plot with soil fungal community data by means of DNA sequencing to address the feedback of various guilds of soil fungi on the density dependence of trees. We show that mycorrhizal type mediates tree neighborhood interactions at the community level, and much of the interspecific variation in CNDD is explained by how tree species differ in their fungal density accumulation rates as they grow. Species with higher accumulation rates of pathogenic fungi suffered more from CNDD, whereas species with lower CNDD had higher accumulation rates of ectomycorrhizal fungi, suggesting that mutualistic and pathogenic fungi play important but opposing roles.

Chen LY, VanBuren R, Paris M, Zhou HY, Zhang XT, Wai CM, Yan HS, Chen S, Alonge M, Ramakrishnan S, Liao ZY, Liu J, Lin JS, Yue JJ, Fatima M, Lin ZC, Zhang JS, Huang LX, Wang H, Hwa TY, Kao SM, Choi JY, Sharma A, Song J, Wang LL, Yim WC, Cushman JC, Paull RE, Matsumoto T, Qin Y, Wu QS, Wang JP, Yu QY, Wu J, Zhang SL, Boches P, Tung CW, Wang ML, d’Eeckenbrugge GC, Sanewski GM, Purugganan MD, Schatz MC, Bennetzen JL, Lexer C, Ming R (2019b). The bracteatus pineapple genome and domestication of clonally propagated crops
Nat Genet 51, 1549-1558.

[本文引用: 1]

Cheng SF, Xian WF, Fu Y, Marin B, Keller J, Wu T, Sun WJ, Li XL, Xu Y, Zhang Y, Wittek S, Reder T, Günther G, Gontcharov A, Wang SB, Li LZ, Liu X, Wang J, Yang HM, Xu X, Delaux PM, Melkonian B, Wong GKS, Melkonian M (2019). Genomes of subaerial Zygnematophyceae provide insights into land plant evolution
Cell 179, 1057-1067.e14.

URLPMID:31730849 [本文引用: 1]

Coiro M, Doyle JA, Hilton J (2019). How deep is the conflict between molecular and fossil evidence on the age of angiosperms?
New Phytol 223, 83-99.

[本文引用: 1]

Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees
In: den Boer PJ, Gradwell GR, eds. Dynamics of Populations. Wageningen: Centre for Agricultural Publishing and Documentation. pp. 298-312.

[本文引用: 1]

Dai MQ, Zhang C, Kania U, Chen F, Xue Q, McCray T, Li G, Qin GJ, Wakeley M, Terzaghi W, Wan JM, Zhao YD, Xu J, Friml J, Deng XW, Wang HY (2012). A PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis
Plant Cell 24, 2497-2514.

DOI:10.1105/tpc.112.098905URLPMID:22715043 [本文引用: 1]
The directional transport of the phytohormone auxin depends on the phosphorylation status and polar localization of PIN-FORMED (PIN) auxin efflux proteins. While PINIOD (PID) kinase is directly involved in the phosphorylation of PIN proteins, the phosphatase holoenzyme complexes that dephosphorylate PIN proteins remain elusive. Here, we demonstrate that mutations simultaneously disrupting the function of Arabidopsis thaliana FyPP1 (for Phytochrome-associated serine/threonine protein phosphatase1) and FyPP3, two homologous genes encoding the catalytic subunits of protein phosphatase6 (PP6), cause elevated accumulation of phosphorylated PIN proteins, correlating with a basal-to-apical shift in subcellular PIN localization. The changes in PIN polarity result in increased root basipetal auxin transport and severe defects, including shorter roots, fewer lateral roots, defective columella cells, root meristem collapse, abnormal cotyledons (small, cup-shaped, or fused cotyledons), and altered leaf venation. Our molecular, biochemical, and genetic data support the notion that FyPP1/3, SAL (for SAPS DOMAIN-LIKE), and PP2AA proteins (RCN1 [for ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1] or PP2AA1, PP2AA2, and PP2AA3) physically interact to form a novel PP6-type heterotrimeric holoenzyme complex. We also show that FyPP1/3, SAL, and PP2AA interact with a subset of PIN proteins and that for SAL the strength of the interaction depends on the PIN phosphorylation status. Thus, an Arabidopsis PP6-type phosphatase holoenzyme acts antagonistically with PID to direct auxin transport polarity and plant development by directly regulating PIN phosphorylation.

Dharmasiri N, Dharmasiri S, Estelle M (2005). The F-box protein TIR1 is an auxin receptor
Nature 435, 441-445.

[本文引用: 1]

Fankhauser C, Christie JM (2015). Plant phototropic growth
Curr Biol 25, R384-R389.

DOI:10.1016/j.cub.2015.03.020URLPMID:25942556 [本文引用: 1]
Plants are photoautotrophic sessile organisms that use environmental cues to optimize multiple facets of growth and development. A classic example is phototropism - in shoots this is typically positive, leading to growth towards the light, while roots frequently show negative phototropism triggering growth away from the light. Shoot phototropism optimizes light capture of leaves in low light environments and hence increases photosynthetic productivity. Phototropins are plasma-membrane-associated UV-A/blue-light activated kinases that trigger phototropic growth. Light perception liberates their protein kinase domain from the inhibitory action of the amino-terminal photosensory portion of the photoreceptor. Following a series of still poorly understood events, phototropin activation leads to the formation of a gradient of the growth hormone auxin across the photo-stimulated stem. The greater auxin concentration on the shaded compared with the lit side of the stem enables growth reorientation towards the light. In this Minireview, we briefly summarize the signaling steps starting from photoreceptor activation until the establishment of a lateral auxin gradient, ultimately leading to phototropic growth in shoots.

Gao ZY, Wang YF, Chen G, Zhang AP, Yang SL, Shang LG, Wang DY, Ruan BP, Liu CL, Jiang HZ, Dong GJ, Zhu L, Hu J, Zhang GH, Zeng DL, Guo LB, Xu GH, Teng S, Harberd NP, Qian Q (2019). The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency
Nat Commun 10, 5207.

[本文引用: 1]

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017). Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage
Nature 551, 464-471.

[本文引用: 1]

Geisler M, Wang B, Zhu J (2014). Auxin transport during root gravitropism: transporters and techniques
Plant Biol 16, 50-57.

[本文引用: 1]

Guan R, Zhao YP, Zhang H, Fan GY, Liu X, Zhou WB, Shi CC, Wang JH, Liu WQ, Liang XM, Fu YY, Ma KL, Zhao LJ, Zhang FM, Lu ZH, Lee SMY, Xu X, Wang J, Yang HM, Fu CX, Ge S, Chen WB (2016). Draft genome of the living fossil Ginkgo biloba
Gigascience 5, 49.

URLPMID:27871309 [本文引用: 1]

Gundermann K, Büchel C (2014). Structure and functional heterogeneity of fucoxanthin-chlorophyll proteins in diatoms
In: Hohmann-Marriott MF, ed. The Structural Basis of Biological Energy Generation. Dordrecht: Springer. pp. 21-37.

[本文引用: 1]

Heng YQ, Jiang Y, Zhao XH, Zhou H, Wang XC, Deng XW, Xu DQ (2019). BBX4, a phyB-interacting and modulated regulator, directly interacts with PIF3 to fine tune red light-mediated photomorphogenesis
Proc Natl Acad Sci USA 116, 26049-26056.

[本文引用: 1]

Herendeen PS, Friis EM, Pedersen KR, Crane PR (2017). Palaeobotanical redux: revisiting the age of the angiosperms
Nat Plants 3, 17015.

[本文引用: 1]

Hu B, Jiang ZM, Wang W, Qiu YH, Zhang ZH, Liu YQ, Li AF, Gao XK, Liu LC, Qian YW, Huang XH, Yu FF, Kang S, Wang YQ, Xie JP, Cao SY, Zhang LH, Wang YC, Xie Q, Kopriva S, Chu CC (2019a). Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants
Nat Plants 5, 401-413.

[本文引用: 1]

Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies
Nat Genet 47, 834-838.

[本文引用: 2]

Hu Y, Chen JD, Fang L, Zhang ZY, Ma W, Niu YC, Ju LZ, Deng JQ, Zhao T, Lian JM, Baruch K, Fang D, Liu X, Ruan YL, Rahman M, Han JL, Wang K, Wang Q, Wu HT, Mei GF, Zang YH, Han ZG, Xu CY, Shen WJ, Yang DF, Si ZF, Dai F, Zou LF, Huang F, Bai YL, Zhang YG, Brodt A, Ben-Hamo H, Zhu XF, Zhou BL, Guan XY, Zhu SJ, Chen XY, Zhang TZ (2019b). Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton
Nat Genet 51, 739-748.

URLPMID:30886425 [本文引用: 1]

Janzen DH (1970). Herbivores and the number of tree species in tropical forests
Am Nat 104, 501-528.

[本文引用: 1]

Jiang ZH, Zhou XP, Tao M, Yuan F, Liu LL, Wu FH, Wu XM, Xiang Y, Niu Y, Liu F, Li CJ, Ye R, Byeon B, Xue Y, Zhao HY, Wang HN, Crawford BM, Johnson DM, Hu CX, Pei C, Zhou WM, Swift GB, Zhang H, Vo-Dinh T, Hu ZL, Siedow JN, Pei ZM (2019). Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx
Nature 572, 341-346.

DOI:10.1038/s41586-019-1449-zURLPMID:31367039 [本文引用: 1]
Salinity is detrimental to plant growth, crop production and food security worldwide. Excess salt triggers increases in cytosolic Ca(2+) concentration, which activate Ca(2+)-binding proteins and upregulate the Na(+)/H(+) antiporter in order to remove Na(+). Salt-induced increases in Ca(2+) have long been thought to be involved in the detection of salt stress, but the molecular components of the sensing machinery remain unknown. Here, using Ca(2+)-imaging-based forward genetic screens, we isolated the Arabidopsis thaliana mutant monocation-induced [Ca(2+])i increases 1 (moca1), and identified MOCA1 as a glucuronosyltransferase for glycosyl inositol phosphorylceramide (GIPC) sphingolipids in the plasma membrane. MOCA1 is required for salt-induced depolarization of the cell-surface potential, Ca(2+) spikes and waves, Na(+)/H(+) antiporter activation, and regulation of growth. Na(+) binds to GIPCs to gate Ca(2+) influx channels. This salt-sensing mechanism might imply that plasma-membrane lipids are involved in adaption to various environmental salt levels, and could be used to improve salt resistance in crops.

Jin S, Zong Y, Gao Q, Zhu ZX, Wang YP, Qin P, Liang CZ, Wang DW, Qiu JL, Zhang F, Gao CX (2019). Cytosine, but not adenine, base editors induce genome-wide off- target mutations in rice
Science 364, 292-295.

DOI:10.1126/science.aaw7166URLPMID:30819931 [本文引用: 1]
Cytosine and adenine base editors (CBEs and ABEs) are promising new tools for achieving the precise genetic changes required for disease treatment and trait improvement. However, genome-wide and unbiased analyses of their off-target effects in vivo are still lacking. Our whole-genome sequencing analysis of rice plants treated with the third-generation base editor (BE3), high-fidelity BE3 (HF1-BE3), or ABE revealed that BE3 and HF1-BE3, but not ABE, induce substantial genome-wide off-target mutations, which are mostly the C-->T type of single-nucleotide variants (SNVs) and appear to be enriched in genic regions. Notably, treatment of rice with BE3 or HF1-BE3 in the absence of single-guide RNA also results in the rise of genome-wide SNVs. Thus, the base-editing unit of BE3 or HF1-BE3 needs to be optimized in order to attain high fidelity.

Jones JDG, Dangl JL (2006). The plant immune system
Nature 444, 323-329.

[本文引用: 2]

Kepinski S, Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor
Nature 435, 446-451.

DOI:10.1038/nature03542URLPMID:15917798 [本文引用: 1]
Despite 100 years of evidence showing a pivotal role for indole-3-acetic acid (IAA or auxin) in plant development, the mechanism of auxin perception has remained elusive. Central to auxin response are changes in gene expression, brought about by auxin-induced interaction between the Aux/IAA transcriptional repressor proteins and the ubiquitin-ligase complex SCF(TIR1), thus targeting for them proteolysis. Regulated SCF-mediated protein degradation is a widely occurring signal transduction mechanism. Target specificity is conferred by the F-box protein subunit of the SCF (TIR1 in the case of Aux/IAAs) and there are multiple F-box protein genes in all eukaryotic genomes examined so far. Although SCF-target interaction is usually regulated by signal-induced modification of the target, we have previously shown that auxin signalling involves the modification of SCF(TIR1). Here we show that this modification involves the direct binding of auxin to TIR1 and thus that TIR1 is an auxin receptor mediating transcriptional responses to auxin.

Knight H, Trewavas AJ, Knight MR (1997). Calcium signaling in Arabidopsis thaliana responding to drought and salinity
Plant J 12, 1067-1078.

DOI:10.1046/j.1365-313x.1997.12051067.xURLPMID:9418048 [本文引用: 1]
Changes in cytosolic free calcium concentration ([Ca2+]cyt) in response to mannitol (drought) and salt treatments were detected in vivo in intact whole Arabidopsis seedlings. Transient elevations of [Ca2+]cyt to around 1.5 microM were observed, and these were substantially inhibited by pretreatment with the calcium-channel blocker lanthanum and to a lesser extent, the calcium-chelator EGTA. The expression of three genes, p5cs, which encodes delta(1)-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of the proline biosynthesis pathway, rab18 and Iti78 which both encode proteins of unknown function, was induced by mannitol and salt treatments. The induction of all three genes by mannitol was inhibited by pretreatment with lanthanum. Salt-induced p5cs, but not rab18 and Iti78, expression was also inhibited by lanthanum. Induction of p5cs by mannitol was also inhibited by the calcium channel-blockers gadolinium and verapamil and the calcium chelator EGTA, further suggesting the involvement of calcium signalling in this response. Mannitol induced greater levels of p5cs gene expression than an isoosmolar concentration of salt, at both relatively high and low concentrations. However, calcium transients were of a similar magnitude and duration in response to both mannitol and isoosmolar concentrations of salt, suggesting that a factor other than calcium is involved in the discrimination between drought and salinity signals in Arabidopsis. In order to gauge the involvement of the vacuole as an intracellular calcium store in the response of Arabidopsis to mannitol, [Ca2+]cyt was measured at the microdomain adjacent to the vacuolar membrane. The results obtained were consistent with a significant calcium release from the vacuole contributing to the overall mannitol-induced [Ca2+]cyt response. Data obtained by using inhibitors of inositol signalling suggested that this release was occurring through IP3-dependent calcium channels.

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
Nature 533, 420-424.

DOI:10.1038/nature17946URLPMID:27096365 [本文引用: 1]
Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks. Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C-->T (or G-->A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of ~15-75% of total cellular DNA with minimal (typically
Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010). Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis
Mol Plant 3, 594-602.

DOI:10.1093/mp/ssq014URLPMID:20410255 [本文引用: 1]
Plants, as sessile organisms, need to sense and adapt to heterogeneous environments and have developed sophisticated responses by changing their cellular physiology, gene regulation, and genome stability. Recent work demonstrated heritable stress effects on the control of genome stability in plants--a phenomenon that was suggested to be of epigenetic nature. Here, we show that temperature and UV-B stress cause immediate and heritable changes in the epigenetic control of a silent reporter gene in Arabidopsis. This stress-mediated release of gene silencing correlated with pronounced alterations in histone occupancy and in histone H3 acetylation but did not involve adjustments in DNA methylation. We observed transmission of stress effects on reporter gene silencing to non-stressed progeny, but this effect was restricted to areas consisting of a small number of cells and limited to a few non-stressed progeny generations. Furthermore, stress-induced release of gene silencing was antagonized and reset during seed aging. The transient nature of this phenomenon highlights the ability of plants to restrict stress-induced relaxation of epigenetic control mechanisms, which likely contributes to safeguarding genome integrity.

Lehman A, Black R, Ecker JR (1996). HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl
Cell 85, 183-194.

URLPMID:8612271 [本文引用: 1]

Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, Desveaux D (2013). The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a
Proc Natl Acad Sci USA 110, 18722-18727.

URLPMID:24170858 [本文引用: 1]

Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner MA, Fritsch PW, Cai J, Luo Y, Wang H, van der Bank M, Zhang SD, Wang QF, Wang J, Zhang ZR, Fu CN, Yang J, Hollingsworth PM, Chase MW, Soltis DE, Soltis PS, Li DZ (2019a). Origin of angiosperms and the puzzle of the Jurassic gap
Nat Plants 5, 461-470.

URLPMID:31061536 [本文引用: 1]

Li N, Lin B, Wang H, Li XM, Yang FF, Ding XH, Yan JB, Chu ZH (2019b). Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize
Nat Genet 51, 1540-1548.

URLPMID:31570888 [本文引用: 1]

Li SY, Li JY, He YB, Xu ML, Zhang JH, Du WM, Zhao YD, Xia LQ (2019c). Precisegene replacement in rice by RNA transcript-templated homologous recombination
Nat Biotechnol 37, 445-450.

URLPMID:30886437 [本文引用: 1]

Liu JZ, Feng LL, Gu XT, Deng X, Qiu Q, Li Q, Zhang YY, Wang MY, Deng YW, Wang ET, He YK, B?urle I, Li JM, Cao XF, He ZH (2019). An H3K27me3 demethylase- HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis
Cell Res 29, 379-390.

URLPMID:30778176 [本文引用: 1]

Liu JZ, Feng LL, Li JM, He ZH (2015). Genetic and epigenetic control of plant heat responses
Front Plant Sci 6, 267.

DOI:10.3389/fpls.2015.00267URLPMID:25964789 [本文引用: 1]
Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27 degrees C), high temperature (27-30 degrees C) and extremely high temperature (37-42 degrees C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

Lyu M, Shi H, Li YL, Kuang KY, Yang ZX, Li J, Chen D, Li Y, Kou XX, Zhong SW (2019). Oligomerization and photo-deoligomerization of HOOKLESS1 controls plant differential cell growth
Dev Cell 51, 78-88.e3.

DOI:10.1016/j.devcel.2019.08.007URLPMID:31495692 [本文引用: 1]
Apical hook curvature is crucial for buried seedling survival and a superb model for dissecting differential cell growth. HOOKLESS1 (HLS1) is essential for apical hook formation, acting as a hub integrating various external and internal signals. However, its functional mechanism remains unclear. Here, we demonstrate that HLS1 protein is present as an oligomer in the nucleus of dark-grown seedlings. Oligomerization is required for HLS1 activation, as the mutated HLS1 protein abolishing self-association exists as nonfunctional monomers. Upon light exposure, photoreceptor phyB translocates into the nucleus and interacts with HLS1, disrupting the self-association and oligomerization of HLS1 to initiate hook unfolding. Remarkably, genetic expression of nuclear-localized phyB is sufficient to inactivate HLS1, resulting in compromised hook curvature in etiolated seedlings. Together, we conclude that HLS1 protein is active as oligomeric form in darkness and achieves allosteric photo-deactivation upon light, providing intriguing mechanistic insight into the molecular switch for developmental transition.

Ma L, Ye JM, Yang YQ, Lin HX, Yue LL, Luo J, Long Y, Fu HQ, Liu XN, Zhang YL, Wang Y, Chen LY, Kudla J, Wang YJ, Han SC, Song CP, Guo Y (2019). The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress
Dev Cell 48, 697-709.e5.

[本文引用: 1]

Maekawa T, Kufer TA, Schulze-Lefert P (2011). NLR functions in plant and animal immune systems: so far and yet so close
Nat Immunol 12, 817-826.

[本文引用: 1]

Munns R, Tester M (2008). Mechanisms of salinity tolerance
Annu Rev Plant Biol 59, 651-681.

DOI:10.1146/annurev.arplant.59.032607.092911URLPMID:18444910 [本文引用: 1]
The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.

Ni WM, Xu SL, González-Grandío E, Chalkley RJ, Huhmer AFR, Burlingame AL, Wang ZY, Quail PH (2017). PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3
Nat Commun 8, 15236.

DOI:10.1038/ncomms15236URLPMID:28492231 [本文引用: 1]
Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1-4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro, with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.

Ni WM, Xu SL, Tepperman JM, Stanley DJ, Maltby DA, Gross JD, Burlingame AL, Wang ZY, Quail PH (2014). A mutually assured destruction mechanism attenuates light signaling in Arabidopsis
Science 344, 1160-1164.

URLPMID:24904166 [本文引用: 1]

Pendleton JW, Smith GE, Winter SR, Johnston TJ (1968). Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis
Agron J 60, 422-424.

[本文引用: 1]

Pi X, Zhao SH, Wang WD, Liu DS, Xu CZ, Han GY, Kuang TY, Sui SF, Shen JR (2019). The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex
Science 365, eaax4406.

URLPMID:31604261 [本文引用: 1]

Reddy ASN, Ali GS, Celesnik H, Day IS (2011). Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression
Plant Cell 23, 2010-2032.

[本文引用: 1]

Rees HA, Liu DR (2018). Base editing: precision chemistry on the genome and transcriptome of living cells
Nat Rev Genet 19, 770-788.

DOI:10.1038/s41576-018-0059-1URLPMID:30323312 [本文引用: 1]
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.

Stewart DW, Costa C, Dwyer LM, Smith DL, Hamilton RI, Ma BL (2003). Canopy structure, light interception, and photosynthesis in maize
Agron J 95, 1465-1474.

DOI:10.2134/agronj2003.1465URL [本文引用: 1]

Teng S, Tian CG, Chen MS, Zeng DL, Guo LB, Zhu LH, Han B, Qian Q (2006). QTLs and candidate genes for chlorate resistance in rice (Oryza sativa L.)
Euphytica 152, 141-148.

DOI:10.1007/s10681-006-9189-1URL [本文引用: 1]
Chlorate resistance is one of the reliable characters in Indica/Japonica classification. To understand the genetic basis of chlorate resistance is very important for revealing the evolutionary mechanism of Indica/Japonica differentiation. In this study, a doubled haploid (DH) population derived from anther culture of ZYQ8/JX17, a typical Indica and Japonica hybrid, was used as the genetic material to investigate chlorate sensitivity of the parents and DH lines. The quantitative trait loci (QTLs) of chlorate resistance were analyzed based on the molecular linkage map of this population. Total of 3 QTLs (qCHR-2, qCHR-8 and qCHR-10) for chlorate resistance were detected on chromosomes 2, 8 and 10, respectively. A QTL×QTL epistatic interaction was detected between qCHR-2 and qCHR-10. Genes involved in nitrogen assimilation, such as nitrate reduction, molybdenum cofactor biosynthesis and nitrate transport were strong candidates of QTLs for chlorate resistance. A putative nitrate reductase gene (8611.t00011), and two putative nitrate reductase genes (9319.t00010 and 9319.t00012) were in the genomic region of qCHR-2, and qCHR-8, respectively, and a putative nitrate transporter gene (756.t00011) was in the region of qCHR-10. The expression of 8611.t00011, 9319.t00010 and 756.t00011 were confirmed by the corresponding cDNAs, and 2 in/del and 12 SNPs in the coding regions of these three genes were found between Indica (cv. 9311) and Japonica (cv. Nipponbare) in silico. These results indicated that these three genes were candidates of the chlorate resistance QTLs. An in/del in the coding region of 8611.t00011 was used to develop a new PCR marker. A polymorphism was detected between JX17/Nipponbare and ZYQ8/9311. This polymorphism corresponds to the chlorate sensitivity of Nipponbare and 9311. This marker was located between Y8007R and RM250 on chromosome 2 in the DH population, where qCHR-2 was also located.

Tian JG, Wang CL, Xia JL, Wu LS, Xu GH, Wu WH, Li D, Qin WC, Han X, Chen QY, Jin WW, Tian F (2019). Teosinte ligule allele narrows plant architecture and enhances high-density maize yields
Science 365, 658-664.

URLPMID:31416957 [本文引用: 1]

Tilman D, Balzer C, Hill J, Befort BL (2011). Global food demand and the sustainable intensification of agriculture
Proc Natl Acad Sci USA 108, 20260-20264.

DOI:10.1073/pnas.1116437108URLPMID:22106295 [本文引用: 1]
Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.

Wang C, Liu Q, Shen Y, Hua YF, Wang JJ, Lin JR, Wu MG, Sun TT, Cheng ZK, Mercier R, Wang KJ (2019a). Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes
Nat Biotechnol 37, 283-286.

[本文引用: 2]

Wang GX, Roux B, Feng F, Guy E, Li L, Li NN, Zhang XJ, Lautier M, Jardinaud MF, Chabannes M, Arlat M, Chen S, He CZ, No?l LD, Zhou JM (2015). The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants
Cell Host Microbe 18, 285-295.

DOI:10.1016/j.chom.2015.08.004URLPMID:26355215 [本文引用: 1]
In plants, host response to pathogenic microbes is driven both by microbial perception and detection of modified-self. The Xanthomonas campestris effector protein AvrAC/XopAC uridylylates the Arabidopsis BIK1 kinase to dampen basal resistance and thereby promotes bacterial virulence. Here we show that PBL2, a paralog of BIK1, is similarly uridylylated by AvrAC. However, in contrast to BIK1, PBL2 uridylylation is specifically required for host recognition of AvrAC to trigger immunity, but not AvrAC virulence. PBL2 thus acts as a decoy and enables AvrAC detection. AvrAC recognition also requires the RKS1 pseudokinase of the ZRK family and the NOD-like receptor ZAR1, which is known to recognize the Pseudomonas syringae effector HopZ1a. ZAR1 forms a stable complex with RKS1, which specifically recruits PBL2 when the latter is uridylylated by AvrAC, triggering ZAR1-mediated immunity. The results illustrate how decoy substrates and pseudokinases can specify and expand the capacity of the plant immune system.

Wang JZ, Hu MJ, Wang J, Qi JF, Han ZF, Wang GX, Qi YJ, Wang HW, Zhou JM, Chai JJ (2019b). Reconstitution and structure of a plant NLR resistosome conferring immunity
Science 364, eaav5870.

DOI:10.1126/science.aax2608URLPMID:31249042 [本文引用: 1]

Wang JZ, Wang J, Hu MJ, Wu S, Qi JF, Wang GX, Han ZF, Qi YJ, Gao N, Wang HW, Zhou JM, Chai JJ (2019c). Ligand-triggered allosteric ADP release primes a plant NLR complex
Science 364, eaav5868.

DOI:10.1126/science.aax2608URLPMID:31249042 [本文引用: 1]

Wang WD, Yu LJ, Xu CZ, Tomizaki T, Zhao SH, Umena Y, Chen XB, Qin XC, Xin YY, Suga M, Han GY, Kuang TY, Shen JR (2019d). Structural basis for blue-green light harvesting and energy dissipation in diatoms
Science 363, eaav0365.

[本文引用: 1]

Xiao Y, Stegmann M, Han ZF, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai JJ (2019). Mechanisms of RALF peptide perception by a heterotypic receptor complex
Nature 572, 270-274.

DOI:10.1038/s41586-019-1409-7URLPMID:31291642 [本文引用: 1]
Receptor kinases of the Catharanthus roseus RLK1-like (CrRLK1L) family have emerged as important regulators of plant reproduction, growth and responses to the environment(1). Endogenous RAPID ALKALINIZATION FACTOR (RALF) peptides(2) have previously been proposed as ligands for several members of the CrRLK1L family(1). However, the mechanistic basis of this perception is unknown. Here we report that RALF23 induces a complex between the CrRLK1L FERONIA (FER) and LORELEI (LRE)-LIKE GLYCOSYLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED PROTEIN 1 (LLG1) to regulate immune signalling. Structural and biochemical data indicate that LLG1 (which is genetically important for RALF23 responses) and the related LLG2 directly bind RALF23 to nucleate the assembly of RALF23-LLG1-FER and RALF23-LLG2-FER heterocomplexes, respectively. A conserved N-terminal region of RALF23 is sufficient for the biochemical recognition of RALF23 by LLG1, LLG2 or LLG3, and binding assays suggest that other RALF peptides that share this conserved N-terminal region may be perceived by LLG proteins in a similar manner. Structural data also show that RALF23 recognition is governed by the conformationally flexible C-terminal sides of LLG1, LLG2 and LLG3. Our work reveals a mechanism of peptide perception in plants by GPI-anchored proteins that act together with a phylogenetically unrelated receptor kinase. This provides a molecular framework for understanding how diverse RALF peptides may regulate multiple processes, through perception by distinct heterocomplexes of CrRLK1L receptor kinases and GPI-anchored proteins of the LRE and LLG family.

Xiao YJ, Liu HJ, Wu LJ, Warburton M, Yan JB (2017). Genome-wide association studies in maize: praise and stargaze
Mol Plant 10, 359-374.

[本文引用: 1]

Xu GH, Fan XR, Miller AJ (2012). Plant nitrogen assimilation and use efficiency
Annu Rev Plant Biol 63, 153-182.

DOI:10.1146/annurev-arplant-042811-105532URLPMID:22224450 [本文引用: 1]
Crop productivity relies heavily on nitrogen (N) fertilization. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment; therefore, increasing plant N use efficiency (NUE) is essential for the development of sustainable agriculture. Plant NUE is inherently complex, as each step-including N uptake, translocation, assimilation, and remobilization-is governed by multiple interacting genetic and environmental factors. The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of current cultivars, which were bred in well-fertilized soil. Decreasing environmental losses and increasing the productivity of crop-acquired N requires the coordination of carbohydrate and N metabolism to give high yields. Increasing both the grain and N harvest index to drive N acquisition and utilization are important approaches for breeding future high-NUE cultivars.

Yan M, Fan XR, Feng HM, Miller AJ, Shen QR, Xu GH (2011). Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges
Plant Cell Environ 34, 1360-1372.

URLPMID:21486304 [本文引用: 1]

Yang YQ, Guo Y (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses
New Phytol 217, 523-539.

DOI:10.1111/nph.14920URLPMID:29205383 [本文引用: 1]
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.

Yao L, Zhang Y, Liu CX, Liu YB, Wang YL, Liang DW, Liu JT, Sahoo G, Kelliher T (2018). OsMATL mutation induces haploid seed formation in indica rice
Nat Plants 4, 530-533.

URLPMID:29988153 [本文引用: 1]

Yu XD, Dong J, Deng ZG, Jiang YP, Wu C, Qin XF, Terzaghi W, Chen HD, Dai MQ, Deng XW (2019). Arabidopsis PP6 phosphatases dephosphorylate PIF proteins to repress photomorphogenesis
Proc Natl Acad Sci USA 116, 20218-20225.

DOI:10.1073/pnas.1907540116URLPMID:31527236 [本文引用: 1]
The PHYTOCHROME-INTERACTING FACTORs (PIFs) play a central role in repressing photomorphogenesis, and phosphorylation mediates the stability of PIF proteins. Although the kinases responsible for PIF phosphorylation have been extensively studied, the phosphatases that dephosphorylate PIFs remain largely unknown. Here, we report that seedlings with mutations in FyPP1 and FyPP3, 2 genes encoding the catalytic subunits of protein phosphatase 6 (PP6), exhibited short hypocotyls and opened cotyledons in the dark, which resembled the photomorphogenic development of dark-grown pifq mutants. The hypocotyls of dark-grown sextuple mutant fypp1 fypp3 (f1 f3) pifq were shorter than those of parental mutants f1 f3 and pifq, indicating that PP6 phosphatases and PIFs function synergistically to repress photomorphogenesis in the dark. We showed that FyPPs directly interacted with PIF3 and PIF4, and PIF3 and PIF4 proteins exhibited mobility shifts in f1 f3 mutants, consistent with their hyperphosphorylation. Moreover, PIF4 was more rapidly degraded in f1 f3 mutants than in wild type after light exposure. Whole-genome transcriptomic analyses indicated that PP6 and PIFs coregulated many genes, and PP6 proteins may positively regulate PIF transcriptional activity. These data suggest that PP6 phosphatases may repress photomorphogenesis by controlling the stability and transcriptional activity of PIF proteins via regulating PIF phosphorylation.

Zhang JY, Liu YX, Zhang N, Hu B, Jin T, Xu HR, Qin Y, Yan PX, Zhang XN, Guo XX, Hui J, Cao SY, Wang X, Wang C, Wang H, Qu BY, Fan GY, Yuan LX, Garrido-Oter R, Chu CC, Bai Y (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice
Nat Biotechnol 37, 676-684.

DOI:10.1038/s41587-019-0104-4URLPMID:31036930 [本文引用: 1]
Nitrogen-use efficiency of indica varieties of rice is superior to that of japonica varieties. We apply 16S ribosomal RNA gene profiling to characterize root microbiota of 68 indica and 27 japonica varieties grown in the field. We find that indica and japonica recruit distinct root microbiota. Notably, indica-enriched bacterial taxa are more diverse, and contain more genera with nitrogen metabolism functions, than japonica-enriched taxa. Using genetic approaches, we provide evidence that NRT1.1B, a rice nitrate transporter and sensor, is associated with the recruitment of a large proportion of indica-enriched bacteria. Metagenomic sequencing reveals that the ammonification process is less abundant in the root microbiome of the nrt1.1b mutant. We isolated 1,079 pure bacterial isolates from indica and japonica roots and derived synthetic communities (SynComs). Inoculation of IR24, an indica variety, with an indica-enriched SynCom improved rice growth in organic nitrogen conditions compared with a japonica-enriched SynCom. The links between plant genotype and root microbiota membership established in this study will inform breeding strategies to improve nitrogen use in crops.

Zhang LS, Chen F, Zhang XT, Li Z, Zhao YY, Lohaus R, Chang XJ, Dong W, Ho SY, Liu X, Song AX, Chen JH, Guo WL, Wang ZJ, Zhuang YY, Wang HF, Chen XQ, Hu J, Liu YH, Qin Y, Wang K, Dong SS, Liu Y, Zhang SZ, Yu XX, Wu Q, Wang LS, Yan XQ, Jiao YN, Kong HZ, Zhou XF, Yu CW, Chen YC, Li F, Wang JH, Chen W, Chen XL, Jia QD, Zhang C, Jiang YF, Zhang WB, Liu GH, Fu JY, Chen F, Ma H, Van de Peer Y, Tang HB (2020). The water lily genome and the early evolution of flowering plants
Nature 577, 79-84.

DOI:10.1038/s41586-019-1852-5URLPMID:31853069 [本文引用: 1]
Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms(1-3). Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.

Zhao YP, Fan GY, Yin PP, Sun S, Li N, Hong XN, Hu G, Zhang H, Zhang FM, Han JD, Hao YJ, Xu QW, Yang XW, Xia WJ, Chen WB, Lin HY, Zhang R, Chen J, Zheng XM, Lee SMY, Lee J, Uehara K, Wang J, Yang HM, Fu CX, Liu X, Xu X, Ge S (2019). Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil
Nat Commun 10, 4201.

DOI:10.1038/s41467-019-12133-5URLPMID:31519986 [本文引用: 1]
As Charles Darwin anticipated, living fossils provide excellent opportunities to study evolutionary questions related to extinction, competition, and adaptation. Ginkgo (Ginkgo biloba L.) is one of the oldest living plants and a fascinating example of how people have saved a species from extinction and assisted its resurgence. By resequencing 545 genomes of ginkgo trees sampled from 51 populations across the world, we identify three refugia in China and detect multiple cycles of population expansion and reduction along with glacial admixture between relict populations in the southwestern and southern refugia. We demonstrate multiple anthropogenic introductions of ginkgo from eastern China into different continents. Further analyses reveal bioclimatic variables that have affected the geographic distribution of ginkgo and the role of natural selection in ginkgo's adaptation and resilience. These investigations provide insights into the evolutionary history of ginkgo trees and valuable genomic resources for further addressing various questions involving living fossil species.

Zheng AP, Lin RM, Zhang DH, Qin PG, Xu LZ, Ai P, Ding L, Wang YR, Chen Y, Liu Y, Sun ZG, Feng HT, Liang XX, Fu RT, Tang CQ, Li Q, Zhang J, Xie ZL, Deng QM, Li SC, Wang SQ, Zhu J, Wang LX, Liu HN, Li P (2013). The evolution and pathogenic mechanisms of the rice sheath blight pathogen
Nat Commun 4, 1424.

DOI:10.1038/ncomms2427URLPMID:23361014 [本文引用: 1]
Rhizoctonia solani is a major fungal pathogen of rice (Oryza sativa L.) that causes great yield losses in all rice-growing regions of the world. Here we report the draft genome sequence of the rice sheath blight disease pathogen, R. solani AG1 IA, assembled using next-generation Illumina Genome Analyser sequencing technologies. The genome encodes a large and diverse set of secreted proteins, enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, which probably reflect an exclusive necrotrophic lifestyle. We find few repetitive elements, a closer relationship to Agaricomycotina among Basidiomycetes, and expand protein domains and families. Among the 25 candidate pathogen effectors identified according to their functionality and evolution, we validate 3 that trigger crop defence responses; hence we reveal the exclusive expression patterns of the pathogenic determinants during host infection.

Zhong S, Liu ML, Wang ZJ, Huang QP, Hou SY, Xu YC, Ge ZX, Song ZH, Huang JY, Qiu XY, Shi YH, Xiao JY, Liu P, Guo YL, Dong J, Dresselhaus T, Gu HY, Qu LJ (2019). Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis
Science 364, eaau9564.

DOI:10.1126/science.aax2608URLPMID:31249042 [本文引用: 1]

Zhong SH, Liu JZ, Jin H, Lin L, Li Q, Chen Y, Yuan YX, Wang ZY, Huang H, Qi YJ, Chen XY, Vaucheret H, Chory J, Li JM, He ZH (2013). Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis
Proc Natl Acad Sci USA 110, 9171-9176.

[本文引用: 1]

Zhu JK (2016). Abiotic stress signaling and responses in plants
Cell 167, 313-324.

DOI:10.1016/j.cell.2016.08.029URLPMID:27716505 [本文引用: 1]
As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.
非TIR1受体依赖型激活生长素信号的新机制
1
2019

... 生长素作为植物最重要的激素之一, 调控复杂的植物生长发育过程.经典的生长素信号通路是生长素与其受体TIR1/AFBs结合后, 能稳定其受体与生长素信号抑制因子Aux/IAA蛋白的互作, 且能够泛素化降解Aux/IAA蛋白, 释放出被Aux/IAA蛋白抑制的生长素响应因子ARFs, 从而介导生长素信号的传递(Dharmasiri et al., 2005; Kepinski and Leyser, 2005).但是否还存在其它信号转导机制目前尚不清楚.徐通达研究组发现拟南芥TMK1介导了生长素对顶端弯钩发育的调控.他们发现非典型Aux/IAA家族成员IAA32和IAA34并不具有与TIR1互作的结构区域, 故不能被TIR1调控; IAA32和IAA34能够与跨膜蛋白激酶TMK1剪切后形成的TMK1C片段互作, 从而感受并响应生长素信号.因此, TIR1和TMK1通过选择不同的IAA蛋白而介导生长素下游信号的传递.此外, 生长素通过TMK1C稳定而非降解IAA32和IAA34蛋白, 并通过ARF转录因子调控下游基因的表达, 在生长素高浓度的部位抑制细胞生长, 从而促进顶端弯钩内外侧的差异性生长(Cao et al., 2019).《植物学报》发表专文点评, 认为该研究发现了一条独立于经典的受体TIR1的生长素信号通路, 是该领域的突破性进展(胡孔琴和丁兆军, 2019). ...

ZmFBL41Chang7-2: 玉米抗纹枯病的关键利器
1
2019

... 纹枯病是一种由立枯丝核菌(一类死体营养型(necrotrophic)真菌)引起的病害, 在我国大部分地区以及东南亚、南亚地区广泛分布(赵茂俊等, 2006; Zheng et al., 2013), 主要感染玉米、水稻和大豆等重要作物.储昭辉研究组克隆了抗玉米纹枯病基因ZmFBL41.他们首先利用GWAS方法(Xiao et al., 2017)从380份重测序玉米自交系自然群体中鉴定了28个与玉米纹枯病抗病表型显著相关的SNP位点, 发现最显著的SNP位点ZmFBL41基因编码F-Box蛋白.然后利用玉米转座子插入突变体及该基因在水稻中过表达分析, 发现ZmFBL41是纹枯病的负调控因子.生化实验进一步证明, ZmFBL41蛋白可与木质素合成酶ZmCAD互作, 并介导其泛素化降解.抗病品种中ZmFBL41- LRR的214和217位氨基酸突变会导致ZmCAD的泛素化降解受阻, 从而促进木质素的合成, 增强玉米品种的抗病性(Li et al., 2019b).《植物学报》发表专文点评, 认为该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源(李伟滔等, 2019). ...

大刍草稀有等位基因促进玉米密植高产
1
2019

... 日益增长的世界人口迫切需要利用有限的耕地增加作物产量.而作物产量的高低与光能同化有直接关系, 光能同化高的作物又与株型密切相关.具有更多直立叶片的植株结构能够减少相互遮蔽, 且在增加植株密度条件下仍能维持光合作用的光能捕获, 以此改善叶片氮的积累, 用于籽粒灌浆和增加产量(Pendleton et al., 1968; Stewart et al., 2003; Tilman et al., 2011).田丰研究组从玉米野生祖先种大刍草中克隆到2个调控叶倾角的主效QTL (UPA1UPA2).研究表明, 大刍草UPA2等位基因具有与玉米不同的披叶基因DRL1的结合位点, 而DRL1能够与无叶舌基因LG1进行物理互作, 抑制ZmRAVL1介导的LG1激活.ZmRAVL1调控油菜素内酯C6氧化酶基因brd1/UPA1, 改变植株内源的油菜素内酯含量和叶片角度.来自玉米野生祖先大刍草的UPA2等位基因能够减小叶片角度, 但其在玉米驯化过程中丢失.通过将野生UPA2等位基因导入到现在玉米杂交种中和编辑ZmRAVL1基因均能够增强高密度种植玉米的产量(Tian et al., 2019).该研究克隆了控制玉米紧凑株型和密植增产的关键基因, 建立了玉米紧凑株型的分子调控网络, 为玉米理想株型分子育种及培育密植高产品种奠定了理论和实践基础.《植物学报》发表专文点评, 认为该成果是玉米功能基因组研究的重大进展之一, 也是理论研究指导育种应用的最佳范例之一(刘杰和严建兵, 2019). ...

基因组学技术大发展助力园艺植物研究取得新进展
1
2020

... 被子植物占现在地球上陆生植物种类的约90%, 其适应性非常广泛.被子植物起源和早期的快速演化一直是科学家研究的重点.睡莲目植物是世界公认的古老被子植物类群之一, 其物种的演化规律受到植物和进化学家的高度关注.张亮生研究组及其合作者对睡莲目中既有颜值又有香气的蓝星睡莲(Nymphaea colorata)基因组进行了深入分析, 并将之与其它19个睡莲科物种的转录组进行比较, 发现花器官形态决定和花发育相关的ABCE类基因在早期被子植物及核心被子植物非常保守, 即它们共用一套系统.而一些与花香相关的基因则有可能在蓝星睡莲中独立演化出来.这些发现为被子植物的早期演化提供了非常重要的信息(Zhang et al., 2020).《植物学报》发表专文点评, 认为该研究不仅解决了谁是现存最基部被子植物的问题, 也对后续的植物进化分类及重要基因的功能研究有一定的启示(唐嘉瓅等, 2020). ...

根际微生物促进水稻氮利用的机制
1
2019

... 植物对氮的利用主要依赖根系从土壤中吸收无机氮, 并在体内同化为有机氮后被利用(Xu et al., 2012).亚洲栽培稻中, 籼稻的氮利用效率通常高于粳稻, 原因之一是二者吸收和转运无机氮的方式不同.其中, 编码硝酸盐转运蛋白的NRT1.1B基因在籼粳稻之间存在明显分化(Hu et al., 2015).根系在土壤中招募大量且种属特异的微生物(根系微生物组), 植物调控根系微生物组的机制对植物吸收营养和响应逆境胁迫等生理过程至关重要.白洋研究组与储成才研究组合作揭示了水稻根系微生物组与氮代谢的交互调控机制.他们通过比较田间生长的68个籼稻和27个粳稻品种的根系微生物组, 发现籼稻和粳稻具有显著不同的根系微生物组成, 籼稻比粳稻富集了更多与氮代谢相关的根系微生物, 这与籼稻具有更高的氮利用效率相一致.进一步分析发现, NRT1.1B不同等位形式在富集氮代谢相关根系微生物中具有关键调控作用(Zhang et al., 2019).该研究为探讨根系微生物与植物互作及其功能提供了理论指导, 为利用益生菌培育氮高效利用水稻奠定了重要理论基础.《植物学报》发表专文点评, 认为该研究揭示了籼稻和粳稻根际微生物分化的分子基础, 展示了利用根际微生物提高水稻营养高效吸收的应用前景(王孝林和王二涛, 2019). ...

开启防御之门: 植物抗病小体
1
2019

... 植物在与病原菌的长期对抗过程中, 进化出了先天免疫系统, 主要由2个先天免疫反应(PTI和ETI)组成(Jones and Dangl, 2006), 而抗病蛋白是植物免疫系统的核心, 但人们对抗病蛋白发挥抗病反应的分子机制仍知之甚少.ZAR1是一类NLR (nucleotide-binding leucine-rich repeat receptors)蛋白, 可与抗病相关蛋白激酶I (RKS1)互作形成未激活的复合体.该复合体可识别十字花科的黄单胞菌属(Xanthomonas campestris pv. campestris)效应因子AvrAC尿苷酸化的PBL2UMP配体, 进而激活下游的抗病信号转导(Lewis et al., 2013; Wang et al., 2015).柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构.他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态.而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c).之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”.他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”.遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b).该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展.《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019). ...

中国科学家发现胞嘧啶单碱基编辑工具存在基因组范围的脱靶
1
2019

... 作物农艺性状很多情况下是由基因组中的单个或少数核苷酸突变引起.因此, 基因组中关键核苷酸变异的鉴定与定向修正是植物育种的重要方向.基因组单碱基编辑器的开发, 为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具, 展现了其在植物新品种培育等方面潜在的重大应用价值(Komor et al., 2016; Gaudelli et al., 2017).单碱基编辑器主要包括胞嘧啶单碱基编辑器(CBE)与腺嘌呤单碱基编辑器(ABE).目前, CBE与ABE已在多个物种中得到广泛应用, 然而其在体内全基因组范围的脱靶效应还未得到评估(Rees and Liu, 2018).高彩霞研究组在植物体内利用全基因组测序技术全面分析和比较了BE3 (基于融合rAPOBEC1胞嘧啶脱氨酶的CBE系统)、HF1-BE3 (高保真版本BE3)和ABE系统在基因组水平上的脱靶效应, 发现现有的BE3和HF1-BE3系统可在植物体内造成难以预测的脱靶突变, 需要进一步优化提高其特异性(Jin et al., 2019).该研究创新性地利用相似遗传背景的克隆植物及全基因组重测序解决了以前大量异质细胞序列分析的复杂性问题.《植物学报》发表专文点评, 认为这一发现对单碱基编辑工具的应用和进一步改进具有重要意义(谢卡斌, 2019). ...

中国科学家在杂种F1克隆繁殖研究领域取得突破性进展
1
2019

... 王克剑研究组通过多重CRISPR-Cas9基因编辑技术, 对杂交稻组合春优84中PAIR1REC8OSD1三个减数分裂相关基因进行编辑, 成功获得了MiMe材料.MiMe在性细胞形成过程中不发生同源染色体重组(homologous recombination), 产生与亲本基因型一致的二倍体配子(Wang et al., 2019a).已有研究表明, 玉米MTL (MATRILINEAL)基因可诱导产生单倍体(haploid)植株, 与拟南芥中通过CenH3诱导孤雌生殖(parthenogenesis)相比, 其优点是mtl突变体植株自交可直接获得孤雌生殖单倍体后代.水稻中存在玉米MTL的同源基因, 且其生物学功能与玉米MTL相同(Yao et al., 2018).王克剑研究组通过CRISPR-Cas9系统验证了该基因的功能, 并且成功诱导出单倍体植株.在此基础上, 他们同时对春优84中PAIR1REC8OSD1MTL基因进行编辑, 成功获得了具有无融合生殖现象的Fix (Fixation of hybrids)材料, 并获得与杂交亲本基因型一致的克隆种子.对其二倍体后代进行基因组重测序分析表明, 克隆繁殖的二倍体植株与杂交种春优84基因型一致, 说明杂合背景的基因型能够在不同有性世代间传递(Wang et al., 2019a).《植物学报》发表专文点评, 认为该研究证实了通过无融合生殖固定水稻杂种优势的可能性, 为实现“一系法”杂种优势利用探索出一种可能的技术路径(薛治慧和种康, 2019). ...

拔节期与抽穗期玉米抗纹枯病相关QTL的初步定位
1
2006

... 纹枯病是一种由立枯丝核菌(一类死体营养型(necrotrophic)真菌)引起的病害, 在我国大部分地区以及东南亚、南亚地区广泛分布(赵茂俊等, 2006; Zheng et al., 2013), 主要感染玉米、水稻和大豆等重要作物.储昭辉研究组克隆了抗玉米纹枯病基因ZmFBL41.他们首先利用GWAS方法(Xiao et al., 2017)从380份重测序玉米自交系自然群体中鉴定了28个与玉米纹枯病抗病表型显著相关的SNP位点, 发现最显著的SNP位点ZmFBL41基因编码F-Box蛋白.然后利用玉米转座子插入突变体及该基因在水稻中过表达分析, 发现ZmFBL41是纹枯病的负调控因子.生化实验进一步证明, ZmFBL41蛋白可与木质素合成酶ZmCAD互作, 并介导其泛素化降解.抗病品种中ZmFBL41- LRR的214和217位氨基酸突变会导致ZmCAD的泛素化降解受阻, 从而促进木质素的合成, 增强玉米品种的抗病性(Li et al., 2019b).《植物学报》发表专文点评, 认为该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源(李伟滔等, 2019). ...

Incorporating the soil community into plant population dynamics: the utility of the feedback approach
1
1997

... 经典物种共存理论认为, 病原菌通过降低群落优势种的存活率, 形成同种负密度制约, 促进物种多样性的维持(Janzen, 1970; Connell, 1971).然而, 除病原菌外, 自然界还广泛分布着可为植物提供养分和保护的共生真菌.迄今为止, 尽管有研究表明共生真菌能够影响植物-土壤的反馈过程(Bever et al., 1997), 但不同功能型土壤真菌调控森林群落物种共存的协同作用机制仍不清楚.马克平研究组基于亚热带森林大样地长期动态监测平台, 将野外动态监测和高通量测序技术相结合, 发现植物同种负密度制约是由有害病原真菌与外生菌根真菌相互作用共同决定, 受同种负密度制约限制较大的物种更容易累积病原真菌, 而能够较快累积外生菌根真菌的植物物种不易受到同种负密度制约的限制(Chen et al., 2019a).该研究提出了基于外生菌根真菌与病原真菌互作过程影响植物生存的物种共存新模式, 拓展了病原菌驱动的经典物种共存理论框架, 为正确认识全球变化情境下的亚热带森林群落重构以及木本植物多样性纬度梯度格局提供了新思路. ...

TMK1-mediated auxin signaling regulates differential growth of the apical hook
1
2019

... 生长素作为植物最重要的激素之一, 调控复杂的植物生长发育过程.经典的生长素信号通路是生长素与其受体TIR1/AFBs结合后, 能稳定其受体与生长素信号抑制因子Aux/IAA蛋白的互作, 且能够泛素化降解Aux/IAA蛋白, 释放出被Aux/IAA蛋白抑制的生长素响应因子ARFs, 从而介导生长素信号的传递(Dharmasiri et al., 2005; Kepinski and Leyser, 2005).但是否还存在其它信号转导机制目前尚不清楚.徐通达研究组发现拟南芥TMK1介导了生长素对顶端弯钩发育的调控.他们发现非典型Aux/IAA家族成员IAA32和IAA34并不具有与TIR1互作的结构区域, 故不能被TIR1调控; IAA32和IAA34能够与跨膜蛋白激酶TMK1剪切后形成的TMK1C片段互作, 从而感受并响应生长素信号.因此, TIR1和TMK1通过选择不同的IAA蛋白而介导生长素下游信号的传递.此外, 生长素通过TMK1C稳定而非降解IAA32和IAA34蛋白, 并通过ARF转录因子调控下游基因的表达, 在生长素高浓度的部位抑制细胞生长, 从而促进顶端弯钩内外侧的差异性生长(Cao et al., 2019).《植物学报》发表专文点评, 认为该研究发现了一条独立于经典的受体TIR1的生长素信号通路, 是该领域的突破性进展(胡孔琴和丁兆军, 2019). ...

Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana
1
2019

... 根的向水性生长是指植物通过根尖感知土壤中水分梯度, 向着水势较高区域生长的生物学特性, 对植物从土壤中有效获取水分极为重要; 同时, 也是实现节水灌溉、提高干旱地区农业产量的有效途径.然而其调控机理却报道较少.已有研究表明, 植物向性生长, 尤其是向地性和向光性, 主要受生长素的调控(Geisler et al., 2014; Fankhauser and Christie, 2015).黎家研究组发现模式植物拟南芥根尖的向水性生长受细胞分裂素的调控.在面对不同水势信号时, 根尖两侧细胞分裂速率差异明显, 根尖水势较低一侧的分生区细胞分裂增加, 导致根尖发生向水性弯曲生长.进一步研究发现, 细胞分裂素的差异性分布诱导了其信号下游A类响应因子ARR16及ARR17在根尖分生区两侧的不对称表达, 从而实现对分生区两侧细胞分裂差异的调节(Chang et al., 2019).该研究揭示了细胞分裂素调控植物根向水性生长的重要机制, 为全面理解植物向性生长提供了新思路, 对培育抗旱保产农作物新品种具有重要的指导作用. ...

Differential soil fungus accumulation and density dependence of trees in a subtropical forest
1
2019

... 经典物种共存理论认为, 病原菌通过降低群落优势种的存活率, 形成同种负密度制约, 促进物种多样性的维持(Janzen, 1970; Connell, 1971).然而, 除病原菌外, 自然界还广泛分布着可为植物提供养分和保护的共生真菌.迄今为止, 尽管有研究表明共生真菌能够影响植物-土壤的反馈过程(Bever et al., 1997), 但不同功能型土壤真菌调控森林群落物种共存的协同作用机制仍不清楚.马克平研究组基于亚热带森林大样地长期动态监测平台, 将野外动态监测和高通量测序技术相结合, 发现植物同种负密度制约是由有害病原真菌与外生菌根真菌相互作用共同决定, 受同种负密度制约限制较大的物种更容易累积病原真菌, 而能够较快累积外生菌根真菌的植物物种不易受到同种负密度制约的限制(Chen et al., 2019a).该研究提出了基于外生菌根真菌与病原真菌互作过程影响植物生存的物种共存新模式, 拓展了病原菌驱动的经典物种共存理论框架, 为正确认识全球变化情境下的亚热带森林群落重构以及木本植物多样性纬度梯度格局提供了新思路. ...

The bracteatus pineapple genome and domestication of clonally propagated crops
1
2019

... 栽培植物是野生植物经人工培育后适合人类需要的植物.对栽培植物基因组进行研究不仅能揭示其起源和演化, 还能解析其特有的生物性状的遗传和分子机制.菠萝(凤梨)是一种原产于南美的热带水果, 目前全世界的热带地区均有种植.明瑞光研究组与合作者对红苞凤梨(Ananas comosus var. bracteatus)的基因组进行了分析, 并将之与80多个菠萝栽培品种和野生祖先进行比较, 追溯了菠萝驯化史, 发现其既经历了有性生殖过程, 也有“一步到位”的无性繁殖过程, 还找到了基因组中与菠萝特异农艺性状相关的人工选择区段, 为菠萝的遗传育种奠定了科学基础(Chen et al., 2019b). ...

Genomes of subaerial Zygnematophyceae provide insights into land plant evolution
1
2019

... 陆生植物是从水生植物登陆后演化而来, 现在成为地球上植被的主体.这个过程是如何完成的? 其祖先是谁? 程时锋研究组与合作者对轮藻类的部分植物进行了基因组分析, 并将之与陆生植物基因组进行了系统发生学分析.结果发现双星藻科的2个物种(Spirogloea muscicolaMesotaenium endlicherianum)与所有陆生植物共享一个最近的祖先, 且它们的生境与最早登陆的苔藓类植物非常相似.更为重要的是, 这2种藻类植物已有原以为陆生植物特有的逆境响应因子(GRAS和PYL).继续追溯其来源, 发现这2个基因来自土壤细菌基因的水平转移, 其时间与登陆发生的时间相吻合.这些发现使人们了解了陆生植物可能的祖先特性, 以及最初如何适应由水生到陆生这一巨大的环境变化(Cheng et al., 2019). ...

How deep is the conflict between molecular and fossil evidence on the age of angiosperms?
1
2019

... 被子植物作为陆地植物中物种最丰富的类群和生态系统的主宰, 其起源与早期演化一直备受关注.同样, 古植物学公认确凿的被子植物化石最早年龄与分子钟估算时间存在巨大差异(Herendeen et al., 2017; Coiro et al., 2019)也引起人们的高度重视, 致使被子植物的起源问题仍悬而未决.李德铢研究组与合作者利用2 881个质体基因组的80个基因, 重建了迄今为止科级水平取样最广泛的高分辨率被子植物质体基因组系统发育树, 并在此基础上结合62个化石标定点估算了科级以上主要分支的分化时间.研究结果表明, 被子植物起源于三叠纪晚期的瑞替期(约209 Ma), 明显早于确切的被子植物冠群最早化石年龄, 并据此提出了被子植物化石记录与分子钟推算时间之间存在“侏罗纪空缺(Jurassic gap)”.此外, 核心被子植物五大分支(金粟兰目、木兰类、单子叶植物、金鱼藻目以及真双子叶植物)之间的关系仍未解决, 这暗示被子植物早期可能发生了辐射演化(Li et al., 2019a).该研究为今后被子植物演化的比较研究提供了系统发育基因组学框架, 有望更新主流的被子植物系统发育研究组(APG)系统. ...

On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees
1
1971

... 经典物种共存理论认为, 病原菌通过降低群落优势种的存活率, 形成同种负密度制约, 促进物种多样性的维持(Janzen, 1970; Connell, 1971).然而, 除病原菌外, 自然界还广泛分布着可为植物提供养分和保护的共生真菌.迄今为止, 尽管有研究表明共生真菌能够影响植物-土壤的反馈过程(Bever et al., 1997), 但不同功能型土壤真菌调控森林群落物种共存的协同作用机制仍不清楚.马克平研究组基于亚热带森林大样地长期动态监测平台, 将野外动态监测和高通量测序技术相结合, 发现植物同种负密度制约是由有害病原真菌与外生菌根真菌相互作用共同决定, 受同种负密度制约限制较大的物种更容易累积病原真菌, 而能够较快累积外生菌根真菌的植物物种不易受到同种负密度制约的限制(Chen et al., 2019a).该研究提出了基于外生菌根真菌与病原真菌互作过程影响植物生存的物种共存新模式, 拓展了病原菌驱动的经典物种共存理论框架, 为正确认识全球变化情境下的亚热带森林群落重构以及木本植物多样性纬度梯度格局提供了新思路. ...

A PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis
1
2012

... 暗形态建成有利于植物萌发出土, 光形态建成则帮助植物进行光合作用并进入自养生长.拟南芥PIF类转录因子是光形态建成中的关键抑制子, 其功能受磷酸化调控.目前, 参与调控PIF磷酸化修饰的激酶已被大量报道, 但调控PIF去磷酸化的磷酸酶却报道较少.代明球研究组与邓兴旺研究组合作揭示了PP6通过控制PIF去磷酸化修饰进而调控植物暗形态建成的分子机制.他们发现PP6两个催化亚基的双突变体fypp1/fypp3在黑暗下呈现短下胚轴和子叶张开的光形态建成表型, 类似于黑暗下生长的pifq (pif1/pif3/ pif4/pif5)四突变体.遗传分析显示, PP6和PIF协同抑制植物在黑暗下的光形态建成.PP6能与PIF3和PIF4蛋白直接互作, 并调控PIF的去磷酸化修饰.实验表明PP6的去磷酸化修饰功能对PIF的转录活性起正调控作用(Yu et al., 2019).磷酸酶PP6在植物中高度保守(Dai et al., 2012).该研究为作物耐深播农艺性状的改良提供了基因资源和理论指导. ...

The F-box protein TIR1 is an auxin receptor
1
2005

... 生长素作为植物最重要的激素之一, 调控复杂的植物生长发育过程.经典的生长素信号通路是生长素与其受体TIR1/AFBs结合后, 能稳定其受体与生长素信号抑制因子Aux/IAA蛋白的互作, 且能够泛素化降解Aux/IAA蛋白, 释放出被Aux/IAA蛋白抑制的生长素响应因子ARFs, 从而介导生长素信号的传递(Dharmasiri et al., 2005; Kepinski and Leyser, 2005).但是否还存在其它信号转导机制目前尚不清楚.徐通达研究组发现拟南芥TMK1介导了生长素对顶端弯钩发育的调控.他们发现非典型Aux/IAA家族成员IAA32和IAA34并不具有与TIR1互作的结构区域, 故不能被TIR1调控; IAA32和IAA34能够与跨膜蛋白激酶TMK1剪切后形成的TMK1C片段互作, 从而感受并响应生长素信号.因此, TIR1和TMK1通过选择不同的IAA蛋白而介导生长素下游信号的传递.此外, 生长素通过TMK1C稳定而非降解IAA32和IAA34蛋白, 并通过ARF转录因子调控下游基因的表达, 在生长素高浓度的部位抑制细胞生长, 从而促进顶端弯钩内外侧的差异性生长(Cao et al., 2019).《植物学报》发表专文点评, 认为该研究发现了一条独立于经典的受体TIR1的生长素信号通路, 是该领域的突破性进展(胡孔琴和丁兆军, 2019). ...

Plant phototropic growth
1
2015

... 根的向水性生长是指植物通过根尖感知土壤中水分梯度, 向着水势较高区域生长的生物学特性, 对植物从土壤中有效获取水分极为重要; 同时, 也是实现节水灌溉、提高干旱地区农业产量的有效途径.然而其调控机理却报道较少.已有研究表明, 植物向性生长, 尤其是向地性和向光性, 主要受生长素的调控(Geisler et al., 2014; Fankhauser and Christie, 2015).黎家研究组发现模式植物拟南芥根尖的向水性生长受细胞分裂素的调控.在面对不同水势信号时, 根尖两侧细胞分裂速率差异明显, 根尖水势较低一侧的分生区细胞分裂增加, 导致根尖发生向水性弯曲生长.进一步研究发现, 细胞分裂素的差异性分布诱导了其信号下游A类响应因子ARR16及ARR17在根尖分生区两侧的不对称表达, 从而实现对分生区两侧细胞分裂差异的调节(Chang et al., 2019).该研究揭示了细胞分裂素调控植物根向水性生长的重要机制, 为全面理解植物向性生长提供了新思路, 对培育抗旱保产农作物新品种具有重要的指导作用. ...

The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency
1
2019

... 现代农业中, 氮肥使用为水稻高产发挥了巨大的推动作用, 但氮肥过多施用不仅增加农业成本, 还带来一系列环境问题.水稻土壤的细菌通过硝化作用将约40%的氮转化为硝态氮, 因此, 硝态氮的吸收同化成为影响水稻氮素利用率(NUE)的重要因素.氯酸盐抗性是水稻硝态氮同化效率的指标.Teng等(2006)最早利用DH群体定位到3个氯酸钾抗性QTLs.徐国华研究组相继克隆了多个水稻硝态氮吸收转运基因(Yan et al., 2011).2015年, 储成才研究组克隆了硝态氮转运蛋白基因OsNRT1.1B (Hu et al., 2015), 为水稻高NUE育种奠定了基础.近期, 钱前研究组与合作者利用水稻9311和日本晴的RIL群体检测到氯酸钾抗性QTLqCR2.他们对其进行精细定位和图位克隆, 发现其编码NAD(P)H依赖型硝酸还原酶OsNR2, 而位于NAD(P)H结合域的精氨酸(籼型)和色氨酸(粳型)的差别是两者酶活性差异的关键.OsNR2基因与OsNRT1.1B基因具有正反馈互作, 在粳稻背景下聚合籼型的这2个基因, 可以获得比导入单基因更高的产量和NUE (Gao et al., 2019).OsNR2基因的发现为水稻产量可持续增长提供了新的基因资源. ...

Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage
1
2017

... 作物农艺性状很多情况下是由基因组中的单个或少数核苷酸突变引起.因此, 基因组中关键核苷酸变异的鉴定与定向修正是植物育种的重要方向.基因组单碱基编辑器的开发, 为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具, 展现了其在植物新品种培育等方面潜在的重大应用价值(Komor et al., 2016; Gaudelli et al., 2017).单碱基编辑器主要包括胞嘧啶单碱基编辑器(CBE)与腺嘌呤单碱基编辑器(ABE).目前, CBE与ABE已在多个物种中得到广泛应用, 然而其在体内全基因组范围的脱靶效应还未得到评估(Rees and Liu, 2018).高彩霞研究组在植物体内利用全基因组测序技术全面分析和比较了BE3 (基于融合rAPOBEC1胞嘧啶脱氨酶的CBE系统)、HF1-BE3 (高保真版本BE3)和ABE系统在基因组水平上的脱靶效应, 发现现有的BE3和HF1-BE3系统可在植物体内造成难以预测的脱靶突变, 需要进一步优化提高其特异性(Jin et al., 2019).该研究创新性地利用相似遗传背景的克隆植物及全基因组重测序解决了以前大量异质细胞序列分析的复杂性问题.《植物学报》发表专文点评, 认为这一发现对单碱基编辑工具的应用和进一步改进具有重要意义(谢卡斌, 2019). ...

Auxin transport during root gravitropism: transporters and techniques
1
2014

... 根的向水性生长是指植物通过根尖感知土壤中水分梯度, 向着水势较高区域生长的生物学特性, 对植物从土壤中有效获取水分极为重要; 同时, 也是实现节水灌溉、提高干旱地区农业产量的有效途径.然而其调控机理却报道较少.已有研究表明, 植物向性生长, 尤其是向地性和向光性, 主要受生长素的调控(Geisler et al., 2014; Fankhauser and Christie, 2015).黎家研究组发现模式植物拟南芥根尖的向水性生长受细胞分裂素的调控.在面对不同水势信号时, 根尖两侧细胞分裂速率差异明显, 根尖水势较低一侧的分生区细胞分裂增加, 导致根尖发生向水性弯曲生长.进一步研究发现, 细胞分裂素的差异性分布诱导了其信号下游A类响应因子ARR16及ARR17在根尖分生区两侧的不对称表达, 从而实现对分生区两侧细胞分裂差异的调节(Chang et al., 2019).该研究揭示了细胞分裂素调控植物根向水性生长的重要机制, 为全面理解植物向性生长提供了新思路, 对培育抗旱保产农作物新品种具有重要的指导作用. ...

Draft genome of the living fossil Ginkgo biloba
1
2016

... 银杏(Ginkgo biloba)是世界上现存最古老的树种之一, 其既是研究物种适应和灭绝规律与机制的活化石, 也是人类保护和复兴濒危物种的正面案例.因此, 研究其种群的进化历史和进化潜力具有重要的科学意义与实践价值.2016年, Guan等(2016)联合发表了银杏基因组草图.2019年, 葛颂研究组与合作者完成了来自全球51个种群的545棵银杏大树的全基因组测序分析, 构建了至今最大的非模式物种遗传数据库.他们通过对种群遗传结构和动态历史模拟分析, 发现银杏在中国存在3个避难所, 且更新世晚期的多次冰期促进了不同避难所之间种群的分化和特有遗传成分的混合, 使得银杏能够在物种水平维持较高的遗传变异.他们还进一步证实了人类在银杏从避难所向中国其它地区及全球迁移过程中的重要作用, 从而揭示了现存银杏全球分布格局的基本成因(Zhao et al., 2019).该成果为银杏的后续研究建立了进化框架, 为其种质资源开发和精准保护提供了参考依据, 也是其它孑遗物种研究与保护可供借鉴的范例. ...

Structure and functional heterogeneity of fucoxanthin-chlorophyll proteins in diatoms
1
2014

... 光合作用为地球上几乎所有生物的生存提供了能源和氧气.硅藻是一种重要的水生光合生物, 贡献了地球每年约20%的原初生产力, 并在地球的元素(碳、氮、氧和硅等)循环和气候变化中发挥重要作用, 这与其光合膜蛋白的结构和功能密切相关.硅藻具有特殊的岩藻黄素叶绿素a/c结合蛋白(fucoxanthin- chlorophyll a/c protein, FCP), 该蛋白也属于捕光天线复合物(light-harvesting complex, LHC)家族.因缺乏结构生物学数据, 此前的FCP研究均只能够参考高等植物的LHCII模型(Gundermann and Büchel, 2014).近期, 匡廷云研究组连续在Science杂志发表了2篇长文, 分别报道了FCP天线晶体结构和PSII- FCP超级复合体的电镜结构.他们解析了硅藻捕光天线膜蛋白(FCP) 1.8?的高分辨率结构, 发现每个FCP单体中结合7个叶绿素a、2个叶绿素c、7个岩藻黄素和1个硅甲藻黄素分子.该结构描绘了叶绿素c和岩藻黄素在光合膜蛋白中的结合细节, 揭示了FCP二聚体的结合方式, 阐明了硅藻高效捕获蓝绿光及高效传递和淬灭激发能的机理(Wang et al., 2019d). ...

BBX4, a phyB-interacting and modulated regulator, directly interacts with PIF3 to fine tune red light-mediated photomorphogenesis
1
2019

... 光作为外界环境最重要的信号之一, 调控着植物生命周期中的诸多生长发育过程.不同波长的光信号被植物体内不同的光受体所识别, 启动下游光信号转导途径.其中phyB是最主要的红光受体.红光的照射迅速驱动phyB由pr形式向pfr形式转变, 并由细胞质迁移至细胞核内, 从而与光信号负调控因子PIF3蛋白互作, 促使其在数分钟之内被磷酸化、泛素化及蛋白降解, 最终促进植物的光形态建成(Ni et al., 2014, 2017).许冬清研究组与邓兴旺研究组合作发现转录因子BBX4是参与红光介导的phyB-PIF3调控途径的一个重要组分.黑暗下, E3泛素化连接酶COP1促进BBX4通过26S蛋白酶水解系统降解.红光下, 位于细胞核内的phyB直接与BBX4互作并稳定它在植物体内的积累, 从而促进下游受BBX4调控的基因表达.同时, BBX4也直接与细胞核内尚存的光信号负调控因子PIF3互作, 以抑制其生物化学活性, 从而负调控PIF3下游目的基因的转录(Heng et al., 2019).通过两个层面, BBX4增强了phyB参与的红光信号抑制PIF3功能和活性的能力. ...

Palaeobotanical redux: revisiting the age of the angiosperms
1
2017

... 被子植物作为陆地植物中物种最丰富的类群和生态系统的主宰, 其起源与早期演化一直备受关注.同样, 古植物学公认确凿的被子植物化石最早年龄与分子钟估算时间存在巨大差异(Herendeen et al., 2017; Coiro et al., 2019)也引起人们的高度重视, 致使被子植物的起源问题仍悬而未决.李德铢研究组与合作者利用2 881个质体基因组的80个基因, 重建了迄今为止科级水平取样最广泛的高分辨率被子植物质体基因组系统发育树, 并在此基础上结合62个化石标定点估算了科级以上主要分支的分化时间.研究结果表明, 被子植物起源于三叠纪晚期的瑞替期(约209 Ma), 明显早于确切的被子植物冠群最早化石年龄, 并据此提出了被子植物化石记录与分子钟推算时间之间存在“侏罗纪空缺(Jurassic gap)”.此外, 核心被子植物五大分支(金粟兰目、木兰类、单子叶植物、金鱼藻目以及真双子叶植物)之间的关系仍未解决, 这暗示被子植物早期可能发生了辐射演化(Li et al., 2019a).该研究为今后被子植物演化的比较研究提供了系统发育基因组学框架, 有望更新主流的被子植物系统发育研究组(APG)系统. ...

Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants
1
2019

... 后续储成才研究组发现膜定位的水稻NRT1.1B可与细胞质定位的抑制蛋白SPX4发生相互作用, 且硝酸盐可增强两者的互作, 并促进SPX4蛋白的降解, 进而激活下游基因的表达, 触发硝酸盐应答反应.NRT1.1B介导SPX4蛋白降解也触发磷饥饿应答基因的表达.因此, 硝酸盐信号可通过NRT1.1B-SPX4同时实现对硝酸盐应答基因和磷饥饿应答基因的协同激活, 从而实现氮磷的营养平衡(Hu et al., 2019a).该研究既揭示了硝酸盐受体传递信号的重要机制, 也阐明了氮磷协同利用实现植物营养平衡的分子机制, 对植物营养研究具有重要意义. ...

Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies
2
2015

... 现代农业中, 氮肥使用为水稻高产发挥了巨大的推动作用, 但氮肥过多施用不仅增加农业成本, 还带来一系列环境问题.水稻土壤的细菌通过硝化作用将约40%的氮转化为硝态氮, 因此, 硝态氮的吸收同化成为影响水稻氮素利用率(NUE)的重要因素.氯酸盐抗性是水稻硝态氮同化效率的指标.Teng等(2006)最早利用DH群体定位到3个氯酸钾抗性QTLs.徐国华研究组相继克隆了多个水稻硝态氮吸收转运基因(Yan et al., 2011).2015年, 储成才研究组克隆了硝态氮转运蛋白基因OsNRT1.1B (Hu et al., 2015), 为水稻高NUE育种奠定了基础.近期, 钱前研究组与合作者利用水稻9311和日本晴的RIL群体检测到氯酸钾抗性QTLqCR2.他们对其进行精细定位和图位克隆, 发现其编码NAD(P)H依赖型硝酸还原酶OsNR2, 而位于NAD(P)H结合域的精氨酸(籼型)和色氨酸(粳型)的差别是两者酶活性差异的关键.OsNR2基因与OsNRT1.1B基因具有正反馈互作, 在粳稻背景下聚合籼型的这2个基因, 可以获得比导入单基因更高的产量和NUE (Gao et al., 2019).OsNR2基因的发现为水稻产量可持续增长提供了新的基因资源. ...

... 植物对氮的利用主要依赖根系从土壤中吸收无机氮, 并在体内同化为有机氮后被利用(Xu et al., 2012).亚洲栽培稻中, 籼稻的氮利用效率通常高于粳稻, 原因之一是二者吸收和转运无机氮的方式不同.其中, 编码硝酸盐转运蛋白的NRT1.1B基因在籼粳稻之间存在明显分化(Hu et al., 2015).根系在土壤中招募大量且种属特异的微生物(根系微生物组), 植物调控根系微生物组的机制对植物吸收营养和响应逆境胁迫等生理过程至关重要.白洋研究组与储成才研究组合作揭示了水稻根系微生物组与氮代谢的交互调控机制.他们通过比较田间生长的68个籼稻和27个粳稻品种的根系微生物组, 发现籼稻和粳稻具有显著不同的根系微生物组成, 籼稻比粳稻富集了更多与氮代谢相关的根系微生物, 这与籼稻具有更高的氮利用效率相一致.进一步分析发现, NRT1.1B不同等位形式在富集氮代谢相关根系微生物中具有关键调控作用(Zhang et al., 2019).该研究为探讨根系微生物与植物互作及其功能提供了理论指导, 为利用益生菌培育氮高效利用水稻奠定了重要理论基础.《植物学报》发表专文点评, 认为该研究揭示了籼稻和粳稻根际微生物分化的分子基础, 展示了利用根际微生物提高水稻营养高效吸收的应用前景(王孝林和王二涛, 2019). ...

Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton
1
2019

... 棉花的栽培种主要是陆地棉(Gossypium hirsutum)和海岛棉(G. barbadense), 二者均为异源四倍体.前者产量高, 是世界主栽种; 后者纤维长、质量好且抗逆性强, 但产量低.为了解析这些物种差异的遗传和分子机制, 张天真研究组完成了这2个栽培种的高质量从头组装基因组, 通过深入的全基因组比较分析, 发现物种特异的基因表达、基因组结构变异和一些基因家族的扩张是驱动这2个物种形成与进化的动力(Hu et al., 2019b). ...

Herbivores and the number of tree species in tropical forests
1
1970

... 经典物种共存理论认为, 病原菌通过降低群落优势种的存活率, 形成同种负密度制约, 促进物种多样性的维持(Janzen, 1970; Connell, 1971).然而, 除病原菌外, 自然界还广泛分布着可为植物提供养分和保护的共生真菌.迄今为止, 尽管有研究表明共生真菌能够影响植物-土壤的反馈过程(Bever et al., 1997), 但不同功能型土壤真菌调控森林群落物种共存的协同作用机制仍不清楚.马克平研究组基于亚热带森林大样地长期动态监测平台, 将野外动态监测和高通量测序技术相结合, 发现植物同种负密度制约是由有害病原真菌与外生菌根真菌相互作用共同决定, 受同种负密度制约限制较大的物种更容易累积病原真菌, 而能够较快累积外生菌根真菌的植物物种不易受到同种负密度制约的限制(Chen et al., 2019a).该研究提出了基于外生菌根真菌与病原真菌互作过程影响植物生存的物种共存新模式, 拓展了病原菌驱动的经典物种共存理论框架, 为正确认识全球变化情境下的亚热带森林群落重构以及木本植物多样性纬度梯度格局提供了新思路. ...

Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx
1
2019

... 盐胁迫是限制农作物生产的重要环境因子, 严重制约了农业发展(Munns and Tester, 2008).有研究表明, 盐胁迫诱导[Ca2+]cyt迅速上升(Knight et al., 1997), 激活SOS途径, 增强植物对盐胁迫的耐受性(Zhu, 2016).然而, 植物如何感受盐胁迫这一科学问题一直未被阐明; 同时, 盐胁迫诱导[Ca2+]cyt迅速上升, 这其中的感受器及其作用的分子机制也未明确.胡章立研究组与合作者发现了植物盐受体GIPC, 并揭示了其作用机制.他们通过遗传筛选分离出盐胁迫诱导[Ca2+]cyt升高的缺陷突变体moca1.图位克隆发现MOCA1编码IPUT1 (inositol phosphorylceramide glucuronosyltransferase 1), 能将GlcA (glucuronic acid)转移到IPC (inositol phosphorylceramide)在细胞质膜外侧形成的鞘脂GIPC (glycosyl inositol phosphorylceramide).在盐胁迫下, 胞外的Na+结合到植物细胞质膜外侧的GIPC, 引起细胞表面电势变化, 从而打开质膜的Ca2+通道, 导致[Ca2+]cyt增加, 激活SOS通路以适应盐胁迫环境.不同于动物的盐感受离子通道, 植物特异的GIPC鞘脂是非离子通道盐受体(Jiang et al., 2019).这种盐胁迫响应机制可能意味着脂质参与了对各种环境盐胁迫水平的适应, 可用于提高作物耐盐性, 同时也为进一步揭示植物适应全球环境变化的生理生态效应及分子机制奠定了新的理论基础. ...

Cytosine, but not adenine, base editors induce genome-wide off- target mutations in rice
1
2019

... 作物农艺性状很多情况下是由基因组中的单个或少数核苷酸突变引起.因此, 基因组中关键核苷酸变异的鉴定与定向修正是植物育种的重要方向.基因组单碱基编辑器的开发, 为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具, 展现了其在植物新品种培育等方面潜在的重大应用价值(Komor et al., 2016; Gaudelli et al., 2017).单碱基编辑器主要包括胞嘧啶单碱基编辑器(CBE)与腺嘌呤单碱基编辑器(ABE).目前, CBE与ABE已在多个物种中得到广泛应用, 然而其在体内全基因组范围的脱靶效应还未得到评估(Rees and Liu, 2018).高彩霞研究组在植物体内利用全基因组测序技术全面分析和比较了BE3 (基于融合rAPOBEC1胞嘧啶脱氨酶的CBE系统)、HF1-BE3 (高保真版本BE3)和ABE系统在基因组水平上的脱靶效应, 发现现有的BE3和HF1-BE3系统可在植物体内造成难以预测的脱靶突变, 需要进一步优化提高其特异性(Jin et al., 2019).该研究创新性地利用相似遗传背景的克隆植物及全基因组重测序解决了以前大量异质细胞序列分析的复杂性问题.《植物学报》发表专文点评, 认为这一发现对单碱基编辑工具的应用和进一步改进具有重要意义(谢卡斌, 2019). ...

The plant immune system
2
2006

... 植物在与病原菌的长期对抗过程中, 进化出了先天免疫系统, 主要由2个先天免疫反应(PTI和ETI)组成(Jones and Dangl, 2006), 而抗病蛋白是植物免疫系统的核心, 但人们对抗病蛋白发挥抗病反应的分子机制仍知之甚少.ZAR1是一类NLR (nucleotide-binding leucine-rich repeat receptors)蛋白, 可与抗病相关蛋白激酶I (RKS1)互作形成未激活的复合体.该复合体可识别十字花科的黄单胞菌属(Xanthomonas campestris pv. campestris)效应因子AvrAC尿苷酸化的PBL2UMP配体, 进而激活下游的抗病信号转导(Lewis et al., 2013; Wang et al., 2015).柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构.他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态.而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c).之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”.他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”.遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b).该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展.《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019). ...

... ).柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构.他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态.而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c).之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”.他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”.遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b).该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展.《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019). ...

The Arabidopsis F-box protein TIR1 is an auxin receptor
1
2005

... 生长素作为植物最重要的激素之一, 调控复杂的植物生长发育过程.经典的生长素信号通路是生长素与其受体TIR1/AFBs结合后, 能稳定其受体与生长素信号抑制因子Aux/IAA蛋白的互作, 且能够泛素化降解Aux/IAA蛋白, 释放出被Aux/IAA蛋白抑制的生长素响应因子ARFs, 从而介导生长素信号的传递(Dharmasiri et al., 2005; Kepinski and Leyser, 2005).但是否还存在其它信号转导机制目前尚不清楚.徐通达研究组发现拟南芥TMK1介导了生长素对顶端弯钩发育的调控.他们发现非典型Aux/IAA家族成员IAA32和IAA34并不具有与TIR1互作的结构区域, 故不能被TIR1调控; IAA32和IAA34能够与跨膜蛋白激酶TMK1剪切后形成的TMK1C片段互作, 从而感受并响应生长素信号.因此, TIR1和TMK1通过选择不同的IAA蛋白而介导生长素下游信号的传递.此外, 生长素通过TMK1C稳定而非降解IAA32和IAA34蛋白, 并通过ARF转录因子调控下游基因的表达, 在生长素高浓度的部位抑制细胞生长, 从而促进顶端弯钩内外侧的差异性生长(Cao et al., 2019).《植物学报》发表专文点评, 认为该研究发现了一条独立于经典的受体TIR1的生长素信号通路, 是该领域的突破性进展(胡孔琴和丁兆军, 2019). ...

Calcium signaling in Arabidopsis thaliana responding to drought and salinity
1
1997

... 盐胁迫是限制农作物生产的重要环境因子, 严重制约了农业发展(Munns and Tester, 2008).有研究表明, 盐胁迫诱导[Ca2+]cyt迅速上升(Knight et al., 1997), 激活SOS途径, 增强植物对盐胁迫的耐受性(Zhu, 2016).然而, 植物如何感受盐胁迫这一科学问题一直未被阐明; 同时, 盐胁迫诱导[Ca2+]cyt迅速上升, 这其中的感受器及其作用的分子机制也未明确.胡章立研究组与合作者发现了植物盐受体GIPC, 并揭示了其作用机制.他们通过遗传筛选分离出盐胁迫诱导[Ca2+]cyt升高的缺陷突变体moca1.图位克隆发现MOCA1编码IPUT1 (inositol phosphorylceramide glucuronosyltransferase 1), 能将GlcA (glucuronic acid)转移到IPC (inositol phosphorylceramide)在细胞质膜外侧形成的鞘脂GIPC (glycosyl inositol phosphorylceramide).在盐胁迫下, 胞外的Na+结合到植物细胞质膜外侧的GIPC, 引起细胞表面电势变化, 从而打开质膜的Ca2+通道, 导致[Ca2+]cyt增加, 激活SOS通路以适应盐胁迫环境.不同于动物的盐感受离子通道, 植物特异的GIPC鞘脂是非离子通道盐受体(Jiang et al., 2019).这种盐胁迫响应机制可能意味着脂质参与了对各种环境盐胁迫水平的适应, 可用于提高作物耐盐性, 同时也为进一步揭示植物适应全球环境变化的生理生态效应及分子机制奠定了新的理论基础. ...

Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
1
2016

... 作物农艺性状很多情况下是由基因组中的单个或少数核苷酸突变引起.因此, 基因组中关键核苷酸变异的鉴定与定向修正是植物育种的重要方向.基因组单碱基编辑器的开发, 为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具, 展现了其在植物新品种培育等方面潜在的重大应用价值(Komor et al., 2016; Gaudelli et al., 2017).单碱基编辑器主要包括胞嘧啶单碱基编辑器(CBE)与腺嘌呤单碱基编辑器(ABE).目前, CBE与ABE已在多个物种中得到广泛应用, 然而其在体内全基因组范围的脱靶效应还未得到评估(Rees and Liu, 2018).高彩霞研究组在植物体内利用全基因组测序技术全面分析和比较了BE3 (基于融合rAPOBEC1胞嘧啶脱氨酶的CBE系统)、HF1-BE3 (高保真版本BE3)和ABE系统在基因组水平上的脱靶效应, 发现现有的BE3和HF1-BE3系统可在植物体内造成难以预测的脱靶突变, 需要进一步优化提高其特异性(Jin et al., 2019).该研究创新性地利用相似遗传背景的克隆植物及全基因组重测序解决了以前大量异质细胞序列分析的复杂性问题.《植物学报》发表专文点评, 认为这一发现对单碱基编辑工具的应用和进一步改进具有重要意义(谢卡斌, 2019). ...

Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis
1
2010

... 高温胁迫也是造成作物产量及品质下降的主要环境因素.植物已经进化出非常复杂的调控机制应对高温胁迫, 如表观遗传修饰的调控(Liu et al., 2015).有些植物还能够将高温记忆传递给下一代, 形成传代记忆(Lang-Mladek et al., 2010).然而, 目前高温传代记忆的具体机制及其对植物相关表型的影响仍不清楚.何祖华研究组发现高温造成的提早开花及抗病性降低可以传递给下一代, 表现出传代记忆效应.他们进一步研究发现, 长期的高温能激活HSFA2 (HEAT SHOCK TRANION FACTOR A2), HSFA2进而激活编码H3K27me3的去甲基化酶基因REF6 (RELATIVE OF EARLY FLOWERING 6)和染色质重塑因子基因BRM (BRAHMA)的表达.REF6和BRM反过来降低HSFA2位点上的H3K27me3修饰水平, 从而提高HSFA2的表达, 形成REF6-HSFA2正向反馈环; 同时HSFA2直接激活编码E3泛素连接酶基因SGIP1的表达, SGIP1蛋白参与降解转录后基因沉默(POSTTRANIONAL GENE SILENCE, PTGS)调节因子SGS3 (SUPPRESSOR OF GENE SILENCING 3) (Zhong et al., 2013), 从而抑制ta-siRNAs的产生.REF6-HSFA2反馈环和ta-siRNAs含量下降共同作用, 上调它们的共同靶标HTT5 (HEAT-INDUCED TAS1 TARGET 5)基因的表达, 导致植物提早开花和感病性增加(Liu et al., 2019).该研究揭示了一个由组蛋白去甲基化酶、染色质重塑因子、转录因子、泛素连接酶和小RNA共同组成的表观调控网络, 维持植物对高温记忆传代的机制. ...

HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl
1
1996

... 土壤中双子叶植物幼苗的下胚轴顶端发生细胞不对称生长, 形成弯钩状结构, 降低土壤颗粒对幼苗的机械损伤.出土后, 幼苗顶端弯钩附近的不对称生长被迅速消除, 使得子叶充分伸展, 获得更多光照, 快速实现光合自养.之前, 人们利用遗传诱变筛选到1个基因HLS1 (HOOKLESS1)的突变体, 该突变体在黑暗下不能形成顶端弯钩结构, 但是HLS1蛋白发挥作用的分子机制尚不清楚(Lehman et al., 1996).钟上威研究组发现HLS1蛋白在植物黄化苗体内以多聚形式行使功能, 无法形成多聚体的hls1突变蛋白则完全丧失活性.出土见光后, HLS1在黑暗下形成的多聚体迅速消失.遗传分析显示, HLS1位于红光受体phyB (phytochrome B)的下游, 调控顶端弯钩的形成.phyB在见光后进入细胞核, 通过与HLS1蛋白的直接互作, 将HLS1蛋白从多聚形式裂解为单体形式, 从而迅速抑制HLS1的活性, 促进顶端弯钩打开.该研究发现植物通过HLS1蛋白的多聚和光控解多聚, 实现对幼苗顶端弯钩形成与打开的精确调控(Lyu et al., 2019). ...

The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a
1
2013

... 植物在与病原菌的长期对抗过程中, 进化出了先天免疫系统, 主要由2个先天免疫反应(PTI和ETI)组成(Jones and Dangl, 2006), 而抗病蛋白是植物免疫系统的核心, 但人们对抗病蛋白发挥抗病反应的分子机制仍知之甚少.ZAR1是一类NLR (nucleotide-binding leucine-rich repeat receptors)蛋白, 可与抗病相关蛋白激酶I (RKS1)互作形成未激活的复合体.该复合体可识别十字花科的黄单胞菌属(Xanthomonas campestris pv. campestris)效应因子AvrAC尿苷酸化的PBL2UMP配体, 进而激活下游的抗病信号转导(Lewis et al., 2013; Wang et al., 2015).柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构.他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态.而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c).之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”.他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”.遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b).该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展.《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019). ...

Origin of angiosperms and the puzzle of the Jurassic gap
1
2019

... 被子植物作为陆地植物中物种最丰富的类群和生态系统的主宰, 其起源与早期演化一直备受关注.同样, 古植物学公认确凿的被子植物化石最早年龄与分子钟估算时间存在巨大差异(Herendeen et al., 2017; Coiro et al., 2019)也引起人们的高度重视, 致使被子植物的起源问题仍悬而未决.李德铢研究组与合作者利用2 881个质体基因组的80个基因, 重建了迄今为止科级水平取样最广泛的高分辨率被子植物质体基因组系统发育树, 并在此基础上结合62个化石标定点估算了科级以上主要分支的分化时间.研究结果表明, 被子植物起源于三叠纪晚期的瑞替期(约209 Ma), 明显早于确切的被子植物冠群最早化石年龄, 并据此提出了被子植物化石记录与分子钟推算时间之间存在“侏罗纪空缺(Jurassic gap)”.此外, 核心被子植物五大分支(金粟兰目、木兰类、单子叶植物、金鱼藻目以及真双子叶植物)之间的关系仍未解决, 这暗示被子植物早期可能发生了辐射演化(Li et al., 2019a).该研究为今后被子植物演化的比较研究提供了系统发育基因组学框架, 有望更新主流的被子植物系统发育研究组(APG)系统. ...

Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize
1
2019

... 纹枯病是一种由立枯丝核菌(一类死体营养型(necrotrophic)真菌)引起的病害, 在我国大部分地区以及东南亚、南亚地区广泛分布(赵茂俊等, 2006; Zheng et al., 2013), 主要感染玉米、水稻和大豆等重要作物.储昭辉研究组克隆了抗玉米纹枯病基因ZmFBL41.他们首先利用GWAS方法(Xiao et al., 2017)从380份重测序玉米自交系自然群体中鉴定了28个与玉米纹枯病抗病表型显著相关的SNP位点, 发现最显著的SNP位点ZmFBL41基因编码F-Box蛋白.然后利用玉米转座子插入突变体及该基因在水稻中过表达分析, 发现ZmFBL41是纹枯病的负调控因子.生化实验进一步证明, ZmFBL41蛋白可与木质素合成酶ZmCAD互作, 并介导其泛素化降解.抗病品种中ZmFBL41- LRR的214和217位氨基酸突变会导致ZmCAD的泛素化降解受阻, 从而促进木质素的合成, 增强玉米品种的抗病性(Li et al., 2019b).《植物学报》发表专文点评, 认为该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源(李伟滔等, 2019). ...

Precisegene replacement in rice by RNA transcript-templated homologous recombination
1
2019

... 自2012年CRISPR/Cas基因组编辑技术被发明以来, 已广泛应用于动物、植物和微生物等诸多物种的基因组编辑.基因组编辑首先在基因组靶向位置产生DNA双链断裂(DNA double-strand break, DSB).之后, 这些产生的DSB可通过非同源末端连接(NHEJ)或者HDR途径进行修复.NHEJ最常用于移码突变进而破坏基因的功能, HDR则主要用于对靶标序列的精准替换或定点插入.在多数物种中, NHEJ是DSB最主要的修复途径, 而通过HDR途径进行精准修复的概率极低.虽然利用基因枪转化或者双生病毒系统开展植物CRISPR/Cas系统DNA供体的递送, 可提高DNA模板数量进而提高HDR的发生概率, 但如何实现高效率的植物同源重组依然是一个巨大的挑战.夏兰琴研究组与合作者以RNA为同源重组修复(HDR)的模板, 并分别利用核酶自切割和具有RNA/DNA双重切割能力的CRISPR/Cpf1基因编辑系统, 成功获得了后代无转基因成分的抗ALS抑制剂类除草剂水稻植株(Li et al., 2019c).该研究证明, 除了通常使用的DNA模板, RNA同样可作为植物同源重组修复的模板.在此基础上, 有望解决植物同源重组频率不高的难题, 及加快通过基因编辑技术精准改良农作物重要农艺性状的步伐. ...

An H3K27me3 demethylase- HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis
1
2019

... 高温胁迫也是造成作物产量及品质下降的主要环境因素.植物已经进化出非常复杂的调控机制应对高温胁迫, 如表观遗传修饰的调控(Liu et al., 2015).有些植物还能够将高温记忆传递给下一代, 形成传代记忆(Lang-Mladek et al., 2010).然而, 目前高温传代记忆的具体机制及其对植物相关表型的影响仍不清楚.何祖华研究组发现高温造成的提早开花及抗病性降低可以传递给下一代, 表现出传代记忆效应.他们进一步研究发现, 长期的高温能激活HSFA2 (HEAT SHOCK TRANION FACTOR A2), HSFA2进而激活编码H3K27me3的去甲基化酶基因REF6 (RELATIVE OF EARLY FLOWERING 6)和染色质重塑因子基因BRM (BRAHMA)的表达.REF6和BRM反过来降低HSFA2位点上的H3K27me3修饰水平, 从而提高HSFA2的表达, 形成REF6-HSFA2正向反馈环; 同时HSFA2直接激活编码E3泛素连接酶基因SGIP1的表达, SGIP1蛋白参与降解转录后基因沉默(POSTTRANIONAL GENE SILENCE, PTGS)调节因子SGS3 (SUPPRESSOR OF GENE SILENCING 3) (Zhong et al., 2013), 从而抑制ta-siRNAs的产生.REF6-HSFA2反馈环和ta-siRNAs含量下降共同作用, 上调它们的共同靶标HTT5 (HEAT-INDUCED TAS1 TARGET 5)基因的表达, 导致植物提早开花和感病性增加(Liu et al., 2019).该研究揭示了一个由组蛋白去甲基化酶、染色质重塑因子、转录因子、泛素连接酶和小RNA共同组成的表观调控网络, 维持植物对高温记忆传代的机制. ...

Genetic and epigenetic control of plant heat responses
1
2015

... 高温胁迫也是造成作物产量及品质下降的主要环境因素.植物已经进化出非常复杂的调控机制应对高温胁迫, 如表观遗传修饰的调控(Liu et al., 2015).有些植物还能够将高温记忆传递给下一代, 形成传代记忆(Lang-Mladek et al., 2010).然而, 目前高温传代记忆的具体机制及其对植物相关表型的影响仍不清楚.何祖华研究组发现高温造成的提早开花及抗病性降低可以传递给下一代, 表现出传代记忆效应.他们进一步研究发现, 长期的高温能激活HSFA2 (HEAT SHOCK TRANION FACTOR A2), HSFA2进而激活编码H3K27me3的去甲基化酶基因REF6 (RELATIVE OF EARLY FLOWERING 6)和染色质重塑因子基因BRM (BRAHMA)的表达.REF6和BRM反过来降低HSFA2位点上的H3K27me3修饰水平, 从而提高HSFA2的表达, 形成REF6-HSFA2正向反馈环; 同时HSFA2直接激活编码E3泛素连接酶基因SGIP1的表达, SGIP1蛋白参与降解转录后基因沉默(POSTTRANIONAL GENE SILENCE, PTGS)调节因子SGS3 (SUPPRESSOR OF GENE SILENCING 3) (Zhong et al., 2013), 从而抑制ta-siRNAs的产生.REF6-HSFA2反馈环和ta-siRNAs含量下降共同作用, 上调它们的共同靶标HTT5 (HEAT-INDUCED TAS1 TARGET 5)基因的表达, 导致植物提早开花和感病性增加(Liu et al., 2019).该研究揭示了一个由组蛋白去甲基化酶、染色质重塑因子、转录因子、泛素连接酶和小RNA共同组成的表观调控网络, 维持植物对高温记忆传代的机制. ...

Oligomerization and photo-deoligomerization of HOOKLESS1 controls plant differential cell growth
1
2019

... 土壤中双子叶植物幼苗的下胚轴顶端发生细胞不对称生长, 形成弯钩状结构, 降低土壤颗粒对幼苗的机械损伤.出土后, 幼苗顶端弯钩附近的不对称生长被迅速消除, 使得子叶充分伸展, 获得更多光照, 快速实现光合自养.之前, 人们利用遗传诱变筛选到1个基因HLS1 (HOOKLESS1)的突变体, 该突变体在黑暗下不能形成顶端弯钩结构, 但是HLS1蛋白发挥作用的分子机制尚不清楚(Lehman et al., 1996).钟上威研究组发现HLS1蛋白在植物黄化苗体内以多聚形式行使功能, 无法形成多聚体的hls1突变蛋白则完全丧失活性.出土见光后, HLS1在黑暗下形成的多聚体迅速消失.遗传分析显示, HLS1位于红光受体phyB (phytochrome B)的下游, 调控顶端弯钩的形成.phyB在见光后进入细胞核, 通过与HLS1蛋白的直接互作, 将HLS1蛋白从多聚形式裂解为单体形式, 从而迅速抑制HLS1的活性, 促进顶端弯钩打开.该研究发现植物通过HLS1蛋白的多聚和光控解多聚, 实现对幼苗顶端弯钩形成与打开的精确调控(Lyu et al., 2019). ...

The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress
1
2019

... 钙离子(Ca2+)作为第二信使参与胞内众多的生理反应, 植物细胞通过对Ca2+信号的感知、识别与解码, 激活下游通路, 以维持环境胁迫下细胞正常的生命活动(Reddy et al., 2011).而目前对于特异Ca2+信号的产生及调控机制尚不清楚.Yang和Guo (2018)发现并确立了Ca2+依赖的Na+外排机制, 即SOS (salt overly sensitive)调控途径.但盐胁迫下, SOS途径特异Ca2+信号的产生与调控机制仍不清楚.郭岩研究组揭示了Ca2+依赖激活的SOS途径负调控盐胁迫诱导的[Ca2+]cyt.他们进一步研究发现, AtANN4具有Ca2+通道活性, 促进盐胁迫下Ca2+内向转运, 参与激活SOS途径; SCaBP8介导AtANN4与SOS2互作并增强SOS2对AtANN4的磷酸化修饰, 同时磷酸化修饰后的AtANN4对SCaBP8具有更高的亲和力, 故盐胁迫稳定了SCaBP8-AtANN4-SOS2蛋白复合体.该复合体通过抑制AtANN4的活性(即信号通路的下游组分SCaBP8-SOS2)形成负反馈调控环抑制AtANN4的活性, 最终形成盐胁迫下特异的Ca2+信号, 参与植物长期的盐胁迫响应(Ma et al., 2019).该研究加深了我们对细胞Ca2+信号转导途径的认识, 及对盐胁迫下特异Ca2+信号调控机制的理解. ...

NLR functions in plant and animal immune systems: so far and yet so close
1
2011

... 植物在与病原菌的长期对抗过程中, 进化出了先天免疫系统, 主要由2个先天免疫反应(PTI和ETI)组成(Jones and Dangl, 2006), 而抗病蛋白是植物免疫系统的核心, 但人们对抗病蛋白发挥抗病反应的分子机制仍知之甚少.ZAR1是一类NLR (nucleotide-binding leucine-rich repeat receptors)蛋白, 可与抗病相关蛋白激酶I (RKS1)互作形成未激活的复合体.该复合体可识别十字花科的黄单胞菌属(Xanthomonas campestris pv. campestris)效应因子AvrAC尿苷酸化的PBL2UMP配体, 进而激活下游的抗病信号转导(Lewis et al., 2013; Wang et al., 2015).柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构.他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态.而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c).之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”.他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”.遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b).该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展.《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019). ...

Mechanisms of salinity tolerance
1
2008

... 盐胁迫是限制农作物生产的重要环境因子, 严重制约了农业发展(Munns and Tester, 2008).有研究表明, 盐胁迫诱导[Ca2+]cyt迅速上升(Knight et al., 1997), 激活SOS途径, 增强植物对盐胁迫的耐受性(Zhu, 2016).然而, 植物如何感受盐胁迫这一科学问题一直未被阐明; 同时, 盐胁迫诱导[Ca2+]cyt迅速上升, 这其中的感受器及其作用的分子机制也未明确.胡章立研究组与合作者发现了植物盐受体GIPC, 并揭示了其作用机制.他们通过遗传筛选分离出盐胁迫诱导[Ca2+]cyt升高的缺陷突变体moca1.图位克隆发现MOCA1编码IPUT1 (inositol phosphorylceramide glucuronosyltransferase 1), 能将GlcA (glucuronic acid)转移到IPC (inositol phosphorylceramide)在细胞质膜外侧形成的鞘脂GIPC (glycosyl inositol phosphorylceramide).在盐胁迫下, 胞外的Na+结合到植物细胞质膜外侧的GIPC, 引起细胞表面电势变化, 从而打开质膜的Ca2+通道, 导致[Ca2+]cyt增加, 激活SOS通路以适应盐胁迫环境.不同于动物的盐感受离子通道, 植物特异的GIPC鞘脂是非离子通道盐受体(Jiang et al., 2019).这种盐胁迫响应机制可能意味着脂质参与了对各种环境盐胁迫水平的适应, 可用于提高作物耐盐性, 同时也为进一步揭示植物适应全球环境变化的生理生态效应及分子机制奠定了新的理论基础. ...

PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3
1
2017

... 光作为外界环境最重要的信号之一, 调控着植物生命周期中的诸多生长发育过程.不同波长的光信号被植物体内不同的光受体所识别, 启动下游光信号转导途径.其中phyB是最主要的红光受体.红光的照射迅速驱动phyB由pr形式向pfr形式转变, 并由细胞质迁移至细胞核内, 从而与光信号负调控因子PIF3蛋白互作, 促使其在数分钟之内被磷酸化、泛素化及蛋白降解, 最终促进植物的光形态建成(Ni et al., 2014, 2017).许冬清研究组与邓兴旺研究组合作发现转录因子BBX4是参与红光介导的phyB-PIF3调控途径的一个重要组分.黑暗下, E3泛素化连接酶COP1促进BBX4通过26S蛋白酶水解系统降解.红光下, 位于细胞核内的phyB直接与BBX4互作并稳定它在植物体内的积累, 从而促进下游受BBX4调控的基因表达.同时, BBX4也直接与细胞核内尚存的光信号负调控因子PIF3互作, 以抑制其生物化学活性, 从而负调控PIF3下游目的基因的转录(Heng et al., 2019).通过两个层面, BBX4增强了phyB参与的红光信号抑制PIF3功能和活性的能力. ...

A mutually assured destruction mechanism attenuates light signaling in Arabidopsis
1
2014

... 光作为外界环境最重要的信号之一, 调控着植物生命周期中的诸多生长发育过程.不同波长的光信号被植物体内不同的光受体所识别, 启动下游光信号转导途径.其中phyB是最主要的红光受体.红光的照射迅速驱动phyB由pr形式向pfr形式转变, 并由细胞质迁移至细胞核内, 从而与光信号负调控因子PIF3蛋白互作, 促使其在数分钟之内被磷酸化、泛素化及蛋白降解, 最终促进植物的光形态建成(Ni et al., 2014, 2017).许冬清研究组与邓兴旺研究组合作发现转录因子BBX4是参与红光介导的phyB-PIF3调控途径的一个重要组分.黑暗下, E3泛素化连接酶COP1促进BBX4通过26S蛋白酶水解系统降解.红光下, 位于细胞核内的phyB直接与BBX4互作并稳定它在植物体内的积累, 从而促进下游受BBX4调控的基因表达.同时, BBX4也直接与细胞核内尚存的光信号负调控因子PIF3互作, 以抑制其生物化学活性, 从而负调控PIF3下游目的基因的转录(Heng et al., 2019).通过两个层面, BBX4增强了phyB参与的红光信号抑制PIF3功能和活性的能力. ...

Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis
1
1968

... 日益增长的世界人口迫切需要利用有限的耕地增加作物产量.而作物产量的高低与光能同化有直接关系, 光能同化高的作物又与株型密切相关.具有更多直立叶片的植株结构能够减少相互遮蔽, 且在增加植株密度条件下仍能维持光合作用的光能捕获, 以此改善叶片氮的积累, 用于籽粒灌浆和增加产量(Pendleton et al., 1968; Stewart et al., 2003; Tilman et al., 2011).田丰研究组从玉米野生祖先种大刍草中克隆到2个调控叶倾角的主效QTL (UPA1UPA2).研究表明, 大刍草UPA2等位基因具有与玉米不同的披叶基因DRL1的结合位点, 而DRL1能够与无叶舌基因LG1进行物理互作, 抑制ZmRAVL1介导的LG1激活.ZmRAVL1调控油菜素内酯C6氧化酶基因brd1/UPA1, 改变植株内源的油菜素内酯含量和叶片角度.来自玉米野生祖先大刍草的UPA2等位基因能够减小叶片角度, 但其在玉米驯化过程中丢失.通过将野生UPA2等位基因导入到现在玉米杂交种中和编辑ZmRAVL1基因均能够增强高密度种植玉米的产量(Tian et al., 2019).该研究克隆了控制玉米紧凑株型和密植增产的关键基因, 建立了玉米紧凑株型的分子调控网络, 为玉米理想株型分子育种及培育密植高产品种奠定了理论和实践基础.《植物学报》发表专文点评, 认为该成果是玉米功能基因组研究的重大进展之一, 也是理论研究指导育种应用的最佳范例之一(刘杰和严建兵, 2019). ...

The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex
1
2019

... 匡廷云研究组与隋森芳研究组合作利用单颗粒冷冻电镜技术解析了中心纲硅藻的PSII-FCPII超级复合体的3.0?分辨率的三维结构.他们发现硅藻PSII核心3个新蛋白亚基的结构、独特的四聚体FCP-A天线排列方式、复杂的色素网络和多条能量传递途径(Pi et al., 2019), 为破解硅藻高效传递和转化光能以及揭示光保护的机理奠定了结构基础.这两项成果入选2019年度中国科学十大进展、2019年度中国生命科学十大进展、2019年度中国十大海洋科技进展以及2019年度中国海洋与湖沼十大科技进展. ...

Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression
1
2011

... 钙离子(Ca2+)作为第二信使参与胞内众多的生理反应, 植物细胞通过对Ca2+信号的感知、识别与解码, 激活下游通路, 以维持环境胁迫下细胞正常的生命活动(Reddy et al., 2011).而目前对于特异Ca2+信号的产生及调控机制尚不清楚.Yang和Guo (2018)发现并确立了Ca2+依赖的Na+外排机制, 即SOS (salt overly sensitive)调控途径.但盐胁迫下, SOS途径特异Ca2+信号的产生与调控机制仍不清楚.郭岩研究组揭示了Ca2+依赖激活的SOS途径负调控盐胁迫诱导的[Ca2+]cyt.他们进一步研究发现, AtANN4具有Ca2+通道活性, 促进盐胁迫下Ca2+内向转运, 参与激活SOS途径; SCaBP8介导AtANN4与SOS2互作并增强SOS2对AtANN4的磷酸化修饰, 同时磷酸化修饰后的AtANN4对SCaBP8具有更高的亲和力, 故盐胁迫稳定了SCaBP8-AtANN4-SOS2蛋白复合体.该复合体通过抑制AtANN4的活性(即信号通路的下游组分SCaBP8-SOS2)形成负反馈调控环抑制AtANN4的活性, 最终形成盐胁迫下特异的Ca2+信号, 参与植物长期的盐胁迫响应(Ma et al., 2019).该研究加深了我们对细胞Ca2+信号转导途径的认识, 及对盐胁迫下特异Ca2+信号调控机制的理解. ...

Base editing: precision chemistry on the genome and transcriptome of living cells
1
2018

... 作物农艺性状很多情况下是由基因组中的单个或少数核苷酸突变引起.因此, 基因组中关键核苷酸变异的鉴定与定向修正是植物育种的重要方向.基因组单碱基编辑器的开发, 为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具, 展现了其在植物新品种培育等方面潜在的重大应用价值(Komor et al., 2016; Gaudelli et al., 2017).单碱基编辑器主要包括胞嘧啶单碱基编辑器(CBE)与腺嘌呤单碱基编辑器(ABE).目前, CBE与ABE已在多个物种中得到广泛应用, 然而其在体内全基因组范围的脱靶效应还未得到评估(Rees and Liu, 2018).高彩霞研究组在植物体内利用全基因组测序技术全面分析和比较了BE3 (基于融合rAPOBEC1胞嘧啶脱氨酶的CBE系统)、HF1-BE3 (高保真版本BE3)和ABE系统在基因组水平上的脱靶效应, 发现现有的BE3和HF1-BE3系统可在植物体内造成难以预测的脱靶突变, 需要进一步优化提高其特异性(Jin et al., 2019).该研究创新性地利用相似遗传背景的克隆植物及全基因组重测序解决了以前大量异质细胞序列分析的复杂性问题.《植物学报》发表专文点评, 认为这一发现对单碱基编辑工具的应用和进一步改进具有重要意义(谢卡斌, 2019). ...

Canopy structure, light interception, and photosynthesis in maize
1
2003

... 日益增长的世界人口迫切需要利用有限的耕地增加作物产量.而作物产量的高低与光能同化有直接关系, 光能同化高的作物又与株型密切相关.具有更多直立叶片的植株结构能够减少相互遮蔽, 且在增加植株密度条件下仍能维持光合作用的光能捕获, 以此改善叶片氮的积累, 用于籽粒灌浆和增加产量(Pendleton et al., 1968; Stewart et al., 2003; Tilman et al., 2011).田丰研究组从玉米野生祖先种大刍草中克隆到2个调控叶倾角的主效QTL (UPA1UPA2).研究表明, 大刍草UPA2等位基因具有与玉米不同的披叶基因DRL1的结合位点, 而DRL1能够与无叶舌基因LG1进行物理互作, 抑制ZmRAVL1介导的LG1激活.ZmRAVL1调控油菜素内酯C6氧化酶基因brd1/UPA1, 改变植株内源的油菜素内酯含量和叶片角度.来自玉米野生祖先大刍草的UPA2等位基因能够减小叶片角度, 但其在玉米驯化过程中丢失.通过将野生UPA2等位基因导入到现在玉米杂交种中和编辑ZmRAVL1基因均能够增强高密度种植玉米的产量(Tian et al., 2019).该研究克隆了控制玉米紧凑株型和密植增产的关键基因, 建立了玉米紧凑株型的分子调控网络, 为玉米理想株型分子育种及培育密植高产品种奠定了理论和实践基础.《植物学报》发表专文点评, 认为该成果是玉米功能基因组研究的重大进展之一, 也是理论研究指导育种应用的最佳范例之一(刘杰和严建兵, 2019). ...

QTLs and candidate genes for chlorate resistance in rice (Oryza sativa L.)
1
2006

... 现代农业中, 氮肥使用为水稻高产发挥了巨大的推动作用, 但氮肥过多施用不仅增加农业成本, 还带来一系列环境问题.水稻土壤的细菌通过硝化作用将约40%的氮转化为硝态氮, 因此, 硝态氮的吸收同化成为影响水稻氮素利用率(NUE)的重要因素.氯酸盐抗性是水稻硝态氮同化效率的指标.Teng等(2006)最早利用DH群体定位到3个氯酸钾抗性QTLs.徐国华研究组相继克隆了多个水稻硝态氮吸收转运基因(Yan et al., 2011).2015年, 储成才研究组克隆了硝态氮转运蛋白基因OsNRT1.1B (Hu et al., 2015), 为水稻高NUE育种奠定了基础.近期, 钱前研究组与合作者利用水稻9311和日本晴的RIL群体检测到氯酸钾抗性QTLqCR2.他们对其进行精细定位和图位克隆, 发现其编码NAD(P)H依赖型硝酸还原酶OsNR2, 而位于NAD(P)H结合域的精氨酸(籼型)和色氨酸(粳型)的差别是两者酶活性差异的关键.OsNR2基因与OsNRT1.1B基因具有正反馈互作, 在粳稻背景下聚合籼型的这2个基因, 可以获得比导入单基因更高的产量和NUE (Gao et al., 2019).OsNR2基因的发现为水稻产量可持续增长提供了新的基因资源. ...

Teosinte ligule allele narrows plant architecture and enhances high-density maize yields
1
2019

... 日益增长的世界人口迫切需要利用有限的耕地增加作物产量.而作物产量的高低与光能同化有直接关系, 光能同化高的作物又与株型密切相关.具有更多直立叶片的植株结构能够减少相互遮蔽, 且在增加植株密度条件下仍能维持光合作用的光能捕获, 以此改善叶片氮的积累, 用于籽粒灌浆和增加产量(Pendleton et al., 1968; Stewart et al., 2003; Tilman et al., 2011).田丰研究组从玉米野生祖先种大刍草中克隆到2个调控叶倾角的主效QTL (UPA1UPA2).研究表明, 大刍草UPA2等位基因具有与玉米不同的披叶基因DRL1的结合位点, 而DRL1能够与无叶舌基因LG1进行物理互作, 抑制ZmRAVL1介导的LG1激活.ZmRAVL1调控油菜素内酯C6氧化酶基因brd1/UPA1, 改变植株内源的油菜素内酯含量和叶片角度.来自玉米野生祖先大刍草的UPA2等位基因能够减小叶片角度, 但其在玉米驯化过程中丢失.通过将野生UPA2等位基因导入到现在玉米杂交种中和编辑ZmRAVL1基因均能够增强高密度种植玉米的产量(Tian et al., 2019).该研究克隆了控制玉米紧凑株型和密植增产的关键基因, 建立了玉米紧凑株型的分子调控网络, 为玉米理想株型分子育种及培育密植高产品种奠定了理论和实践基础.《植物学报》发表专文点评, 认为该成果是玉米功能基因组研究的重大进展之一, 也是理论研究指导育种应用的最佳范例之一(刘杰和严建兵, 2019). ...

Global food demand and the sustainable intensification of agriculture
1
2011

... 日益增长的世界人口迫切需要利用有限的耕地增加作物产量.而作物产量的高低与光能同化有直接关系, 光能同化高的作物又与株型密切相关.具有更多直立叶片的植株结构能够减少相互遮蔽, 且在增加植株密度条件下仍能维持光合作用的光能捕获, 以此改善叶片氮的积累, 用于籽粒灌浆和增加产量(Pendleton et al., 1968; Stewart et al., 2003; Tilman et al., 2011).田丰研究组从玉米野生祖先种大刍草中克隆到2个调控叶倾角的主效QTL (UPA1UPA2).研究表明, 大刍草UPA2等位基因具有与玉米不同的披叶基因DRL1的结合位点, 而DRL1能够与无叶舌基因LG1进行物理互作, 抑制ZmRAVL1介导的LG1激活.ZmRAVL1调控油菜素内酯C6氧化酶基因brd1/UPA1, 改变植株内源的油菜素内酯含量和叶片角度.来自玉米野生祖先大刍草的UPA2等位基因能够减小叶片角度, 但其在玉米驯化过程中丢失.通过将野生UPA2等位基因导入到现在玉米杂交种中和编辑ZmRAVL1基因均能够增强高密度种植玉米的产量(Tian et al., 2019).该研究克隆了控制玉米紧凑株型和密植增产的关键基因, 建立了玉米紧凑株型的分子调控网络, 为玉米理想株型分子育种及培育密植高产品种奠定了理论和实践基础.《植物学报》发表专文点评, 认为该成果是玉米功能基因组研究的重大进展之一, 也是理论研究指导育种应用的最佳范例之一(刘杰和严建兵, 2019). ...

Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes
2
2019

... 王克剑研究组通过多重CRISPR-Cas9基因编辑技术, 对杂交稻组合春优84中PAIR1REC8OSD1三个减数分裂相关基因进行编辑, 成功获得了MiMe材料.MiMe在性细胞形成过程中不发生同源染色体重组(homologous recombination), 产生与亲本基因型一致的二倍体配子(Wang et al., 2019a).已有研究表明, 玉米MTL (MATRILINEAL)基因可诱导产生单倍体(haploid)植株, 与拟南芥中通过CenH3诱导孤雌生殖(parthenogenesis)相比, 其优点是mtl突变体植株自交可直接获得孤雌生殖单倍体后代.水稻中存在玉米MTL的同源基因, 且其生物学功能与玉米MTL相同(Yao et al., 2018).王克剑研究组通过CRISPR-Cas9系统验证了该基因的功能, 并且成功诱导出单倍体植株.在此基础上, 他们同时对春优84中PAIR1REC8OSD1MTL基因进行编辑, 成功获得了具有无融合生殖现象的Fix (Fixation of hybrids)材料, 并获得与杂交亲本基因型一致的克隆种子.对其二倍体后代进行基因组重测序分析表明, 克隆繁殖的二倍体植株与杂交种春优84基因型一致, 说明杂合背景的基因型能够在不同有性世代间传递(Wang et al., 2019a).《植物学报》发表专文点评, 认为该研究证实了通过无融合生殖固定水稻杂种优势的可能性, 为实现“一系法”杂种优势利用探索出一种可能的技术路径(薛治慧和种康, 2019). ...

... )材料, 并获得与杂交亲本基因型一致的克隆种子.对其二倍体后代进行基因组重测序分析表明, 克隆繁殖的二倍体植株与杂交种春优84基因型一致, 说明杂合背景的基因型能够在不同有性世代间传递(Wang et al., 2019a).《植物学报》发表专文点评, 认为该研究证实了通过无融合生殖固定水稻杂种优势的可能性, 为实现“一系法”杂种优势利用探索出一种可能的技术路径(薛治慧和种康, 2019). ...

The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants
1
2015

... 植物在与病原菌的长期对抗过程中, 进化出了先天免疫系统, 主要由2个先天免疫反应(PTI和ETI)组成(Jones and Dangl, 2006), 而抗病蛋白是植物免疫系统的核心, 但人们对抗病蛋白发挥抗病反应的分子机制仍知之甚少.ZAR1是一类NLR (nucleotide-binding leucine-rich repeat receptors)蛋白, 可与抗病相关蛋白激酶I (RKS1)互作形成未激活的复合体.该复合体可识别十字花科的黄单胞菌属(Xanthomonas campestris pv. campestris)效应因子AvrAC尿苷酸化的PBL2UMP配体, 进而激活下游的抗病信号转导(Lewis et al., 2013; Wang et al., 2015).柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构.他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态.而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c).之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”.他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”.遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b).该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展.《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019). ...

Reconstitution and structure of a plant NLR resistosome conferring immunity
1
2019

... 植物在与病原菌的长期对抗过程中, 进化出了先天免疫系统, 主要由2个先天免疫反应(PTI和ETI)组成(Jones and Dangl, 2006), 而抗病蛋白是植物免疫系统的核心, 但人们对抗病蛋白发挥抗病反应的分子机制仍知之甚少.ZAR1是一类NLR (nucleotide-binding leucine-rich repeat receptors)蛋白, 可与抗病相关蛋白激酶I (RKS1)互作形成未激活的复合体.该复合体可识别十字花科的黄单胞菌属(Xanthomonas campestris pv. campestris)效应因子AvrAC尿苷酸化的PBL2UMP配体, 进而激活下游的抗病信号转导(Lewis et al., 2013; Wang et al., 2015).柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构.他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态.而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c).之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”.他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”.遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b).该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展.《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019). ...

Ligand-triggered allosteric ADP release primes a plant NLR complex
1
2019

... 植物在与病原菌的长期对抗过程中, 进化出了先天免疫系统, 主要由2个先天免疫反应(PTI和ETI)组成(Jones and Dangl, 2006), 而抗病蛋白是植物免疫系统的核心, 但人们对抗病蛋白发挥抗病反应的分子机制仍知之甚少.ZAR1是一类NLR (nucleotide-binding leucine-rich repeat receptors)蛋白, 可与抗病相关蛋白激酶I (RKS1)互作形成未激活的复合体.该复合体可识别十字花科的黄单胞菌属(Xanthomonas campestris pv. campestris)效应因子AvrAC尿苷酸化的PBL2UMP配体, 进而激活下游的抗病信号转导(Lewis et al., 2013; Wang et al., 2015).柴继杰研究组、周俭民研究组与王宏伟研究组合作发现并解析了植物界首个完整NLR (植物中一类主要的信号识别受体, 能感知病原物的效应因子, 并触发植物的免疫反应(Jones and Dangl, 2006; Maekawa et al., 2011))复合体的结构.他们解析了ZAR1-RKS1和ZAR1-RKS1- PBL2UMP复合物的晶体结构, 发现ZAR1-RKS1通过自身结构域互作及ADP的结合, 使其处于稳定的抑制状态.而病原菌效应因子尿苷酸化诱饵蛋白PBL激活RKS1, 促使RKS1对ZAR1NBD产生空间碰撞, ZAR1NBD向外旋转60°, 使ZAR1-RKS1-PBL2UMP的ADP解离, 并达到解抑制的中间状态(Wang et al., 2019c).之后, 3个研究组合作, 同样采用结构生物学方法解析了植物第一个激活状态的抗病蛋白复合体, 并命名为“抗病小体(resistosome)”.他们利用冷冻电镜技术、生物化学和细胞生物学技术证明, dATP可将ZAR1-RKS1-PBL2UMP由解抑制状态进一步转化为激活状态, 并形成轮状五聚体的“抗病小体”.遗传学相关实验表明, ZAR1的“抗病小体”参与病原菌侵染后的抗病反应, 如细胞的超敏性死亡(hypersensitive response) (Wang et al., 2019b).该成果被认为是植物免疫学研究中的里程碑式发现, 入选2019年度中国生命科学十大进展.《植物学报》发表专文点评, 认为该研究解析了第一个植物完整NLR ZAR1激活前后的结构, 填补了NLR介导的免疫信号转导研究领域的空白(夏石头和李昕, 2019). ...

Structural basis for blue-green light harvesting and energy dissipation in diatoms
1
2019

... 光合作用为地球上几乎所有生物的生存提供了能源和氧气.硅藻是一种重要的水生光合生物, 贡献了地球每年约20%的原初生产力, 并在地球的元素(碳、氮、氧和硅等)循环和气候变化中发挥重要作用, 这与其光合膜蛋白的结构和功能密切相关.硅藻具有特殊的岩藻黄素叶绿素a/c结合蛋白(fucoxanthin- chlorophyll a/c protein, FCP), 该蛋白也属于捕光天线复合物(light-harvesting complex, LHC)家族.因缺乏结构生物学数据, 此前的FCP研究均只能够参考高等植物的LHCII模型(Gundermann and Büchel, 2014).近期, 匡廷云研究组连续在Science杂志发表了2篇长文, 分别报道了FCP天线晶体结构和PSII- FCP超级复合体的电镜结构.他们解析了硅藻捕光天线膜蛋白(FCP) 1.8?的高分辨率结构, 发现每个FCP单体中结合7个叶绿素a、2个叶绿素c、7个岩藻黄素和1个硅甲藻黄素分子.该结构描绘了叶绿素c和岩藻黄素在光合膜蛋白中的结合细节, 揭示了FCP二聚体的结合方式, 阐明了硅藻高效捕获蓝绿光及高效传递和淬灭激发能的机理(Wang et al., 2019d). ...

Mechanisms of RALF peptide perception by a heterotypic receptor complex
1
2019

... 柴继杰研究组与合作者利用结构生物学方法发现了FER-LLG1异型复合体识别RALF多肽的分子机制.他们解析了po-FERECD、apoANX1ECD、apo-ANX2ECD、apo-LLG1以及RALF23-LLG2-FERECD的晶体结构, 并利用拟南芥定点突变技术、体内遗传学方法和体外生化手段, 发现RALF的N末端保守结构域是LLG1-3识别的重要区段, LLG1-3识别RALF主要由构象多变的C端结构域控制(Xiao et al., 2019).该研究揭示了多肽酶类激素RALF被受体激酶和膜锚定蛋白组成的异型复合体识别的分子机制, 是植物免疫学领域和受体激酶相关研究中的一项重要突破.他们提出的受体激酶与膜锚定蛋白异型复合体识别配体的模式是一类崭新的受体识别模式, 为其下游细胞信号转导和抗病反应等相关研究提供了新思路. ...

Genome-wide association studies in maize: praise and stargaze
1
2017

... 纹枯病是一种由立枯丝核菌(一类死体营养型(necrotrophic)真菌)引起的病害, 在我国大部分地区以及东南亚、南亚地区广泛分布(赵茂俊等, 2006; Zheng et al., 2013), 主要感染玉米、水稻和大豆等重要作物.储昭辉研究组克隆了抗玉米纹枯病基因ZmFBL41.他们首先利用GWAS方法(Xiao et al., 2017)从380份重测序玉米自交系自然群体中鉴定了28个与玉米纹枯病抗病表型显著相关的SNP位点, 发现最显著的SNP位点ZmFBL41基因编码F-Box蛋白.然后利用玉米转座子插入突变体及该基因在水稻中过表达分析, 发现ZmFBL41是纹枯病的负调控因子.生化实验进一步证明, ZmFBL41蛋白可与木质素合成酶ZmCAD互作, 并介导其泛素化降解.抗病品种中ZmFBL41- LRR的214和217位氨基酸突变会导致ZmCAD的泛素化降解受阻, 从而促进木质素的合成, 增强玉米品种的抗病性(Li et al., 2019b).《植物学报》发表专文点评, 认为该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源(李伟滔等, 2019). ...

Plant nitrogen assimilation and use efficiency
1
2012

... 植物对氮的利用主要依赖根系从土壤中吸收无机氮, 并在体内同化为有机氮后被利用(Xu et al., 2012).亚洲栽培稻中, 籼稻的氮利用效率通常高于粳稻, 原因之一是二者吸收和转运无机氮的方式不同.其中, 编码硝酸盐转运蛋白的NRT1.1B基因在籼粳稻之间存在明显分化(Hu et al., 2015).根系在土壤中招募大量且种属特异的微生物(根系微生物组), 植物调控根系微生物组的机制对植物吸收营养和响应逆境胁迫等生理过程至关重要.白洋研究组与储成才研究组合作揭示了水稻根系微生物组与氮代谢的交互调控机制.他们通过比较田间生长的68个籼稻和27个粳稻品种的根系微生物组, 发现籼稻和粳稻具有显著不同的根系微生物组成, 籼稻比粳稻富集了更多与氮代谢相关的根系微生物, 这与籼稻具有更高的氮利用效率相一致.进一步分析发现, NRT1.1B不同等位形式在富集氮代谢相关根系微生物中具有关键调控作用(Zhang et al., 2019).该研究为探讨根系微生物与植物互作及其功能提供了理论指导, 为利用益生菌培育氮高效利用水稻奠定了重要理论基础.《植物学报》发表专文点评, 认为该研究揭示了籼稻和粳稻根际微生物分化的分子基础, 展示了利用根际微生物提高水稻营养高效吸收的应用前景(王孝林和王二涛, 2019). ...

Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges
1
2011

... 现代农业中, 氮肥使用为水稻高产发挥了巨大的推动作用, 但氮肥过多施用不仅增加农业成本, 还带来一系列环境问题.水稻土壤的细菌通过硝化作用将约40%的氮转化为硝态氮, 因此, 硝态氮的吸收同化成为影响水稻氮素利用率(NUE)的重要因素.氯酸盐抗性是水稻硝态氮同化效率的指标.Teng等(2006)最早利用DH群体定位到3个氯酸钾抗性QTLs.徐国华研究组相继克隆了多个水稻硝态氮吸收转运基因(Yan et al., 2011).2015年, 储成才研究组克隆了硝态氮转运蛋白基因OsNRT1.1B (Hu et al., 2015), 为水稻高NUE育种奠定了基础.近期, 钱前研究组与合作者利用水稻9311和日本晴的RIL群体检测到氯酸钾抗性QTLqCR2.他们对其进行精细定位和图位克隆, 发现其编码NAD(P)H依赖型硝酸还原酶OsNR2, 而位于NAD(P)H结合域的精氨酸(籼型)和色氨酸(粳型)的差别是两者酶活性差异的关键.OsNR2基因与OsNRT1.1B基因具有正反馈互作, 在粳稻背景下聚合籼型的这2个基因, 可以获得比导入单基因更高的产量和NUE (Gao et al., 2019).OsNR2基因的发现为水稻产量可持续增长提供了新的基因资源. ...

Elucidating the molecular mechanisms mediating plant salt-stress responses
1
2018

... 钙离子(Ca2+)作为第二信使参与胞内众多的生理反应, 植物细胞通过对Ca2+信号的感知、识别与解码, 激活下游通路, 以维持环境胁迫下细胞正常的生命活动(Reddy et al., 2011).而目前对于特异Ca2+信号的产生及调控机制尚不清楚.Yang和Guo (2018)发现并确立了Ca2+依赖的Na+外排机制, 即SOS (salt overly sensitive)调控途径.但盐胁迫下, SOS途径特异Ca2+信号的产生与调控机制仍不清楚.郭岩研究组揭示了Ca2+依赖激活的SOS途径负调控盐胁迫诱导的[Ca2+]cyt.他们进一步研究发现, AtANN4具有Ca2+通道活性, 促进盐胁迫下Ca2+内向转运, 参与激活SOS途径; SCaBP8介导AtANN4与SOS2互作并增强SOS2对AtANN4的磷酸化修饰, 同时磷酸化修饰后的AtANN4对SCaBP8具有更高的亲和力, 故盐胁迫稳定了SCaBP8-AtANN4-SOS2蛋白复合体.该复合体通过抑制AtANN4的活性(即信号通路的下游组分SCaBP8-SOS2)形成负反馈调控环抑制AtANN4的活性, 最终形成盐胁迫下特异的Ca2+信号, 参与植物长期的盐胁迫响应(Ma et al., 2019).该研究加深了我们对细胞Ca2+信号转导途径的认识, 及对盐胁迫下特异Ca2+信号调控机制的理解. ...

OsMATL mutation induces haploid seed formation in indica rice
1
2018

... 王克剑研究组通过多重CRISPR-Cas9基因编辑技术, 对杂交稻组合春优84中PAIR1REC8OSD1三个减数分裂相关基因进行编辑, 成功获得了MiMe材料.MiMe在性细胞形成过程中不发生同源染色体重组(homologous recombination), 产生与亲本基因型一致的二倍体配子(Wang et al., 2019a).已有研究表明, 玉米MTL (MATRILINEAL)基因可诱导产生单倍体(haploid)植株, 与拟南芥中通过CenH3诱导孤雌生殖(parthenogenesis)相比, 其优点是mtl突变体植株自交可直接获得孤雌生殖单倍体后代.水稻中存在玉米MTL的同源基因, 且其生物学功能与玉米MTL相同(Yao et al., 2018).王克剑研究组通过CRISPR-Cas9系统验证了该基因的功能, 并且成功诱导出单倍体植株.在此基础上, 他们同时对春优84中PAIR1REC8OSD1MTL基因进行编辑, 成功获得了具有无融合生殖现象的Fix (Fixation of hybrids)材料, 并获得与杂交亲本基因型一致的克隆种子.对其二倍体后代进行基因组重测序分析表明, 克隆繁殖的二倍体植株与杂交种春优84基因型一致, 说明杂合背景的基因型能够在不同有性世代间传递(Wang et al., 2019a).《植物学报》发表专文点评, 认为该研究证实了通过无融合生殖固定水稻杂种优势的可能性, 为实现“一系法”杂种优势利用探索出一种可能的技术路径(薛治慧和种康, 2019). ...

Arabidopsis PP6 phosphatases dephosphorylate PIF proteins to repress photomorphogenesis
1
2019

... 暗形态建成有利于植物萌发出土, 光形态建成则帮助植物进行光合作用并进入自养生长.拟南芥PIF类转录因子是光形态建成中的关键抑制子, 其功能受磷酸化调控.目前, 参与调控PIF磷酸化修饰的激酶已被大量报道, 但调控PIF去磷酸化的磷酸酶却报道较少.代明球研究组与邓兴旺研究组合作揭示了PP6通过控制PIF去磷酸化修饰进而调控植物暗形态建成的分子机制.他们发现PP6两个催化亚基的双突变体fypp1/fypp3在黑暗下呈现短下胚轴和子叶张开的光形态建成表型, 类似于黑暗下生长的pifq (pif1/pif3/ pif4/pif5)四突变体.遗传分析显示, PP6和PIF协同抑制植物在黑暗下的光形态建成.PP6能与PIF3和PIF4蛋白直接互作, 并调控PIF的去磷酸化修饰.实验表明PP6的去磷酸化修饰功能对PIF的转录活性起正调控作用(Yu et al., 2019).磷酸酶PP6在植物中高度保守(Dai et al., 2012).该研究为作物耐深播农艺性状的改良提供了基因资源和理论指导. ...

NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice
1
2019

... 植物对氮的利用主要依赖根系从土壤中吸收无机氮, 并在体内同化为有机氮后被利用(Xu et al., 2012).亚洲栽培稻中, 籼稻的氮利用效率通常高于粳稻, 原因之一是二者吸收和转运无机氮的方式不同.其中, 编码硝酸盐转运蛋白的NRT1.1B基因在籼粳稻之间存在明显分化(Hu et al., 2015).根系在土壤中招募大量且种属特异的微生物(根系微生物组), 植物调控根系微生物组的机制对植物吸收营养和响应逆境胁迫等生理过程至关重要.白洋研究组与储成才研究组合作揭示了水稻根系微生物组与氮代谢的交互调控机制.他们通过比较田间生长的68个籼稻和27个粳稻品种的根系微生物组, 发现籼稻和粳稻具有显著不同的根系微生物组成, 籼稻比粳稻富集了更多与氮代谢相关的根系微生物, 这与籼稻具有更高的氮利用效率相一致.进一步分析发现, NRT1.1B不同等位形式在富集氮代谢相关根系微生物中具有关键调控作用(Zhang et al., 2019).该研究为探讨根系微生物与植物互作及其功能提供了理论指导, 为利用益生菌培育氮高效利用水稻奠定了重要理论基础.《植物学报》发表专文点评, 认为该研究揭示了籼稻和粳稻根际微生物分化的分子基础, 展示了利用根际微生物提高水稻营养高效吸收的应用前景(王孝林和王二涛, 2019). ...

The water lily genome and the early evolution of flowering plants
1
2020

... 被子植物占现在地球上陆生植物种类的约90%, 其适应性非常广泛.被子植物起源和早期的快速演化一直是科学家研究的重点.睡莲目植物是世界公认的古老被子植物类群之一, 其物种的演化规律受到植物和进化学家的高度关注.张亮生研究组及其合作者对睡莲目中既有颜值又有香气的蓝星睡莲(Nymphaea colorata)基因组进行了深入分析, 并将之与其它19个睡莲科物种的转录组进行比较, 发现花器官形态决定和花发育相关的ABCE类基因在早期被子植物及核心被子植物非常保守, 即它们共用一套系统.而一些与花香相关的基因则有可能在蓝星睡莲中独立演化出来.这些发现为被子植物的早期演化提供了非常重要的信息(Zhang et al., 2020).《植物学报》发表专文点评, 认为该研究不仅解决了谁是现存最基部被子植物的问题, 也对后续的植物进化分类及重要基因的功能研究有一定的启示(唐嘉瓅等, 2020). ...

Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil
1
2019

... 银杏(Ginkgo biloba)是世界上现存最古老的树种之一, 其既是研究物种适应和灭绝规律与机制的活化石, 也是人类保护和复兴濒危物种的正面案例.因此, 研究其种群的进化历史和进化潜力具有重要的科学意义与实践价值.2016年, Guan等(2016)联合发表了银杏基因组草图.2019年, 葛颂研究组与合作者完成了来自全球51个种群的545棵银杏大树的全基因组测序分析, 构建了至今最大的非模式物种遗传数据库.他们通过对种群遗传结构和动态历史模拟分析, 发现银杏在中国存在3个避难所, 且更新世晚期的多次冰期促进了不同避难所之间种群的分化和特有遗传成分的混合, 使得银杏能够在物种水平维持较高的遗传变异.他们还进一步证实了人类在银杏从避难所向中国其它地区及全球迁移过程中的重要作用, 从而揭示了现存银杏全球分布格局的基本成因(Zhao et al., 2019).该成果为银杏的后续研究建立了进化框架, 为其种质资源开发和精准保护提供了参考依据, 也是其它孑遗物种研究与保护可供借鉴的范例. ...

The evolution and pathogenic mechanisms of the rice sheath blight pathogen
1
2013

... 纹枯病是一种由立枯丝核菌(一类死体营养型(necrotrophic)真菌)引起的病害, 在我国大部分地区以及东南亚、南亚地区广泛分布(赵茂俊等, 2006; Zheng et al., 2013), 主要感染玉米、水稻和大豆等重要作物.储昭辉研究组克隆了抗玉米纹枯病基因ZmFBL41.他们首先利用GWAS方法(Xiao et al., 2017)从380份重测序玉米自交系自然群体中鉴定了28个与玉米纹枯病抗病表型显著相关的SNP位点, 发现最显著的SNP位点ZmFBL41基因编码F-Box蛋白.然后利用玉米转座子插入突变体及该基因在水稻中过表达分析, 发现ZmFBL41是纹枯病的负调控因子.生化实验进一步证明, ZmFBL41蛋白可与木质素合成酶ZmCAD互作, 并介导其泛素化降解.抗病品种中ZmFBL41- LRR的214和217位氨基酸突变会导致ZmCAD的泛素化降解受阻, 从而促进木质素的合成, 增强玉米品种的抗病性(Li et al., 2019b).《植物学报》发表专文点评, 认为该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源(李伟滔等, 2019). ...

Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis
1
2019

... 遗传隔离是新物种形成的前提条件.“同种花粉优先”现象就是一种遗传隔离形式, 早在160年前该现象便被达尔文用实验验证了, 但其分子机制目前尚不明确.瞿礼嘉研究组以拟南芥为材料, 证明了一类雌性器官分泌的小肽分子可以增加同种花粉管的竞争能力, 从而促进与亲缘关系相近物种产生遗传隔离(Zhong et al., 2019).该成果赋予了这类小肽以新的生物学功能, 从分子水平上为可能导致新物种产生的一种遗传隔离现象提供了解释. ...

Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis
1
2013

... 高温胁迫也是造成作物产量及品质下降的主要环境因素.植物已经进化出非常复杂的调控机制应对高温胁迫, 如表观遗传修饰的调控(Liu et al., 2015).有些植物还能够将高温记忆传递给下一代, 形成传代记忆(Lang-Mladek et al., 2010).然而, 目前高温传代记忆的具体机制及其对植物相关表型的影响仍不清楚.何祖华研究组发现高温造成的提早开花及抗病性降低可以传递给下一代, 表现出传代记忆效应.他们进一步研究发现, 长期的高温能激活HSFA2 (HEAT SHOCK TRANION FACTOR A2), HSFA2进而激活编码H3K27me3的去甲基化酶基因REF6 (RELATIVE OF EARLY FLOWERING 6)和染色质重塑因子基因BRM (BRAHMA)的表达.REF6和BRM反过来降低HSFA2位点上的H3K27me3修饰水平, 从而提高HSFA2的表达, 形成REF6-HSFA2正向反馈环; 同时HSFA2直接激活编码E3泛素连接酶基因SGIP1的表达, SGIP1蛋白参与降解转录后基因沉默(POSTTRANIONAL GENE SILENCE, PTGS)调节因子SGS3 (SUPPRESSOR OF GENE SILENCING 3) (Zhong et al., 2013), 从而抑制ta-siRNAs的产生.REF6-HSFA2反馈环和ta-siRNAs含量下降共同作用, 上调它们的共同靶标HTT5 (HEAT-INDUCED TAS1 TARGET 5)基因的表达, 导致植物提早开花和感病性增加(Liu et al., 2019).该研究揭示了一个由组蛋白去甲基化酶、染色质重塑因子、转录因子、泛素连接酶和小RNA共同组成的表观调控网络, 维持植物对高温记忆传代的机制. ...

Abiotic stress signaling and responses in plants
1
2016

... 盐胁迫是限制农作物生产的重要环境因子, 严重制约了农业发展(Munns and Tester, 2008).有研究表明, 盐胁迫诱导[Ca2+]cyt迅速上升(Knight et al., 1997), 激活SOS途径, 增强植物对盐胁迫的耐受性(Zhu, 2016).然而, 植物如何感受盐胁迫这一科学问题一直未被阐明; 同时, 盐胁迫诱导[Ca2+]cyt迅速上升, 这其中的感受器及其作用的分子机制也未明确.胡章立研究组与合作者发现了植物盐受体GIPC, 并揭示了其作用机制.他们通过遗传筛选分离出盐胁迫诱导[Ca2+]cyt升高的缺陷突变体moca1.图位克隆发现MOCA1编码IPUT1 (inositol phosphorylceramide glucuronosyltransferase 1), 能将GlcA (glucuronic acid)转移到IPC (inositol phosphorylceramide)在细胞质膜外侧形成的鞘脂GIPC (glycosyl inositol phosphorylceramide).在盐胁迫下, 胞外的Na+结合到植物细胞质膜外侧的GIPC, 引起细胞表面电势变化, 从而打开质膜的Ca2+通道, 导致[Ca2+]cyt增加, 激活SOS通路以适应盐胁迫环境.不同于动物的盐感受离子通道, 植物特异的GIPC鞘脂是非离子通道盐受体(Jiang et al., 2019).这种盐胁迫响应机制可能意味着脂质参与了对各种环境盐胁迫水平的适应, 可用于提高作物耐盐性, 同时也为进一步揭示植物适应全球环境变化的生理生态效应及分子机制奠定了新的理论基础. ...




备案号: 京ICP备16067583号-21
版权所有 © 2021 《植物学报》编辑部
地址:北京香山南辛村20号 邮编:100093
电话:010-62836135 010-62836131 E-mail:cbb@ibcas.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发

相关话题/植物 基因 信号 结构 微生物