删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

植物激素研究中的化学生物学思路与应用

本站小编 Free考研考试/2022-01-01

徐佳慧1,2, 代宇佳2,3, 罗晓峰2,3, 舒凯,2,*, 谭伟明,1,*1中国农业大学农学院, 北京 100193
2西北工业大学生态环境学院, 西安 710012
3四川农业大学生态农业研究所, 成都 611130

Thoughts and Applications of Chemical Biology in Phytohormonal Research

Jiahui Xu1,2, Yujia Dai2,3, Xiaofeng Luo2,3, Kai Shu,2,*, Weiming Tan,1,* 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
2College of Ecological and Environmental, Northwestern Polytechnical University, Xi’an 710012, China
3Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China

通讯作者: *E-mail: kshu@nwpu.edu.cn; E-mail: tanwm@cau.edu.cn

责任编辑: 白羽红
收稿日期:2019-08-9接受日期:2019-12-31网络出版日期:2020-05-01
基金资助:国家重点研发计划(2017YFD0201300)
国家自然科学基金(31872850)


Corresponding authors: *E-mail: kshu@nwpu.edu.cn; E-mail: tanwm@cau.edu.cn
Received:2019-08-9Accepted:2019-12-31Online:2020-05-01


摘要
植物激素是植物生长发育过程中必不可少的重要调节物质, 它们直接或间接参与调控从种子萌发到成熟的各个发育阶段以及对生物/非生物胁迫的响应。随着利用小分子化合物探究生物体生理代谢分子机制的不断发展, 植物生物学与化学之间一个新的前沿交叉学科——化学生物学随之诞生, 并在短时间内取得了重要进展。化学生物学的思路与方法在植物激素研究领域中起到了不可替代的作用, 尤其是在激素合成及信号转导研究领域。该文概述了主要植物激素的小分子类似物及其在植物生长发育和生物/非生物胁迫响应等方面的作用机制, 并讨论了激素类似物在实际生产中的应用潜力及未来的研究方向。
关键词: 植物激素;化学生物学;激素类似物;分子功能;发育

Abstract
Phytohormones are important regulatory substances for plant growth, directly or indirectly functioning in various developmental stages, from seed germination to maturity, as well as numerous biotic/abiotic stresses response. With the continuous improvement of small molecular compounds used to explore the molecular mechanisms of physiology and metabolism, chemical biology, a new frontier interdisciplinary discipline between plant biology and chemistry, was coined, and the important progresses have been achieved in a short time in the past several years. It has been revealed that the ideas and methods of chemical biology play an irreplaceable role in the research of plant hormones, especially in the area of plant signal transduction. This review summarizes the published small molecular analogs of major plant hormones, and outlines the mechanisms of how these small molecular analogs function in plant growth and development, and in response to biotic/abiotic stresses. Finally, the potential applications of these analogs in agricultural practice and future research directions were discussed.
Keywords:phytohormones;chemical biology;hormone analogue;molecular function;development


PDF (926KB)摘要页面多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
徐佳慧, 代宇佳, 罗晓峰, 舒凯, 谭伟明. 植物激素研究中的化学生物学思路与应用. 植物学报, 2020, 55(3): 369-381 doi:10.11983/CBB19150
Xu Jiahui, Dai Yujia, Luo Xiaofeng, Shu Kai, Tan Weiming. Thoughts and Applications of Chemical Biology in Phytohormonal Research. Chinese Bulletin of Botany, 2020, 55(3): 369-381 doi:10.11983/CBB19150


随着化学与植物生物学、分子生物学学科之间的不断碰撞与融合, 科学家将外源天然化合物或人工合成的小分子作为探针, 用于探究生物体生理代谢过程的分子机制, 主要包括分子识别与分子间相互作用、细胞分化与发育及细胞信号转导等小分子调控作用。因而, 化学生物学作为植物学、分子生物学与化学等学科之间一个新的前沿交叉学科随之诞生(Hicks and Raikhel, 2009; Armstrong and Que, 2012)。

植物激素广泛参与调控植物各个生长发育阶段, 包括种子萌发、幼苗建成、开花、果实成熟及脱落凋零等过程, 同时也调节植物生长以适应不断变化的各类生物或非生物逆境胁迫(Wolters and Jürgens, 2009)。植物激素的信号转导通路一般包括激素受体、正/负调节因子和下游应答基因(Hauser et al., 2011)。化学生物学研究的生物活性小分子可以通过激活或抑制各种激素信号转导的级联反应, 从而精细调节细胞中由激素调控的各代谢通路。因此, 很多植物激素的研究一直与小分子类似物的开发紧密相关。全面、深入地理解植物激素人工合成类似物对于探究激素在植物发育过程中的功能至关重要。

近年来, 植物学家在植物激素合成及信号转导领域取得了一系列重要进展, 其中化学生物学思路与方法的大量应用发挥了不可替代的作用。本文对近年来各类主要植物激素小分子类似物的分子功能及应用进行总结, 重点论述这些类似物在植物生长发育和生物/非生物胁迫响应方面的分子功能, 并在此基础上讨论了这些小分子类似物在实际生产中的应用潜力及未来的研究方向。

1 脱落酸类似物及其分子功能

1.1 Pyrabactin

利用化学遗传学方法合成的一种名为pyrabactin的生长抑制剂具有脱落酸(abscisic acid, ABA)激动剂的效应, 这是第一个人工合成的ABA类似物(Park et al., 2009; Ma et al., 2009)。通过对pyrabactin进行研究, 已鉴定出ABA受体蛋白家族PYR/PYL/RCAR (简称PYLs) (Park et al., 2009)。ABA及其受体PYLs与PP2C (type 2C protein phosphatase)形成PYLs- ABA-PP2C复合体, 从而抑制PP2C的活性并激活SnRK2 (sucrose non-fermenting 1-related protein kinase 2)激酶活性, 最终激活下游基因, 使ABA信号得以传递(Melcher et al., 2009; Soon et al., 2012)。

Pyrabactin是一种以磺胺为基础的激动剂, 与ABA没有化学结构上的相似性, 但在功能上二者却极其相似(Zhao et al., 2007; Park et al., 2009)。Pyrabactin能够与PYL受体特异结合, 使PYR1与下游效应分子的蛋白相互作用, 从而抑制种子萌发和下胚轴生长(Nishimura et al., 2010; Puli and Raghavendra, 2012; Yang et al., 2017)。Pyrabactin还通过介导气孔运动和维持植物体水分平衡, 调节水分亏缺相关的胁迫响应。一方面, pyrabactin能够识别气孔保卫细胞及其它植物组织中的ABA相关信号, 并通过ABA-PYL-PP2C复合物激活ABA反应激酶, 随后, 保卫细胞pH值上升, NADPH氧化酶活性增强, 活性氧和NO水平升高(Kim et al., 2010; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015)。在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012)。

虽然pyrabactin具有高稳定性和低成本的特点, 但其生理活性和功能作用次于天然ABA (Peterson et al., 2010; Cao et al., 2013; Fan et al., 2015)。因此, 在pyrabactin结构已知的基础上, 科学家将继续开发出其它具有更强ABA活性的类似物, 以应用于农业生产(Cao et al., 2013, 2017; Vaidya et al., 2017a)。

1.2 AM1

根据激活ABA受体的能力及类ABA功能检测筛选出一种人工合成的ABA类似物AM1 (ABA mimc1) (Cao et al., 2013), 又称quinabactin (Okamoto et al., 2013)。AM1也属于磺胺类化合物, 具有与pyrabactin相似的稳定结构(Cao et al., 2013)。但AM1拥有比pyrabactin更强的ABA激动效应, 能够高效结合ABA受体(Cao et al., 2013; Okamoto et al., 2013)。

AM1参与调控ABA信号转导的一系列基因的表达。外源ABA和AM1处理均可下调PYR/PYL表达, 上调PP2C表达, 并改变SnRK2基因家族的表达水平, 进而下调AREB/ABF (ABA-responsive element binding protein/ABRE-binding factor)家族的ABF1, 最终提高甘蓝型油菜(Brassica napus)的抗旱性(Xiong et al., 2018)。其中, SnRK2和ABF1是ABA信号通路的正调控因子, ABA处理植株中SnRK2ABF家族基因的表达存在物种特异性(Dalal and Inupakutika, 2014; Yoshida et al., 2015; Wang et al., 2016)。

AM1在非生物胁迫响应方面的功能也很显著, 可提高植物对干旱和寒冷逆境的耐受性(Cao et al., 2013; Cheng et al., 2016)。在干旱条件下, AM1可以提高植物的生长速率、生物量和叶面积(Naeem et al., 2016), 调节气孔运动, 减少植株的水分流失(Hartung et al., 2002)。AM1还可以抑制光合作用相关基因的表达, 显著改善植株光合器官的超微结构, 调节荧光发射和叶绿素含量, 从而减轻细胞氧化应激, 最终增强植株的抗旱性(Parmar et al., 2013; Naeem et al., 2016; Xiong et al., 2018)。此外, AM1能诱导ABF1表达, 显著降低活性氧含量, 提高抗氧化酶活性, 维持活性氧代谢的稳态和积累, 进而提高狗牙根(Cynodon dactylon)的耐冷能力(Cheng et al., 2016)。

1.3 AMF

通过在AM1的4-甲基苯环中加入氟原子, 合成了一种化合物AMFs (AM1 fluorine derivatives) (Cao et al., 2017)。加入的氟原子能增加其氢键的数量和强度, 使AMF比AM1更贴合PYL蛋白的空间结构, 具有更高的受体亲和力(Gillis et al., 2015; Cao et al., 2017)。因此, AMF可以激活并长时间维持ABA应激基因的表达, 尤其是持续诱导植物干旱应答基因的转录。AMF通过增加细胞脱水的耐受性增强植株的抗旱性, 其作用甚至比天然ABA和AM1都更加稳定和有效(Cao et al., 2017)。

1.4 Opabactin

基于对现有ABA激动剂(tetralone ABA、cyanabactin、AM1和AMF4)进行结构分析, 结合虚拟筛选、X射线晶体学和结构导向, 科学家设计合成了一种ABA类似物OP (opabactin)。与ABA相比, 其受体亲和力增加了近7倍, 体内生物活性增加了10倍(Vaidya et al., 2019)。OP与PYR1结合是由焓驱动的, 其酰胺支架可提供比以往的磺胺类化合物更多的焓驱动和更高的亲和力, 极显著地抑制种子萌发(Ladbury et al., 2010; Elzinga et al., 2019; Vaidya et al., 2019)。OP具有抗蒸腾剂活性, 可快速启动ABA信号, 且相对于ABA和其它激动剂, OP在番茄(Lycopersicon esculentum)和小麦(Triticum aestivum)中具有更加持久的作用效果。除了磺胺类激动剂所需的PYR1和PYL1外, PYL2也参与OP的蒸腾效应(Vaidya et al., 2017b, 2019)。这表明PYL2为可被合成激动剂激活的细胞靶点, 能够调控植物蒸腾作用和ABA反应。因此, OP是一种新型的动态控制植物水分利用的激动剂, 能有效缓解干旱对作物产量的影响。

2 赤霉素类似物及其分子功能

2.1 AC-94377

早在1976年, 美国氰胺公司合成了具有类似赤霉素(gibberellin, GA)活性的化合物1-(3-氯肽酰亚胺)-环己烷羧酰胺(AC-94377) (Suttle and Hultstrand, 1987)。它能够打破种子休眠, 促进种子萌发、茎伸长及调节开花, 特别是对杂草种子萌发和幼苗生长的影响甚至强于GA (Metzger, 1983; Suttle and Hultstrand, 1987; Rodaway et al., 1991)。2017年, 一系列的生化和遗传证据表明, AC-94377能够与可溶性GA受体GID1 (gibberellin insensitive dwarf 1)结合, 形成GID1-AC94377-DELLA复合物, 从而诱导DELLA蛋白降解(Jiang et al., 2017a)。同时, AC-94377被认定是GID1的激动剂, 对特定的GID1亚型具有选择性。因此, AC-94377可为新型GA功能类似物的生物学设计提供模型(Li et al., 2015)。

2.2 67D及其衍生物

通过化学文库筛选并利用PAC (GA生物合成抑制剂)抑制种子萌发的功能, 科学家鉴定出另一种GA类似物67D (Jiang et al., 2017b)。它能够与GID1结合, 使种子萌发过程免受PAC的抑制, 并能回补ga1-3突变体种子不萌发的表型。进一步研究表明, 67D的衍生物可以作为GID1的激动剂, 降解DELLA蛋白RGA, 下调GA3ox1表达, 且与GA具有相同的信号通路(Jiang et al., 2017b)。67D及其系列衍生物具有合成工艺简单及生产成本低等优点, 有望作为植物生长调节剂应用于基础研究和农业领域。

3 生长素类似物及其分子功能

3.1 合成生长素类除草剂

早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945)。SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018)。根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018)。虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003)。

SAHs能够通过TIR/AFB (transport inhibitor response/auxin-signaling F-box)泛素蛋白降解途径, 激活ABA和乙烯生物合成基因, 产生大量活性氧, 裂解细胞壁, 最终使植物生长停滞或死亡(Grossmann, 2007, 2010)。最近发现一类新的SAHs家族——芳基吡啶酸酯, 它们是吡啶羧酸的衍生物, 具有独特的除草活性, 在低剂量下具有广谱且较高的药效(Busi et al., 2018), 可以安全地用于谷类作物中(Schmitzer et al., 2015)。芳基吡啶类除草剂的兴起为开发新的SAHs提供了理论支撑及实践样例。

3.2 荧光标记生长素

研究人员结合荧光标记技术设计出荧光标记生长素类似物NBD-NAA [7-硝基-2,1,3-苯并恶唑(NBD)-共轭萘-1-乙酸(NAA)]和NBD-IAA (Hayashi et al., 2014)。该类化合物与NAA和IAA分子具有相同的转运特性, 但不与TIR1受体结合, 也不影响生长素响应基因的表达, 在生长素信号和代谢方面不起作用。但NBD-NAA/IAA对根系的重力性有一定的抑制效应, 可用于模拟生长素运输和运输位点成像, 有助于观察根部细胞内外分布及深入了解生长素转运动力学特征(Ottenschl?ger et al., 2003)。

IAA通过与2种不同的荧光染料FITC (fluorescein isothiocyanate)和RITC (rhodamine isothiocyanate)在吲哚亚胺基(-NH)基团上直接结合, 得到具有类似天然生长素生物活性和运输能力的荧光标记生长素IAA-FITC和IAA-RITC (Soko?owska et al., 2014)。它们能够使胚芽鞘弯曲, 诱导器官原基形成, 并模拟根的重力反应。这些生长素类似物也可以像游离生长素一样被运输, 特别是在根分生组织中。研究表明, FITC/RITC与IAA偶联可能对TIR1/AFB-Aux/ IAA受体复合物起作用(Hayashi et al., 2014)。

3.3 RubNeddins

为揭示生长素如何被感知并介导植物发育, Vain等(2019)利用生长素泛素化蛋白AXR1进行化学生物学筛选(Hua and Vierstra, 2011; Mergner and Schwechheimer, 2014; Weijers and Wagner, 2016), 鉴定出一种人工合成的类生长素小分子RNs (RubNeddins), 包括RN1-4 (RubNeddin 1-4), 均是生长素激动剂。RNs可以促进SCFTIR1/AFB-AUX/IAA共受体的组装, 加强TIR1与Aux/IAA蛋白之间的相互作用, 并促进该蛋白降解; RNs还能够诱导特定生长素启动子; 以及在转录、生化和形态学水平上引起特定生长素反应。其中, RN3显著促进侧根生长, RN4促进下胚轴生长但抑制侧根发育。此外, RN4还诱导AXR2/IAA7蛋白降解, 促进ATP酶编码基因BRAHMA的转录, 从而抑制生长素介导的顶端弯钩(apical hook)形成(Abbas et al., 2013; Wu et al., 2015; Vain et al., 2019)。

4 细胞分裂素类似物及其分子功能

4.1 6-BA

6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016)。6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011)。6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究。在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008)。6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016)。

4.2 TDZ

噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986)。TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008)。TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994)。TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998)。TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007)。

5 乙烯类似物及其分子功能

5.1 乙烯利

乙烯利(2-氯乙基磷酸, ethephon)俗称催熟剂, 是一种具有乙烯功效的植物生长调节剂, 可释放乙烯进而诱导果实变薄和成熟(Dennis, 2000; John-Karuppiah and Burns, 2010; Ish-Shalom et al., 2011)。乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010)。乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011)。在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017)。乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017)。此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015)。

5.2 1-MCP

1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997)。1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013)。研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005)。

6 独脚金内酯类似物及其分子功能

6.1 GR24

早期合成的独脚金内酯(strigolactones, SLs)类似物GR系列包括GR24、GR18、GR7及GR5等, 其中GR24是被广泛应用的人工合成的独脚金内酯类似物(Zwanenburg et al., 2009; Bromhead et al., 2014)。GR24能够促进种子萌发, 降低生长素从芽运输至茎的能力, 从而抑制芽的生长; 能以微克级水平诱导丛枝菌根真菌分枝, 并间接调控分枝发育(Yoneyama et al., 2007, 2012; Crawford et al., 2010)。此外, GR24以依赖于MAX2 (MORE AXILLARY BRANCHES 2)的方式降低生长素水平和生长素报告基因DR5-GUS的表达, 减少PIN1 (PIN-FORMED 1)的积累和离体茎段生长素的转运(Crawford et al., 2010; Ruyter-Spira et al., 2011)。因此, GR24是用于探究独脚金内酯生理功能的最佳模拟物。

6.2 Sphynolactone-7

独脚金属(Striga)植物寄生于农作物, 对农业生产造成毁灭性的破坏(Zwanenburg and Pospí?il, 2013)。SLs可以诱导Striga种子自杀式萌发, 即在没有寄主的条件下萌发而致死(Wigchert et al., 1999; Bouwmeester et al., 2007)。这促使研究人员开发出只作用于Striga而不妨碍作物正常生长的高效且低剂量的独脚金内酯类似化合物(Wigchert et al., 1999)。Uraguchi等(2018)合成了一种独脚金内酯激动剂SPL7 (sphynolactone-7), 它通过烯醇醚与环状基团丁烯内酯环相连, 同时结合天然SLs中负责受体选择模块的abc环(三环系统)和发挥功能模块的D环。这两大重要组分协同激活高亲和力独脚金内酯受体ShHTL7, 使得SPL7在微摩尔范围内起作用(Toh et al., 2015; Yao et al., 2017), 因而成为一种有效的Striga自杀式萌发刺激剂。在没有寄主存在的情况下, SPL7能够高效诱导Striga种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018)。

7 茉莉酸类似物及其分子功能

7.1 冠菌素

冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物。起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005)。COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010)。COR还能诱导花青素、

生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003)。当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015)。冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本。

8 研究展望

随着农业生产对植物生长调节剂需求的不断增加, 综合计量生物学、分析化学、结构化学和化学生物学, 开发新的小分子激素类似物已成为基础及应用研究领域的热点。虽然目前已经发现不少主要植物激素的小分子类似物, 并对其功能进行了研究(表1), 但能达到理想应用效果的并不多, 因此有些重点研究方向值得进一步关注并有望取得突破。

Table 1
表1
表1主要植物激素类似物的功能及应用
Table 1Functions and applications of major phytohormone analogues in plant
植物激素类似物名称功能应用参考文献
ABAPyrabactin结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫高效结合受体的ABA激动剂Cao et al., 2013; Okamoto et al., 2013
AMF高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因抗旱剂Cao et al., 2017
Opabactin高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久抗蒸腾剂和ABA激动剂Vaidya et al., 2019
GAAC-94377结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录GID1激动剂Jiang et al., 2017a
67D及其衍生物引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路GID1激动剂Jiang et al., 2017b
IAA合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激除草剂Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性生长素运输模拟物Hayashi et al., 2014
IAA-FITC/RITC具有游离生长素生物活性和运输能力游离生长素类似物Soko?owska et al., 2014
RubNeddins促进IAA共受体组装, 调控IAA信号, 调节根系生长发育IAA激动剂Vain et al., 2019
CTK6-BA促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵生物培养基的生长调节剂Carimi et al., 2003; Zhang et al., 2016
TDZ调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子细胞分裂素类植物生长调节剂Lu, 1993; Casanova et al., 2008
Ethylene乙烯利释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落催熟剂和生长延缓剂Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放乙烯受体抑制剂Le Deunff and Lecourt, 2016
SLGR24促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输SL生理功能模拟物Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力Striga自杀式萌发刺激剂Uraguchi et al., 2018
JA冠菌素结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性茉莉酸类植物生长调节剂Du et al., 2014; Zhou et al., 2015

新窗口打开|下载CSV

首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物。这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致。它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度。依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物。此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系。植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育。

其次, 完整、深入的生理功能验证和分子生物学研究是明确类似物功能、揭示其作用机制的重要途径。小分子类似物是探究植物激素调控机理的有效工具, 通过对不同类似物的剖析和信号通路研究, 可以深入了解对应植物激素调控不同生理功能的分子机制。利用植物激素类似物模拟天然激素功能, 可以开发出更高效的植物激素拮抗剂与激动剂。随着对植物激素特定功能的精准研究不断增多, 我们能够将其整合成一个完整而复杂的激素调控网络。

最后, 在明确化合物生理功能和作用机制的基础上, 研究化合物的作物适用谱及其剂量范畴, 在田间试验阶段针对农业生产问题进一步调查其农学效应, 建立应用技术。同时开展生产工艺研究, 进行产品化学、田间药效、毒理学、环境毒理和环境行为及残留代谢等完整的农药评价, 最终取得农药登记、实现植物激素小分子类似物新产品的农业应用。随着农药创制手段的提高、化学生物学研究的深入, 必将有越来越多新的激素功能类似物得以发现, 并应用于农业生产, 这将极大地满足农产品安全与绿色生产的要求。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Abbas M, Alabadi D, Blázquez MA (2013). Differential growth at the apical hook: all roads lead to auxin
Front Plant Sci 4, 441.

URLPMID:24204373 [本文引用: 1]

Armstrong F, Que L Jr (2012). Current opinion in chemical biology
Curr Opin Chem Biol 16, 1-2.

DOI:10.1016/j.cbpa.2012.03.011URLPMID:22481112 [本文引用: 1]

Arndt FR, Rusch R, Stillfried HV, Hanisch B, Martin WC (1976). A new cotton defoliant
Plant Physiol 57, S-99.

DOI:10.1104/pp.57.6.862URLPMID:16659586 [本文引用: 1]
Glutamate synthetase (glutamine[amide]:alpha ketoglutarate amino transferase oxidoreductase) activity has been demonstrated in the developing cotyledons of Pisum sativum L. cv. Burpeeana. The enzyme appears to be soluble and is specific for glutamine as amide donor. The enzyme activity is greater with NADH than with NADPH as electron donor.It is suggested that glutamate synthetase in the developing cotyledon provides a mechanism by which the amide nitrogen of glutamine, from the translocatory stream, is converted into the amino nitrogen of glutamate; transamination reactions involving this synthesized glutamate could provide the amino groups for the biosynthesis of the seed protein amino acids.

Bender CL, Alarcón-Chaidez F, Gross DC (1999). Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases
Microbiol Mol Biol 63, 266-292.

[本文引用: 2]

Benedetti CE, Arruda P (2002). Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio
Plant Physiol 128, 1255-1263.

DOI:10.1104/pp.010813URLPMID:11950974 [本文引用: 1]
The Arabidopsis gene ATHCOR1, which encodes the CORI1 (coronatine-induced) protein, was expressed in bacterial cells. Soluble recombinant CORI1 was purified and shown to possess chlorophyllase (Chlase) activity in vitro. To determine its activity in vivo, wild-type Arabidopsis and coi1 mutant, which lacks ATHCOR1 transcripts, were transformed with sense and antisense forms of the gene. Wild-type and coi1 plants overexpressing ATHCOR1 showed increased contents of chlorophyllide (Chlide) without a substantial change in the total amount of the extractable chlorophyll (Chl). These plants presented high Chlide to Chl ratios in leaves, whereas antisense plants and nontransformed coi1 mutant showed undetectable ATHCOR1 mRNA and significantly lower Chlide to Chl ratios, relative to wild-type control. Overexpression of ATHCOR1 caused an increased breakdown of Chl a, as revealed by the Chlide a to b ratio, which was significantly higher in sense than wild-type, coi1 mutant, and antisense plants. This preferential activity of CORI1 toward Chl a was further supported by in vitro analyses using the purified protein. Increased Chlase activity was detected in developing flowers, which correlated to the constitutive expression of ATHCOR1 in this organ. Flowers of the antisense plant showed reduced Chlide to Chl ratio, suggesting a role of CORI1 in Chl breakdown during flower senescence. The results show that ATHCOR1 has Chlase activity in vivo, however, because coi1 flowers have no detectable ATHCOR1 mRNA and present Chlide to Chl ratios comparable with the wild type, an additional Chlase is likely to be active in Arabidopsis. In accordance, transcripts of a second Arabidopsis Chlase gene, AtCLH2, were detected in both normal and mutant flowers.

Bleecker AB, Kende H (2000). Ethylene: a gaseous signal molecule in plants
Annu Rev Cell Dev 16, 1-18.

[本文引用: 1]

Boerjan W, Genetello C, Van Montagu M, Inzé D (1992). A new bioassay for auxins and cytokinins
Plant Physiol 99, 1090-1098.

DOI:10.1104/pp.99.3.1090URLPMID:16668975 [本文引用: 1]
The authors have developed a sensitive bioassay that can be used to detect auxins as well as cytokinins. The bioassay is based on the expression in transformed tobacco (Nicotiana tabacum) mesophyll protoplasts of a chimeric gene, consisting of the upstream sequences of the Agrobacterium tumefaciens gene 5, coupled to the coding sequence of the beta-glucuronidase. The expression of this gene is induced by the presence of both auxin and cytokinin in the culture medium. Using this assay, indole-3-acetic acid was detected at 5 x 10(-8) molar, whereas trans-zeatin could be detected at 5 x 10(-11) molar. The assay can be performed in microtiter plates, allowing numerous samples to be analyzed simultaneously. Only 2.5 x 10(5) protoplasts are required for one individual assay in 250 microliters of culture medium and for qualitative results, the reaction is readily visualized by ultraviolet light.

Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007). Rhizosphere communication of plants, parasitic plants and AM fungi
Trends Plant Sci 12, 224-230.

DOI:10.1016/j.tplants.2007.03.009URLPMID:17416544 [本文引用: 1]
Plants use an array of secondary metabolites to defend themselves against harmful organisms and to attract others that are beneficial. However, the attraction of beneficial organisms could also lead to abuse by malevolent organisms. An exciting example of such abuse is the relationship between plants, beneficial mutualistic arbuscular mycorrhizal fungi and harmful parasitic plants. Signalling molecules called strigolactones, which are secreted by plant roots in low concentrations, induce the growth of both obligate biotrophs. Here, we review the importance of strigolactones for these two interactions and discuss possible developments that should further clarify the role of these signalling molecules in rhizosphere processes.

Bromhead LJ, Visser J, McErlean CSP (2014). Enantioselective synthesis of the strigolactone mimic (+)-GR24
J Organ Chem 79, 1516-1520.

[本文引用: 2]

Brooks DM, Bender CL, Kunkel BN (2005). The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana
Mol Plant Pathol 6, 629-639.

DOI:10.1111/j.1364-3703.2005.00311.xURLPMID:20565685 [本文引用: 1]
SUMMARY Successful pathogen infection likely involves the suppression of general antimicrobial host defences. One Pseudomonas syringae virulence factor proposed to act in this manner is coronatine (COR), a phytotoxin believed to function as an analogue of one or more jasmonates, a family of plant growth regulators. COR biosynthetic (COR(-)) mutants of P. syringae pv. tomato strain DC3000 exhibit reduced virulence on Arabidopsis thaliana and tomato. In the present study, three genetically and biochemically defined COR(-) mutants of DC3000 were used to explore potential effects of COR and its precursors, coronafacic acid (CFA) and coronamic acid (CMA), on defence signalling pathways in A. thaliana. Inoculation with wild-type DC3000 resulted in the accumulation of several jasmonate-responsive transcripts, whereas infection with a mutant strain that accumulates CFA, which is structurally similar to methyl jasmonate (MeJA), did not. Thus, COR, but not CFA, stimulates jasmonate signalling during P. syringae infection of A. thaliana. The ability of the COR(-) mutants to grow to high levels in planta was fully restored in A. thaliana lines deficient for salicylic acid (SA) accumulation. Although the COR(-) mutants grew to high levels in SA-deficient plants, disease symptoms were reduced in these plants. Collectively, these results indicate that COR is required both for overcoming or suppressing SA-dependent defences during growth in plant tissue and for normal disease symptom development in A. thaliana.

Busi R, Goggin DE, Heap IM, Horak MJ, Jugulam M, Masters RA, Napier RM, Riar DS, Satchivi NM, Torra J, Westra P, Wright TR (2018). Weed resistance to synthetic auxin herbicides
Pest Manag Sci 74, 2265-2276.

[本文引用: 3]

Cao MJ, Liu X, Zhang Y, Xue XQ, Zhou XE, Melcher K, Gao P, Wang FX, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong DF, Zhu JK, Xu HE, Xu Y (2013). An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants
Cell Res 23, 1043-1054.

URLPMID:23835477 [本文引用: 7]

Cao MJ, Zhang YL, Liu X, Huang H, Zhou XE, Wang WL, Zeng A, Zhao CZ, Si T, Du JM, Wu WW, Wang FX, Xu HE, Zhu JK (2017). Combining chemical and genetic approaches to increase drought resistance in plants
Nat Com- mun 8, 1183.

[本文引用: 5]

Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F (2003). Cytokinins: new apoptotic inducers in plants
Plan- ta 216, 413-421.

[本文引用: 2]

Casanova E, Moysset L, Trillas MI (2008). Effects of agar concentration and vessel closure on the organogenesis and hyperhydricity of adventitious carnation shoots
Biol Plantarum 52, 1-8.

[本文引用: 2]

Chang IK, Foy CL (1983). Rapid growth responses of dwarf corn coleoptile sections to picloram
Pestic Biochem Physiol 19, 203-209.

[本文引用: 1]

Cheng ZM, Jin R, Cao MJ, Liu XD, Chan ZL (2016). Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon)
Plant Cell Tissue Organ Cult 125, 231-240.

[本文引用: 2]

Christoffoleti PJ, de Figueiredo MRA, Peres LEP, Nissen S, Gaines T (2015). Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances
Sci Agric 72, 356-362.

[本文引用: 1]

Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska MA, Leyser O (2010). Strigolactones enhance competition between shoot branches by dampening auxin transport
Development 137, 2905-2913.

URLPMID:20667910 [本文引用: 2]

Crosby KE, Aung LH, Buss GR (1981). Influence of 6- benzylaminopurine on fruit-set and seed development in two soybean, Glycine max (L.) Merr. genotypes
Plant Physiol 68, 985-988.

URLPMID:16662076 [本文引用: 1]

Dalal M, Inupakutika M (2014). Transcriptional regulation of ABA core signaling component genes in sorghum (Sorghum bicolor L. Moench)
Mol Breed 34, 1517-1525.

[本文引用: 1]

Dargeviciute A, Roux C, Decreux A, Sitbon F, Perrot-Rechenmann C (1998). Molecular cloning and expression of the early auxin-responsive Aux/IAA gene family in Nicotiana tabacum
Plant Cell Physiol 39, 993-1002.

DOI:10.1093/oxfordjournals.pcp.a029311URLPMID:9871362 [本文引用: 1]
Early auxin-regulated tobacco cDNAs, belonging to the Aux/IAA gene family have been isolated by screening of a cDNA library prepared from auxin-treated suspension-grown etiolated seedlings of Nicotiana tabacum. The probes used were either RT-PCR fragments or an insert resulting from mRNA differential display selection. All of them possessed the structural features which characterize the Aux/IAA gene products. The auxin response of three distinct Nt-iaa subclasses has been characterized in terms of kinetics, dose-response and specificity as several plant hormones and chemicals have been tested for their ability to alter Nt-iaa mRNA accumulation. Differences of auxin responses have been observed between the Nt-iaa analysed, revealing significant differences of regulation. The effect of the protein synthesis inhibitor cycloheximide suggested that Nt-iaa2.3, Nt-iaa4.3 and strictly related genes can be classified as primary auxin-responsive genes and Nt-iaa28 as a late one. The steady-state mRNA level of these Nt-iaa has also been determined in organs of tobacco plants.

de Wild HPJ, Woltering EJ, Peppelenbos HW (1999). Carbon dioxide and 1-MCP inhibit ethylene production and respiration of pear fruit by different mechanisms
J Exp Bot 50, 837-844.

[本文引用: 1]

Defilippi BG, Kader AA, Dandekar AM (2005). Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene
Plant Sci 168, 1199-1210.

[本文引用: 1]

Dennis FG Jr (2000). The history of fruit thinning
Plant Growth Regul 31, 1-16.

[本文引用: 1]

Dong L, Zhou HW, Sonego L, Lers A, Lurie S (2001). Ripening of 'Red Rosa' plums: effect of ethylene and 1-methylcyclopropene
Aust J Plant Physiol 28, 1039-1045.

[本文引用: 1]

Du MW, Li Y, Tian XL, Duan LS, Zhang MC, Tan WM, Xu DY, Li ZH (2014). The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton
PLoS One 9, e97652.

URLPMID:24845465 [本文引用: 2]

Elzinga D, Sternburg E, Sabbadin D, Bartsch M, Park SY, Vaidya A, Mosquna A, Kaundal A, Wendeborn S, Lachia M, Karginov FV, Cutler SR (2019). Defining and exploiting hypersensitivity hotspots to facilitate abscisic acid agonist optimization
ACS Chem Biol 14, 332-336.

DOI:10.1021/acschembio.8b00955URLPMID:30668093 [本文引用: 1]
Pyrabactin resistance 1 (PYR1) and related abscisic acid (ABA) receptors are new targets for manipulating plant drought tolerance. Here, we identify and use PYR1 hypersensitive mutants to define ligand binding hotspots and show that these can guide improvements in agonist potency. One hotspot residue defined, A160, is part of a pocket that is occupied by ABA's C6 methyl or by the toluyl methyl of the synthetic agonist quinabactin (QB). A series of QB analogues substituted at the toluyl position were synthesized and provide up to 10-fold gain in activity in vitro. Furthermore, we demonstrate that hypersensitive receptors can be used to improve the sensitivity of a previously described mammalian cell ABA-regulated transcriptional circuit by three orders of magnitude. Collectively, our data show that the systematic mapping of hypersensitivity sites in a ligand-binding pocket can help guide ligand optimization and tune the sensitivity of engineered receptors.

Fan WQ, Li J, Jia J, Wang F, Cao CL, Hu JJ, Mu ZX (2015). Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner
Plant Physiol Biochem 94, 28-34.

DOI:10.1016/j.plaphy.2015.05.005URLPMID:26000467 [本文引用: 2]
Pyrabactin, an agonist of abscisic acid (ABA), has led to the isolation and characterization of pyrabactin resistance 1/pyrabactin resistance 1-like (PYR1/PYLs) ABA receptors in Arabidopsis, which has well explained ABA-mediated stomatal movement and stress-related gene expression. In addition to inducing stomatal closure and inhibiting transpiration, ABA can also enhance root hydraulic conductivity (Lpr), thus maintaining water balance under water deficiency-related stress, but its molecular mechanism remains unclear. In the present study, the root hydraulic properties of maize seedlings in response to pyrabactin were compared to those caused by ABA. Similar to ABA, lower concentration of pyrabactin induced a remarkable increase in Lpr as well as in the gene expression of the plasma membrane intrinsic protein (ZmPIP) aquaporin and in the ZmPIP2; 1/2; 2 protein abundance. The pyrabactin-induced enhancement of Lpr was abolished by H2O2 application, indicating that pyrabactin regulates Lpr by modulating ZmPIP at transcriptional, translational and post-translational (activity) level. Pyrabactin-mediated water transport and ZmPIP gene expression were phosphorylation-dependent, suggesting that ABA-PYR1-(PP2C)-protein kinase-AQP signaling pathway may be involved in this process. As we know this is the first established ABA signaling transduction pathway that mediated water transport in roots. This observation further addressed the importance of PYR1/PYLs ABA receptor in regulating plant water use efficiency from the under ground level. Except inhibiting transpiration in leaves, our result introduces the exciting possibility of application ABA agonists for regulating roots water uptake in field, with a species- and dose dependent manner.

Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994). Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen
Plant Cell 6, 751-759.

DOI:10.1105/tpc.6.5.751URLPMID:12244256 [本文引用: 1]
The phytotoxin coronatine and the plant growth regulator methyl jasmonate (MeJA) caused similar growth-inhibitory effects on Arabidopsis seedlings. To test whether these two compounds have similar action, 14 independent coi1 (coronatine-insensitive) mutants of Arabidopsis were selected. The mutants segregated as single recessive Mendelian markers, and all were alleles at the coi1 locus. All coi1 mutants were also insensitive to MeJA and were male sterile. Both coronatine and MeJA inhibited root growth, stimulated anthocyanin accumulation, and increased the level of two proteins of ~31 and ~29 kD detected in SDS-polyacrylamide gels of wild-type Arabidopsis but caused none of these effects in the coi1 mutant. Coronatine and MeJA also induced the systemic appearance of proteinase inhibitor activity in tomato. The male-sterile flowers of the coi1 mutant produced abnormal pollen and had reduced level of an ~31-kD protein, which was abundant in the wild-type flowers. A coronatine-producing strain of Pseudomonas syringae grew in leaves of wild-type Arabidopsis to a population more than 100 times greater than it reached in the coi1 mutant. We conclude that coronatine mimics the action of MeJA and that coi1 controls a step in MeJA perception/response and in flower development.

Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009). (+)-7-iso-jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate
Nat Chem Biol 5, 344-350.

DOI:10.1038/nchembio.161URLPMID:19349968 [本文引用: 1]
Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCF(COI1)-mediated proteasome degradation of JAZ repressors. (-)-JA-L-Ile is the proposed bioactive hormone, and SCF(COI1) is its likely receptor. We found that the biological activity of (-)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic isomer (+)-JA-L-Ile, which suggests that the stereochemical orientation of the cyclopentanone-ring side chains greatly affects receptor binding. Detailed GC-MS and HPLC analyses showed that the (-)-JA-L-Ile preparations currently used in ligand binding studies contain small amounts of the C7 epimer (+)-7-iso-JA-L-Ile. Purification of each of these molecules demonstrated that pure (-)-JA-L-Ile is inactive and that the active hormone is (+)-7-iso-JA-L-Ile, which is also structurally more similar to coronatine. In addition, we show that pH changes promote conversion of (+)-7-iso-JA-L-Ile to the inactive (-)-JA-L-Ile form, thus providing a simple mechanism that can regulate hormone activity through epimerization.

Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
Plant Physiol Biochem 48, 909-930.

DOI:10.1016/j.plaphy.2010.08.016URLPMID:20870416 [本文引用: 1]
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and alpha-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.

Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015). Applications of fluorine in medicinal chemistry
J Med Chem 58, 8315-8359.

DOI:10.1021/acs.jmedchem.5b00258URLPMID:26200936 [本文引用: 1]
The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, (18)F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography.

Grossmann K (2007). Auxin herbicide action: lifting the veil step by step
Plant Signal Behav 2, 421-423.

DOI:10.4161/psb.2.5.4417URLPMID:19704620 [本文引用: 1]
Over decades, the so-called growth regulator or auxin herbicides had resisted all efforts to elucidate their molecular interactions and the biochemical and physiological basis of their phytotoxicity.1-3 The identification and crystal structure analysis of receptors for auxin perception4-8 and the discovery of a new hormone interaction in signalling between auxin, ethylene and the up-regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) in abscisic acid (ABA) biosynthesis,9 leading to ABA accumulation,3 are long steps towards understanding of auxin herbicide action in dicot plants.

Grossmann K (2010). Auxin herbicides: current status of mechanism and mode of action
Pest Manag Sci 66, 113-120.

URLPMID:19823992 [本文引用: 3]

Grossmann K, Scheltrup F, Kwiatkowski J, Caspar G (1996). Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants
J Plant Physiol 149, 475-478.

DOI:10.1016/S0176-1617(96)80153-2URL [本文引用: 1]

Hagemann MH, Winterhagen P, Hegele M, Wünsche JN (2015). Ethephon induced abscission in mango: physiological fruitlet responses
Front Plant Sci 6, 706.

DOI:10.3389/fpls.2015.00706URLPMID:26442021 [本文引用: 2]
Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets.

Hare PD, van Staden J (1994). Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus
Plant Cell Physiol 35, 1121-1125.

[本文引用: 1]

Hartung W, Sauter A, Hose E (2002). Abscisic acid in the xylem: where does it come from, where does it go to?
J Exp Bot 53, 27-32.

URLPMID:11741037 [本文引用: 1]

Hauser F, Waadt R, Schroeder JI (2011). Evolution of abscisic acid synthesis and signaling mechanisms
Curr Biol 21, R346-R355.

DOI:10.1016/j.cub.2011.03.015URLPMID:21549957 [本文引用: 1]
The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized.

Hayashi KI, Nakamura S, Fukunaga S, Nishimura T, Jenness MK, Murphy AS, Motose H, Nozaki H, Furutani M, Aoyama T (2014). Auxin transport sites are visualized in planta using fluorescent auxin analogs
Proc Natl Acad Sci USA 111, 11557-11562.

DOI:10.1073/pnas.1408960111URLPMID:25049419 [本文引用: 3]
The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.

Hershkovitz V, Saguy SI, Pesis E (2005). Postharvest application of 1-MCP to improve the quality of various avocado cultivars
Postharvest Biol Technol 37, 252-264.

[本文引用: 1]

Hicks GR, Raikhel NV (2009). Opportunities and challenges in plant chemical biology
Nat Chem Biol 5, 268-272.

DOI:10.1038/nchembio0509-268URLPMID:19377447 [本文引用: 1]

Hua ZH, Vierstra RD (2011). The cullin-RING ubiquitinprotein ligases
Annu Rev Plant Biol 62, 299-334.

URLPMID:21370976 [本文引用: 1]

Hutchinson MJ, Murr D, Krishnaraj S, Senaratna T, Saxena PK (1997). Does ethylene play a role in thidia- zuron-regulated somatic embryogenesis of geranium (Pelargonium × hortorum Bailey) hypocotyl cultures?
In Vitro Cell Dev Biol Plant 33, 136-141.

[本文引用: 1]

Ish-Shalom M, Dahan Y, Maayan I, Irihimovitch V (2011). Cloning and molecular characterization of an ethylene receptor gene, MiERS1, expressed during mango fruitlet abscission and fruit ripening
Plant Physiol Biochem 49, 931-936.

URLPMID:21676621 [本文引用: 2]

Jiang K, Otani M, Shimotakahara H, Yoon JM, Park SH, Miyaji T, Nakano T, Nakamura H, Nakajima M, Asami T (2017a). Substituted phthalimide AC94377 is a selective agonist of the gibberellin receptor GID1
Plant Physiol 173, 825-835.

DOI:10.1104/pp.16.00937URLPMID:27899534 [本文引用: 2]
Gibberellin (GA) is a major plant hormone that regulates plant growth and development and is widely used as a plant growth regulator in agricultural production. There is an increasing demand for function-limited GA mimics due to the limitations on the agronomical application of GA to crops, including GA's high cost of producing and its leading to the crops' lodging. AC94377, a substituted phthalimide, is a chemical that mimics the growth-regulating activity of GAs in various plants, despite its structural difference. Although AC94377 is widely studied in many weeds and crops, its mode of action as a GA mimic is largely unknown. In this study, we confirmed that AC94377 displays GA-like activities in Arabidopsis (Arabidopsis thaliana) and demonstrated that AC94377 binds to the Arabidopsis GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor (AtGID1), forms the AtGID1-AC94377-DELLA complex, and induces the degradation of DELLA protein. Our results also indicated that AC94377 is selective for a specific subtype among three AtGID1s and that the selectivity of AC94377 is attributable to a single residue at the entrance to the hydrophobic pocket of GID1. We conclude that AC94377 is a GID1 agonist with selectivity for a specific subtype of GID1, which could be further developed and used as a function-limited regulator of plant growth in both basic study and agriculture.

Jiang K, Shimotakahara H, Luo M, Otani M, Nakamura H, Moselhy SS, Abualnaja KO, Al-Malki AL, Kumosani TA, Kitahata N, Nakano T, Nakajima M, Asami T (2017b). Chemical screening and development of novel gibberellin mimics
Bioorg Med Chem Lett 27, 3678-3682.

DOI:10.1016/j.bmcl.2017.07.012URLPMID:28716493 [本文引用: 2]
Gibberellin (GA) plays versatile roles in the regulation of plant growth and development and therefore is widely used as a regulator in agriculture. We performed a chemical library screening and identified a chemical, named 67D, as a stimulator of seed germination that was suppressed by paclobutrazol (PAC), a GA biosynthesis inhibitor. In vitro binding assays indicated that 67D binds to the GID1 receptor. Further studies on the structure-activity relationship identified a chemical, named chemical 6, that strongly promoted seed germination suppressed by PAC. Chemical 6 was further confirmed to promote the degradation of RGA (for repressor of ga1-3), a DELLA protein, and suppress the expression levels of GA3ox1 in the same manner as GA does. 67D and its analogs are supposed to be agonists of GID1 and are expected to be utilized in agriculture and basic research as an alternative to GA.

John-Karuppiah KJ, Burns JK (2010). Expression of ethylene biosynthesis and signaling genes during differential abscission responses of sweet orange leaves and mature fruit
J Am Soc Hortic Sci 135, 456-464.

[本文引用: 2]

Jones MPA, Yi ZJ, Murch SJ, Saxena PK (2007). Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems
Plant Cell Rep 26, 13-19.

DOI:10.1007/s00299-006-0209-3URLPMID:16897009 [本文引用: 1]
The goals of this study were to investigate thidiazuron (TDZ)-induced morphogenesis of Echinacea purpurea L. and to assess the possibility of developing a liquid-based protocol for rapid micropropagation. Callus development and root organogenesis were observed on leaf explants cultured on media containing 2,4-dicholorophenoxyacetic acid or dicamba, but no plantlets were regenerated. Addition of TDZ to the culture medium as the sole growth regulator resulted in the production of regenerable callus cultures. The highest rate of regeneration was observed for explants cultured on medium with TDZ at 2.5 microM or higher. Tissue derived from 1.0 microM TDZ treatments was used to initiate liquid cultures. All liquid treatments produced a similar number of regenerants but significantly more healthy plants were obtained from cultures grown in the presence of 0.1 and 1.0 microM TDZ. This TDZ-based micropropagation system is the first liquid, large-scale propagation protocol developed for the mass production of E. purpurea plants.

Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine
Proc Natl Acad Sci USA 105, 7100-7105.

DOI:10.1073/pnas.0802332105URLPMID:18458331 [本文引用: 1]
Jasmonate (JA) is a lipid-derived hormone that regulates diverse aspects of plant immunity and development. An amino acid-conjugated form of JA, jasmonoyl-isoleucine (JA-Ile), stimulates binding of the F-box protein coronatine-insensitive 1 (COI1) to, and subsequent ubiquitin-dependent degradation of, jasmonate ZIM domain (JAZ) proteins that repress transcription of JA-responsive genes. The virulence factor coronatine (COR), which is produced by plant pathogenic strains of Pseudomonas syringae, suppresses host defense responses by activating JA signaling in a COI1-dependent manner. Although previous data indicate that COR acts as a molecular mimic of JA-Ile, the mechanism by which JA-Ile and COR are perceived by plant cells remains unknown. Here, we show that interaction of tomato COI1 with divergent members of the JAZ family is highly specific for JA-Ile and structurally related JA conjugates and that COR is approximately 1,000-fold more active than JA-Ile in promoting this interaction in vitro. JA-Ile competes for binding of COR to COI1-JAZ complexes, demonstrating that COR and JA-Ile are recognized by the same receptor. Binding of COR to the COI1-JAZ complex requires COI1 and is severely impaired by a point mutation in the putative ligand-binding pocket of COI1. Finally, we show that the C-terminal region of JAZ3 containing the highly conserved Jas motif is necessary and sufficient for hormone-induced COI1-JAZ interaction. These findings demonstrate that COI1 is a critical component of the JA receptor and that COR exerts its virulence effects by functioning as a potent agonist of this receptor system.

Kenyon JS, Turner JG (1992). The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine
Plant Physiol 100, 219-224.

URLPMID:16652950 [本文引用: 1]

Kim TH, B?hmer M, Hu HH, Nishimura N, Schroeder JI (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling
Annu Rev Plant Biol 61, 561-591.

URLPMID:20192751 [本文引用: 1]

Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN (2001). Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive ( coi1) mutation occurs through two distinct mechanisms
Plant J 26, 509-522.

DOI:10.1046/j.1365-313x.2001.01050.xURLPMID:11439137 [本文引用: 1]
A new allele of the coronatine-insensitive locus (COI1) was isolated in a screen for Arabidopsis thaliana mutants with enhanced resistance to the bacterial pathogen Pseudomonas syringae. This mutant, designated coi1-20, exhibits robust resistance to several P. syringae isolates but remains susceptible to the virulent pathogens Erisyphe and cauliflower mosaic virus. Resistance to P. syringae strain PstDC3000 in coi1-20 plants is correlated with hyperactivation of PR-1 expression and accumulation of elevated levels of salicylic acid (SA) following infection, suggesting that the SA-mediated defense response pathway is sensitized in this mutant. Restriction of growth of PstDC3000 in coi1-20 leaves is partially dependent on NPR1 and fully dependent on SA, indicating that SA-mediated defenses are required for restriction of PstDC3000 growth in coi1-20 plants. Surprisingly, despite high levels of PstDC3000 growth in coi1-20 plants carrying the salicylate hydroxylase (nahG) transgene, these plants do not exhibit disease symptoms. Thus resistance to P. syringae in coi1-20 plants is conferred by two different mechanisms: (i) restriction of pathogen growth via activation of the SA-dependent defense pathway; and (ii) an SA-independent inability to develop disease symptoms. These findings are consistent with the hypotheses that the P. syringae phytotoxin coronatine acts to promote virulence by inhibiting host defense responses and by promoting lesion formation.

Ladbury JE, Klebe G, Freire E (2010). Adding calorimetric data to decision making in lead discovery: a hot tip
Nat Rev Drug Discov 9, 23-27.

DOI:10.1038/nrd3054URLPMID:19960014 [本文引用: 1]
Recognition of the limitations of high-throughput screening approaches in the discovery of candidate drugs has reawakened interest in structure-based and other rational design methods. Here, we describe how isothermal titration calorimetry can be used to obtain thermodynamic data on the binding of compounds to protein targets. We propose that these data--particularly the change in enthalpy--could provide a valuable, complementary addition to established tools for selecting compounds in lead discovery and for aiding lead optimization.

Lauchli R, Boland W (2003). Indanoyl amino acid conjugates: tunable elicitors of plant secondary metabolism
Chem Rec 3, 12-21.

DOI:10.1002/tcr.10043URLPMID:12552527 [本文引用: 1]
The unassuming nature of plants belies their viciously effective defensive strategies in the face of herbivore attack. Under the direction of, among others, octadecanoid hormones, plants respond by producing phytoalexins, bitter and toxic alkaloids, protease inhibitors, and even volatile compounds that call predatory insects to the herbivores. A rational design of 4-oxoindanoyl amino acid conjugates based on the phytotoxin, coronatine, as a structural guide resulted in a series of highly active compounds which turn on defensive systems in much the same way as octadecanoid hormones. The developments in the syntheses of indanoyl amino acid conjugates have created easy access to substantial amounts of a variety of such compounds. When these compounds were tested in biological systems, they showed abilities to induce defensive responses that surpassed octadecanoid hormones. In addition, small changes in the structures of these compounds resulted in large differences in the particular defensive systems that were activated. Indanoyl amino acid conjugates are promising tools in photoaffinity approaches towards the macromolecular targets of octadecanoids and their subcellular localization. Owing to the strong activation of plant defense or their efficient induction of fruit abscission which facilitates mechanical harvest, the compounds are promising candidates for future application in agriculture.

Le Deunff E, Lecourt J (2016). Non-specificity of ethylene inhibitors: ‘double-edged’ tools to find out new targets involved in the root morphogenetic programme
Plant Biol 18, 353-361.

DOI:10.1111/plb.12405URLPMID:26434926 [本文引用: 2]
In the last decade, genetic and pharmacological approaches have been used to explore ethylene biosynthesis and perception in order to study the role of ethylene and ethylene/auxin interaction in root architecture development. However, recent findings with pharmacological approaches highlight the non-specificity of commonly used inhibitors. This suggests that caution is required for interpreting these studies and that the use of pharmacological agents is a 'double-edged' tool. On one hand, non-specific effects make interpretation difficult unless other experiments, such as with different mutants or with multiple diversely acting chemicals, are conducted. On the other hand, the non-specificity of inhibitors opens up the possibility of uncovering some ligands or modulators of new receptors such as plant glutamate-like receptors and importance of some metabolic hubs in carbon and nitrogen metabolism such as the pyridoxal phosphate biosynthesis involved in the regulation of the root morphogenetic programme. Identification of such targets is a critical issue to improve the efficiency of absorption of macronutrients in relation to root the morphogenetic programme.

Lee SB, Suh MC (2015). Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species
Plant Cell Rep 34, 557-572.

DOI:10.1007/s00299-015-1772-2URLPMID:25693495 [本文引用: 1]
The aerial parts of plants are covered with a cuticle, a hydrophobic layer consisting of cutin polyester and cuticular waxes that protects them from various environmental stresses. Cuticular waxes mainly comprise very long chain fatty acids and their derivatives such as aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters that are also important raw materials for the production of lubricants, adhesives, cosmetics, and biofuels. The major function of cuticular waxes is to control non-stomatal water loss and gas exchange. In recent years, the in planta roles of many genes involved in cuticular wax biosynthesis have been characterized not only from model organisms like Arabidopsis thaliana and saltwater cress (Eutrema salsugineum), but also crop plants including maize, rice, wheat, tomato, petunia, Medicago sativa, Medicago truncatula, rapeseed, and Camelina sativa through genetic, biochemical, molecular, genomic, and cell biological approaches. In this review, we discuss recent advances in the understanding of the biological functions of genes involved in cuticular wax biosynthesis, transport, and regulation of wax deposition from Arabidopsis and crop species, provide information on cuticular wax amounts and composition in various organs of nine representative plant species, and suggest the important issues that need to be investigated in this field of study.

Li DL, Du SQ, Tan WM, Duan HX (2015). Computational insight into the structure-activity relationship of novel N-substituted phthalimides with gibberellin-like activity
J Mol Model 21, 271.

DOI:10.1007/s00894-015-2817-8URLPMID:26412055 [本文引用: 1]
N-substituted phthalimides (NSPs) that show multiple gibberellin (GA)-like effects on the growth and development of higher plants have been reported. These NSPs may represent a potential alternative to commercial GAs. Therefore, in this work, molecular docking and molecular dynamics simulations were used to explore the mode of interaction between some NSPs and the GA receptor GID1A in order to clarify the relationship between structure and GA-like activity in the NSPs. The results obtained demonstrate that both a multiple-hydrogen-bond network and a

Liu RL, Lai TF, Xu Y, Tian SP (2013). Changes in physiology and quality of Laiyang pear in long time storage
Sci Hortic 150, 31-36.

[本文引用: 1]

Lu CY (1993). The use of thidiazuron in tissue culture
In Vitro Cell Dev Biol Plant 29, 92-96.

[本文引用: 2]

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors
Science 324, 1064-1068.

DOI:10.1126/science.1172408URLPMID:19407143 [本文引用: 2]
The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.

Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang YH, Li JY, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE (2009). A gate-latch-lock mechanism for hormone signaling by abscisic acid receptors
Nature 462, 602-608.

DOI:10.1038/nature08613URLPMID:19898420 [本文引用: 1]
Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

Mergner J, Schwechheimer C (2014). The NEDD8 modification pathway in plants
Front Plant Sci 5, 103.

DOI:10.3389/fpls.2014.00103URLPMID:24711811 [本文引用: 1]
NEDD8, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB), is an evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin, NEDD8 can be conjugated to and deconjugated from target proteins, but unlike ubiquitin, NEDD8 has not been reported to form chains similar to the different polymeric ubiquitin chains that have a role in a diverse set of cellular processes. NEDD8-modification is best known as a post-translational modification of the cullin subunits of cullin-RING E3 ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces a conformation change of the cullin that brings the ubiquitylation substrates into proximity of the interacting E2 conjugating enzyme. In turn, NEDD8 deconjugation destabilizes the cullin RING ligase complex allowing for the exchange of substrate recognition subunits via the exchange factor CAND1. In plants, components of the neddylation and deneddylation pathway were identified based on mutants with defects in auxin and light responses and the characterization of these mutants has been instrumental for the elucidation of the neddylation pathway. More recently, there has been evidence from animal and plant systems that NEDD8 conjugation may also regulate the behavior or fate of non-cullin substrates in a number of ways. Here, the current knowledge on NEDD8 processing, conjugation and deconjugation is presented, where applicable, in the context of specific signaling pathways from plants.

Metzger JD (1983). Promotion of germination of dormant weed seeds by substituted phthalimides and gibberellic acid
Weed Sci 31, 285-289.

[本文引用: 1]

Murthy BNS, Murch SJ, Saxena PK (1998). Thidiazuron: a potent regulator of in vitro plant morphogenesis
In Vitro Cell Dev Biol Plant 34, 267-275.

[本文引用: 1]

Naeem MS, Dai LL, Ahmad F, Ahmad A, Li J, Zhang CL (2016). AM1 is a potential ABA substitute for drought tolerance as revealed by physiological and ultra-structural responses of oilseed rape
Acta Physiol Plant 38, 183.

[本文引用: 2]

Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C- interacting proteins in Arabidopsis
Plant J 61, 290-299.

DOI:10.1111/j.1365-313X.2009.04054.xURLPMID:19874541 [本文引用: 1]
Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group-A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signalling, to identify redundant and early ABA signalling proteins, we pursued a proteomics approach. We generated YFP-tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1-interacting proteins by mass-spectrometric analyses of ABI1 complexes. Known ABA signalling components were isolated including SnRK2 protein kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA-signalling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1-interacting proteins in all LC-MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA-binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1-PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co-immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analysed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA-induced stomatal closure and ABA-inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1-ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase-PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR-mediated ABA signalling.

Nutman PS, Thornton HG, Quastel JH (1945). Plant- growth substances as selective weed-killers: inhibition of plant growth by 2,4-dichlorophenoxyacetic acid and other plant-growth substances
Nature 155, 498-500.

[本文引用: 1]

Okamoto M, Peterson FC, Defries A, Park SY, Endo A, Nambara E, Volkman BF, Cutler SR (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA- regulated gene expression, and drought tolerance
Proc Natl Acad Sci USA 110, 12132-12137.

DOI:10.1073/pnas.1305919110URLPMID:23818638 [本文引用: 3]
Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana. Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis, the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2. Genetic analyses show that quinabactin's effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-A resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C

Ottenschl?ger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003). Gravity-regulated differential auxin transport from columella to lateral root cap cells
Proc Natl Acad Sci USA 100, 2987-2991.

DOI:10.1073/pnas.0437936100URLPMID:12594336 [本文引用: 1]
Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.

Pan BZ, Xu ZF (2011). Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas
J Plant Growth Regul 30, 166-174.

DOI:10.1007/s00344-010-9179-3URL [本文引用: 1]

Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009). Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins
Science 324, 1068-1071.

DOI:10.1126/science.1173041URLPMID:19407142 [本文引用: 4]
Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.

Parmar P, Kumari N, Sharma V (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress
Bot Stud 54, 45.

URLPMID:28510881 [本文引用: 1]

Pathak N, Asif MH, Dhawan P, Srivastava MK, Nath P (2003). Expression and activities of ethylene biosynthesis enzymes during ripening of banana fruits and effect of 1-MCP treatment
Plant Growth Regul 40, 11-19.

[本文引用: 1]

Peterson FC, Burgie ES, Park SY, Jensen DR, Weiner JJ, Bingman CA, Chang CEA, Cutler SR, Phillips GN Jr, Volkman BF (2010). Structural basis for selective activation of ABA receptors
Nat Struct Mol Biol 17, 1109-1113.

DOI:10.1038/nsmb.1898URLPMID:20729860 [本文引用: 1]
Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

Polanco MC, Peláez MI, Ruiz ML (1988). Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik
Plant Cell Tissue Organ Cult 15, 175-182.

[本文引用: 1]

Pufky J, Qiu Y, Rao MV, Hurban P, Jones AM (2003). The auxin-induced transcriptome for etiolated Arabidopsis seed-lings using a structure/function approach
Funct Integr Genomics 3, 135-143.

DOI:10.1007/s10142-003-0093-7URLPMID:14648238 [本文引用: 1]
To increase our understanding of the mode of action of auxin, we analyzed auxin-induced changes in the Arabidopsis transcriptome with microarrays representing 20426 Arabidopsis genes. Treatment of etiolated seedlings with low concentrations of the auxin, indole-3-acetic acid (IAA), decreased the expression levels of 23 genes, whereas it increased the expression levels of 47 genes within 20 min. After 40 min, the directional trend in genomic change was predominantly an increase in gene expression. Among the most rapidly induced changes are those in genes encoding transcription factors. Promoter regions of transiently induced genes contained DNA motifs that bind auxin response (ARFAT) and silence element binding factors whereas genes induced by IAA during the entire experimental period contained MYC and ARFAT DNA motifs at higher frequencies. Six structurally diverse auxins were analyzed to determine genes that are unique to a specific auxin, as well as a common set of genes that are rapidly regulated by all tested auxins, thus enabling the identification of shared DNA motifs. In addition to ARFAT, analysis of promoter regions of genes induced by all six auxins revealed the presence of an abscisic-acid-responsive DC3 promoter-binding factor and low temperature responsive elements suggesting a possible role for abscisic acid in modulating auxin-induced responses.

Puli MR, Raghavendra AS (2012). Pyrabactin, an ABA agonist, induced stomatal closure and changes in signaling components of guard cells in abaxial epidermis of Pisum sativum
J Exp Bot 63, 1349-1356.

DOI:10.1093/jxb/err364URL [本文引用: 3]
Pyrabactin, a synthetic agonist of abscisic acid (ABA), inhibits seed germination and hypocotyl growth and stimulates gene expression in a very similar way to ABA, implying the possible modulation of stomatal function by pyrabactin as well. The effect of pyrabactin on stomatal closure and secondary messengers was therefore studied in guard cells of Pisum sativum abaxial epidermis. Pyrabactin caused marked stomatal closure in a pattern similar to ABA. In addition, pyrabactin elevated the levels of reactive oxygen species (ROS), nitric oxide (NO), and cytoplasmic pH levels in guard cells, as indicated by the respective fluorophores. However, apyrabactin, an inactive analogue of ABA, did not affect either stomatal closure or the signalling components of guard cells. The effects of pyrabactin-induced changes were reversed by pharmalogical compounds that modulate ROS, NO or cytoplasmic pH levels, quite similar to ABA effects. Fusicoccin, a fungal toxin, could reverse the stomatal closure caused by pyrabactin, as well as that caused by ABA. Experiments on stomatal closure by varying concentrations of ABA, in the presence of fixed concentration of pyrabactin, and vice versa, revealed that the actions of ABA and pyrabactin were additive. Further kinetic analysis of data revealed that the apparent K-D of ABA was increased almost 4-fold in the presence of ABA, suggesting that pyrabactin and ABA were competing with each other either at the same site or close to the active site. It is proposed that pyrabactin could be used to examine the ABA-related signal-transduction components in stomatal guard cells as well as in other plant tissues. It is also suggested that pyrabactin can be used as an antitranspirant or as a priming agent for improving the drought tolerance of crop plants.

Quareshy M, Prusinska J, Li J, Napier R (2018). A cheminformatics review of auxins as herbicides
J Exp Bot 69, 265-275.

DOI:10.1093/jxb/erx258URLPMID:28992122 [本文引用: 1]
Herbicides are an important asset in ensuring food security, especially when faced with an ever-increasing demand on food production to feed the global population. The current selection of herbicides is increasingly encountering resistance in agricultural weeds they once targeted effectively. It is imperative that new compounds or more effective modes of action are discovered in order to overcome this resistance. This cheminformatics review looks at current herbicides and evaluates their physiochemical properties on a class-by-class basis. We focus in particular on the synthetic auxin herbicides, Herbicide Resistance Action Committee class O, analyzing these against herbicides more generally and for class-specific features such as mobility in plant vasculature. We summarise the physiochemical properties of all 24 compounds used commercially as auxins and relate these results to ongoing approaches to novel auxin discovery. We introduce an interactive, open source cheminformatics tool known as DataWarrior for herbicide discovery, complete with records for over 300 herbicidal compounds. We hope this tool helps researchers as part of a rational approach to not only auxin discovery but agrochemical discovery in general.

Raghukumar S (2008). Thraustochytrid marine protists: production of PUFAs and other emerging technologies
Mar Biotechnol 10, 631-640.

DOI:10.1007/s10126-008-9135-4URLPMID:18712565 [本文引用: 1]
Thraustochytrids, the heterotrophic, marine, straminipilan protists, are now established candidates for commercial production of the omega-3 polyunsaturated fatty acid (omega-3 PUFA), docosahexaenoic acid (DHA), that is important in human health and aquaculture. Extensive screening of cultures from a variety of habitats has yielded strains that produce at least 50% of their biomass as lipids, and DHA comprising at least 25% of the total fatty acids, with a yield of at least 5 g L(-1). Most of the lipids occur as triacylglycerols and a lesser amount as phospholipids. Numerous studies have been carried out on salinity, pH, temperature, and media optimization for DHA production. Commercial production is based on a fed batch method, using high C/N ratio that favors lipid accumulation. Schizochytrium DHA is now commercially available as nutritional supplements for adults and as feeds to enhance DHA levels in larvae of aquaculture animals. Thraustochytrids are emerging as a potential source of other PUFAs such as arachidonic acid and oils with a suite of PUFA profiles that can have specific uses. They are potential sources of asataxanthin and carotenoid pigments, as well as other lipids. Genes of the conventional fatty acid synthesis and the polyketide-like PUFA synthesis pathways of thraustochytrids are attracting attention for production of recombinant PUFA-containing plant oils. Future studies on the basic biology of these organisms, including biodiversity, environmental adaptations, and genome research are likely to point out directions for biotechnology explorations. Potential areas include enzymes, polysaccharides, and secondary metabolites.

Rodaway SJ, Gates DW, Brindle C (1991). Control of early seedling growth in varietal lines of hexaploid wheat (Triticum aestivum), durum wheat (Triticum durum), and barley (Hordeum vulgare) in response to the phthalimide growth regulant, AC94377
Plant Growth Regul 10, 243-259.

[本文引用: 1]

Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?
Plant Physiol 155, 721-734.

DOI:10.1104/pp.110.166645URLPMID:21119044 [本文引用: 1]
In this study, the role of the recently identified class of phytohormones, strigolactones, in shaping root architecture was addressed. Primary root lengths of strigolactone-deficient and -insensitive Arabidopsis (Arabidopsis thaliana) plants were shorter than those of wild-type plants. This was accompanied by a reduction in meristem cell number, which could be rescued by application of the synthetic strigolactone analog GR24 in all genotypes except in the strigolactone-insensitive mutant. Upon GR24 treatment, cells in the transition zone showed a gradual increase in cell length, resulting in a vague transition point and an increase in transition zone size. PIN1/3/7-green fluorescent protein intensities in provascular tissue of the primary root tip were decreased, whereas PIN3-green fluorescent protein intensity in the columella was not affected. During phosphate-sufficient conditions, GR24 application to the roots suppressed lateral root primordial development and lateral root forming potential, leading to a reduction in lateral root density. Moreover, auxin levels in leaf tissue were reduced. When auxin levels were increased by exogenous application of naphthylacetic acid, GR24 application had a stimulatory effect on lateral root development instead. Similarly, under phosphate-limiting conditions, endogenous strigolactones present in wild-type plants stimulated a more rapid outgrowth of lateral root primordia when compared with strigolactone-deficient mutants. These results suggest that strigolactones are able to modulate local auxin levels and that the net result of strigolactone action is dependent on the auxin status of the plant. We postulate that the tightly balanced auxin-strigolactone interaction is the basis for the mechanism of the regulation of the plants' root-to-shoot ratio.

Schmitzer PR, Balko TW, Daeuble JF, Epp JB, Satchivi NM, Siddall TL, Weimer MR, Yerkes CN (2015). Discovery and SAR of halauxifen methyl: a novel auxin herbicide
In: Maienfisch P, Stevenson TM, eds. Discovery and Synthesis of Crop Protection Products. Washington: ACS. pp. 247-260.

[本文引用: 1]

Serek M, Sisler EC, Reid MS (1994). Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants
J Am Soc Hortic Sci 119, 1230-1233.

[本文引用: 1]

Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor
Nature 468, 400-405.

DOI:10.1038/nature09430URLPMID:20927106 [本文引用: 1]
Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.

Sisler EC, Serek M (1997). Inhibitors of ethylene responses in plants at the receptor level: recent developments
Physiol Plant 100, 577-582.

[本文引用: 1]

Sisler EC, Serek M, Dupille E (1996). Comparison of cyclopropene, 1-methylcyclopropene, and 3,3-dimethylcyclopropene as ethylene antagonists in plants
Plant Growth Regul 18, 169-174.

[本文引用: 1]

Soko?owska K, Kizińska J, Szewczuk Z, Banasiak A (2014). Auxin conjugated to fluorescent dyes—a tool for the analysis of auxin transport pathways
Plant Biol 16, 866-877.

DOI:10.1111/plb.12144URLPMID:24397706 [本文引用: 2]
Auxin is a small molecule involved in most processes related to plant growth and development. Its effect usually depends on the distribution in tissues and the formation of concentration gradients. Until now there has been no tool for the direct tracking of auxin transport at the cellular and tissue level; therefore the majority of studies have been based on various indirect methods. However, due to their various restrictions, relatively little is known about the relationship between various pathways of auxin transport and specific developmental processes. We present a new research tool: fluorescently labelled auxin in the form of a conjugate with two different fluorescent tracers, FITC and RITC, which allows direct observation of auxin transport in plant tissues. Chemical analysis and biological tests have shown that our conjugates have auxin-like biological activity and transport; therefore they can be used in all experimental systems as an alternative to IAA. In addition, the conjugates are a universal tool that can be applied in studies of all plant groups and species. The conjugation procedure presented in this paper can be adapted to other fluorescent dyes, which are constantly being improved. In our opinion, the conjugates greatly expand the possibilities of research concerning the role of auxin and its transport in different developmental processes in plants.

Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He YZ, Xu Y, Chalmers MJ, Brunzelle JS, Zhang HM, Yang HY, Jiang HL, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases
Science 335, 85-88.

DOI:10.1126/science.1215106URLPMID:22116026 [本文引用: 1]
Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

Suttle JC, Hultstrand JF (1987). Physiological studies of a synthetic gibberellin-like bioregulator II. Effect of site of application on biological activity
Plant Physiol 84, 1068-1073.

DOI:10.1104/pp.84.4.1068URLPMID:16665563 [本文引用: 2]
The biological activity of the synthetic gibberellin agonist AC-94,377 (1-[3-chlorophthalimido]-cyclohexanecarboxamide) in certain plants is strictly dependent on the site of application. Root application of AC-94,377 at concentrations greater than or equal to 1 micromolar to seedlings of dwarf corn (Zea mays L. var d(5)), dwarf rice (Oryza sativa L. cv Tan-ginbozu), and sunflower (Helianthus annuus L. cv NK265) seedlings resulted in readily measurable gibberellin-like biological activity. Application of up to 10 micrograms of AC-94,377 to the shoots of these same species had no effect. AC-94,377 was metabolized to more polar products in both dwarf corn and sunflower seedlings. After 4 days of continuous root treatment with [(14)C]AC-94,377, greater than 70% of the recovered (14)C was found in the form of unmetabolized AC-94,377. In contrast, only 30 to 40% of the recovered (14)C was unmetabolized 4 days after shoot treatment. Translocation studies demonstrated that the movement of [(14)C]AC-94,377 was limited and occurred almost exclusively in an apoplastic fashion. Four days after leaf treatment, less than 1.5% (corn) or 4% (sunflower) of the recovered radioactivity had moved away from the treated area. It was concluded that the lack of biological activity of AC-94,377 following shoot treatment resulted principally from limited phloem mobility and to a lesser extent from accelerated metabolic breakdown.

Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P (2015). Structure-function analysis identifies highly sensitive strigolactone receptors in Striga
Science 350, 203-207.

DOI:10.1126/science.aac9476URLPMID:26450211 [本文引用: 1]
Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one that is sensitive to picomolar concentrations of strigolactone. A crystal structure of a highly sensitive strigolactone receptor from Striga revealed a larger binding pocket than that of the Arabidopsis receptor, which could explain the increased range of strigolactone sensitivity. Thus, the sensitivity of Striga to strigolactones from host plants is driven by receptor sensitivity. By expressing strigolactone receptors in Arabidopsis, we developed a bioassay that can be used to identify chemicals and crops with altered strigolactone levels.

Uppalapati SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL (2005). The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato
Plant J 42, 201-217.

DOI:10.1111/j.1365-313X.2005.02366.xURLPMID:15807783 [本文引用: 1]
Coronatine (COR) is a phytotoxin produced by several pathovars of Pseudomonas syringae and consists of coronafacic acid (CFA), an analog of methyl jasmonic acid (MeJA), and coronamic acid (CMA), which resembles 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor to ethylene. An understanding of how COR functions, is perceived by different plant tissues, and the extent to which it mimics MeJA remain unclear. In this study, COR and related compounds were examined with respect to structure and function. The results indicate that conjugation of CFA to an amino acid is required for optimal activity in tomato, including chlorosis, changes in chloroplast structure, cell wall thickening, accumulation of proteinase inhibitors, induction of anthocyanins, and root growth inhibition. cDNA microarrays were utilized to understand the molecular processes that are regulated by MeJA, COR, CFA and CMA in tomato leaves. A comparison of COR- and MeJA-regulated transcriptomes revealed that COR regulated 35% of the MeJA-induced genes. There was significant overlap in the number of COR and CFA-regulated genes with CFA impacting the expression of 39.4% of the COR-regulated genes. Taken together, the results of biological assays, ultrastructural studies, and gene expression profiling demonstrate that: (1) the intact COR molecule impacts signaling in tomato via the jasmonic acid, ethylene, and auxin pathways; (2) CMA does not function as a structural analog of ACC; (3) COR has a broader range of functions than either CFA or CMA; and (4) COR and MeJA share similar, but not identical activities and impact multiple phytohormone pathways in tomato.

Uraguchi D, Kuwata K, Hijikata Y, Yamaguchi R, Imaizumi H, Am S, Rakers C, Mori N, Akiyama K, Irle S, McCourt P, Kinoshita T, Ooi T, Tsuchiya Y (2018). A femtomolar-range suicide germination stimulant for the parasitic plant Striga hermonthica
Science 362, 1301-1305.

DOI:10.1126/science.aau5445URLPMID:30545887 [本文引用: 3]
The parasitic plant Striga hermonthica has been causing devastating damage to the crop production in Africa. Because Striga requires host-generated strigolactones to germinate, the identification of selective and potent strigolactone agonists could help control these noxious weeds. We developed a selective agonist, sphynolactone-7, a hybrid molecule originated from chemical screening, that contains two functional modules derived from a synthetic scaffold and a core component of strigolactones. Cooperative action of these modules in the activation of a high-affinity strigolactone receptor ShHTL7 allows sphynolactone-7 to provoke Striga germination with potency in the femtomolar range. We demonstrate that sphynolactone-7 is effective for reducing Striga parasitism without impinging on host strigolactone-related processes.

Vaidya AS, Helander JDM, Peterson FC, Elzinga D, Dejonghe W, Kaundal A, Park SY, Xing ZN, Mega R, Takeuchi J, Khanderahoo B, Bishay S, Volkman BF, Todoroki Y, Okamoto M, Cutler SR (2019). Dynamic control of plant water use using designed ABA receptor agonists
Science 366, eaaw8848.

DOI:10.1126/science.aaz9758URLPMID:31857470 [本文引用: 4]

Vaidya AS, Peterson FC, Yarmolinsky D, Merilo E, Verstraeten I, Park SY, Elzinga D, Kaundal A, Helander J, Lozano-Juste J, Otani M, Wu K, Jensen DR, Kollist H, Volkman BF, Cutler SR (2017). A rationally designed agonist defines subfamily IIIA abscisic acid receptors as critical targets for manipulating transpiration
Acs Chem Biol 12, 2842-2848.

DOI:10.1021/acschembio.7b00650URLPMID:28949512 [本文引用: 2]
Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 A X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.

Vain T, Raggi S, Ferro N, Barange DK, Kieffer M, Ma Q, Doyle SM, Thelander M, Pa?ízková B, Novák O, Ismail A, Enquist PA, Rigal A, ?angowska M, Ramans Harborough S, Zhang Y, Ljung K, Callis J, Almqvist F, Kepinski S, Estelle M, Pauwels L, Robert S (2019). Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development
Proc Natl Acad Sci USA 116, 6463-6472.

DOI:10.1073/pnas.1809037116URLPMID:30850516 [本文引用: 3]
Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCF(TIR1/AFB) functionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses.

Wang SY, Jiao HJ, Faust M (1991a). Changes in metabolic enzyme activities during thidiazuron-induced lateral budbreak of apple
HortScience 26, 171-173.

[本文引用: 2]

Wang SY, Jiao HJ, Faust M (1991b). Changes in the activities of catalase, peroxidase, and polyphenol oxidase in apple buds during bud break induced by thidiazuron
J Plant Growth Regul 10, 33-39.

[本文引用: 1]

Wang SY, Steffens GL, Faust M (1986). Breaking bud dormancy in apple with a plant bioregulator, thidiazuron
Phytochemistry 25, 311-317.

DOI:10.1016/S0031-9422(00)85472-2URL [本文引用: 1]

Wang XH, Yin W, Wu JX, Chai LJ, Yi HL (2016). Effects of exogenous abscisic acid on the expression of citrus fruit ripening-related genes and fruit ripening
Sci Hortic 201, 175-183.

[本文引用: 1]

Watkins CB, Nock JF (2012). Rapid 1-methylcyclopropene (1-MCP) treatment and delayed controlled atmosphere storage of apples
Postharvest Biol Technol 69, 24-31.

[本文引用: 1]

Weijers D, Wagner D (2016). Transcriptional responses to the auxin hormone
Annu Rev Plant Biol 67, 539-574.

DOI:10.1146/annurev-arplant-043015-112122URLPMID:26905654 [本文引用: 1]
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.

Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999). Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR24 and Nijmegen 1
J Agric Food Chem 47, 1705-1710.

[本文引用: 2]

Wismer PT, Proctor JTA, Elfving DC (1995). Benzyladenine affects cell division and cell size during apple fruit thinning
J Am Soc Hortic Sci 120, 802-807.

[本文引用: 1]

Wolters H, Jürgens G (2009). Survival of the flexible: hormonal growth control and adaptation in plant development
Nat Rev Genet 10, 305-317.

[本文引用: 1]

Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D (2015). Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate
eLife 4, e09269.

DOI:10.7554/eLife.09269URLPMID:26460543 [本文引用: 1]
Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses.

Xie ZX, Duan LS, Tian XL, Wang BM, Eneji AE, Li ZH (2008). Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity
J Plant Physiol 165, 375-384.

DOI:10.1016/j.jplph.2007.06.001URLPMID:17686549 [本文引用: 1]
Coronatine (COR) is a chlorosis-inducing phytotoxin that mimics some biological activities of methyl jasmonate. This study investigated whether COR confers salinity tolerance to cotton and whether such tolerance is correlated with changes in the activity of antioxidant enzymes. COR at 0.01microM was applied hydroponically to cotton seedlings at the two-leaf stage for 24h. A salinity stress of 150mM NaCl was imposed after completion of COR treatment for 15d. Salinity stress reduced biomass of seedlings and increased leaf superoxide radicals, hydrogen peroxide, lipid peroxidation, and electrolyte leakage. Activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione reductase (GR), and of the stable free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH), scavenging activity were altered by salinity to varying degrees. Pretreatment with COR increased the activities of CAT, POD, GR, and DPPH scavenging activity in leaf tissues of salinity-stressed seedlings. Thus, COR might reduce the production of reactive oxygen species by activating antioxidant enzymes and DPPH-radical scavenging, thereby preventing membrane peroxidation and denaturation of biomolecules.

Xiong JL, Dai LL, Ma N, Zhang CL (2018). Transcriptome and physiological analyses reveal that AM1 as an ABA- mimicking ligand improves drought resistance in Brassica napus
Plant Growth Regul 85, 73-90.

[本文引用: 2]

Yang WQ, Zhang W, Wang XX (2017). Post-translational control of ABA signaling: the roles of protein phosphorylation and ubiquitination
Plant Biotechnol J 15, 4-14.

DOI:10.1111/pbi.12652URLPMID:27767245 [本文引用: 1]
The plant phytohormone abscisic acid (ABA) plays significant roles in integrating environmental signals with embryogenesis, germination, seedling establishment, the floral transition and the adaptation of plants to stressful environments by modulating stomatal movement and stress-responsive gene expression. ABA signalling consists of ABA perception, signal transduction and ABA-induced responses. ABA receptors such as members of the PYR/PYL family, group A type 2C protein phosphatases (as negative regulators), SnRK2 protein kinases (as positive regulators), bZIP transcription factors and ion channels are key components of ABA signalling. Post-translational modifications, including dephosphorylation, phosphorylation and ubiquitination, play important roles in regulating ABA signalling. In this review, we focus on the roles of post-translational modifications in ABA signalling. The studies presented provide a detailed picture of the ABA signalling network.

Yang XT, Song J, Campbell-Palmer L, Fillmore S, Zhang ZQ (2013). Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit
Postharvest Biol Technol 78, 55-66.

[本文引用: 1]

Yao RF, Wang F, Ming ZH, Du XX, Chen L, Wang YP, Zhang WH, Deng HT, Xie DX (2017). ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds
Cell Res 27, 838-841.

URLPMID:28059066 [本文引用: 1]

Yoneyama K, Xie XN, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012). How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?
Planta 235, 1197-1207.

DOI:10.1007/s00425-011-1568-8URLPMID:22183123 [本文引用: 1]
Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated.

Yoneyama K, Xie XN, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007). Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites
Planta 227, 125-132.

DOI:10.1007/s00425-007-0600-5URLPMID:17684758 [本文引用: 1]
Strigolactones released from plant roots induce hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi and germination of root parasitic weeds, Striga and Orobanche spp. We already demonstrated that, in red clover plants (Trifolium pratense L.), a host for both AM fungi and the root holoparasitic plant Orobanche minor Sm., reduced supply of phosphorus (P) but not of other elements examined (N, K, Ca, Mg) in the culture medium significantly promoted the secretion of a strigolactone, orobanchol, by the roots of this plant. Here we show that in the case of sorghum [Sorghum bicolor (L.) Moench], a host of both the root hemiparasitic plant Striga hermonthica and AM fungi, N deficiency as well as P deficiency markedly enhanced the secretion of a strigolactone, 5-deoxystrigol. The 5-deoxystrigol content in sorghum root tissues also increased under both N deficiency and P deficiency, comparable to the increase in the root exudates. These results suggest that strigolactones may be rapidly released after their production in the roots. Unlike the situation in the roots, neither N nor P deficiency affected the low content of 5-deoxystrigol in sorghum shoot tissues.

Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signaling in response to osmotic stress
Plant Cell Environ 38, 35-49.

DOI:10.1111/pce.12351URLPMID:24738645 [本文引用: 1]
Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth.

Young SA, Park SK, Rodgers C, Mitchell RE, Bender CL (1992). Physical and functional characterization of the gene cluster encoding the polyketide phytotoxin coronatine in Pseudomonas syringae pv. glycinea
J Bacteriol 174, 1837-1843.

DOI:10.1128/jb.174.6.1837-1843.1992URLPMID:1548231 [本文引用: 1]
Pseudomonas syringae pv. glycinea PG4180 produces the polyketide phytotoxin coronatine. The coronatine synthesis genes in PG4180 were previously shown to reside on a 90-kb plasmid designated p4180A. In the present study, clones containing a 34-kb region of p4180A were saturated with Tn5, and 71 unique mutations were recombined into p4180A by marker exchange. The effect of each mutation on coronatine synthesis was determined by analyzing the organic acids produced by the mutants by reverse-phase high-performance liquid chromatography. The organic acids of selected mutants were derivatized to their methyl esters and analyzed by gas chromatography and gas chromatography-mass spectrometry. Mutations in a 20.5-kb region of p4180A completely blocked the synthesis of coronafacic acid and coronatine. Mutations within a 4.4-kb region of p4180A prevented the formation of coronatine but allowed for production of coronafacic acid, coronafacoylvaline, coronafacoylisoleucine, and coronafacoylalloisoleucine. The phenotypes of selected mutants were further confirmed in feeding experiments in which coronafacic acid or coronamic acid was added to the culture media. The results of this study allow us to speculate on the likely sequence of steps in the later stages of coronatine biosynthesis.

Yu HY, Zhang YS, Xie Y, Wang YB, Duan LS, Zhang MC, Li ZH (2017). Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability
J Plant Physiol 214, 123-133.

DOI:10.1016/j.jplph.2017.04.008URLPMID:28482333 [本文引用: 3]
Cuticular wax is the outermost thin hydrophobic layer covering the surface of aerial plant parts, which provides a primary waterproof barrier and protection against different environmental stresses. The aim of the present study was to investigate the role of ethephon, as an ethylene-releasing compound, in counteracting drought stress by modulating cuticular wax biosynthesis, water balance, and antioxidant regulation in maize seedlings. Our results showed that ethephon significantly increased the ethylene evolution rate, regulate the expression of cuticular wax synthesis regulatory gene ZmERE and the wax biosynthetic genes ZmGL1, ZmGL15, ZmFDH1, and ZmFAE1, and promote cuticular wax accumulation in maize seedlings under normal or drought stress conditions. Moreover, ethephon was shown to might markedly reduce water loss and chlorophyll leaching in leaves, and maintain higher relative water content and leaf water potential under drought stress. Ethephon significantly decreased malondialdehyde and hydrogen peroxide concentrations and electrolyte leakage, but increased the accumulation of proline and the activities of SOD, POD, and CAT. In addition, ethephon resulted in an increase in the ratio of root and shoot under drought stress. These results indicated that ethephon could improve maize performance under drought stress by modulating cuticular wax synthesis to maintain water status and membrane stability for plant growth.

Yu XJ, Sun J, Zheng JY, Sun YQ, Wang Z (2016). Metabolomics analysis reveals 6-benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytrium sp
J Chem Technol Biol 91, 1199-1207.

[本文引用: 1]

Zhang CR, Huang XL, Wu JY, Feng BH, Chen YF (2006). Identification of thidiazuron-induced ESTs expressed differentially during callus differentiation of alfalfa (Medicago sativa)
Physiol Plant 128, 732-739.

[本文引用: 1]

Zhang W, He LS, Zhang R, Guo SQ, Yue HF, Ning XX, Tan GY, Li QX, Wang BM (2016). Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for the analysis of 6-benzylaminopurine and its ribose adduct in bean sprouts
Food Chem 207, 233-238.

DOI:10.1016/j.foodchem.2016.03.103URLPMID:27080901 [本文引用: 2]
6-Benzylaminopurine (6-BA), a cytokinin plant growth regulator, has been banned for use in bean sprout production in China. An indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed with a specific monoclonal antibody (mAb 3E5). The assay showed a half-maximum inhibition concentration (IC50) and detection range of 18.9 ng/mL and 3.6-106 ng/mL, respectively. Recoveries of 6-BA spiked in home cultured bean sprout samples averaged from 75% to 89% with a correlation coefficient (R(2)) of 0.998 between the results determined by icELISA and those by liquid chromatography-electrospray ionization quadrupole Orbitrap mass spectrometry (LC-ESI-MS). LC-ESI-MS showed that 6-BA had been partially metabolized to 6-benzylaminopurine riboside (6-BAR) in the positive samples. The content of 6-BA determined by icELISA was about 5-70 times higher than that of LC-ESI-MS because mAb 3E5 had 315% cross-reactivity with 6-BAR. Such icELISA being ultra-sensitive to 6-BAR would allow quick monitoring of 6-BA by detecting 6-BAR as a potential biomarker.

Zhao Y, Chow TF, Puckrin RS, Alfred SE, Korir AK, Larive CK, Cutler SR (2007). Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated
Nat Chem Biol 3, 716-721.

[本文引用: 1]

Zhou YY, Zhang MC, Li JM, Li ZH, Tian XL, Duan LS (2015). Phytotoxin coronatine enhances heat tolerance via maintaining photosynthetic performance in wheat based on electrophoresis and TOF-MS analysis
Sci Rep 5, 13870.

DOI:10.1038/srep13870URLPMID:26347991 [本文引用: 2]
Coronatine (COR) is a phytotoxin produced by Pseudomonas syringae. Its structure is similar to Jasmonates, which play a number of diverse roles in plant defense. Both have the COI1 plant receptor, so coronatine can manipulate plant hormone signaling to access nutrients and counteract defense responses. In addition to the hormone system, coronatine affects plant nitrogenous metabolism and chloroplast ultrastructure. In this study, we first examined a typical nitrogen-losing phenotype, and used the polyacrylamide gel approach to demonstrate soluble total protein patterns in a time-course experiment under different temperature conditions. We then employed dimensional gel electrophoresis technology (2-DE) and MALDI-TOF-MS to sequester and identify the sensitive proteins. We found a total of 27 coronatine sensitive proteins, 22 of which were located in the chloroplast and 6 of which were directly involved in photosynthesis. Finally, we measured levels of chlorophyll and photosynthetic performance to reveal the phenotypic effect of these proteins. Taken together, these results demonstrated that coronatine enhanced heat tolerance by regulating nitrogenous metabolism and chloroplast ultrastructure to maintain photosynthetic performance and reduce yield loss under heat stress.

Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009). Structure and function of natural and synthetic signaling molecules in parasitic weed germination
Pest Manag Sci 65, 478-491.

DOI:10.1002/ps.1706URLPMID:19222046 [本文引用: 2]
The structures of naturally occurring germination stimulants for seeds of the parasitic weeds Striga spp. and Orobanche spp. are described. The bioactiphore in this strigolactone family of stimulants is deduced from a structure-activity relationship and shown to reside in the CD part of the stimulant molecule. A molecular mechanism for the initial stages of seed germination is proposed. The influence of stereochemistry on the stimulant activity is significant. Combining this molecular information leads to a model for the design of synthetic strigolactones. Nijmegen-1 is a typical example of a highly active, newly designed synthetic stimulant. The occurrence of natural stimulants not belonging to the strigolactone family, such as cotylenin and parthenolide, is briefly described. The biosynthesis of natural strigolactones from beta-carotene is analysed in terms of isolated and predicted stimulants. This scheme will be helpful in the search for new strigolactones from root exudates. Protein fishing experiments to isolate and characterise the receptor protein using biotin-labelled GR 24 are described. A receptor protein of 60 kD was identified by this method. Nijmegen-1 has been tested as a suicidal germination agent in field trials on tobacco infested by Orobanche ramosa L. The preliminary results are highly rewarding. Finally, some future challenges in synthesis are described. These include synthesising new natural and synthetic stimulants and establishing the molecular connection between strigolactones as germination stimulants, as the branching factor for arbuscular mycorrhizal fungi and as an inhibitor of shoot branching.

Zwanenburg B, Pospí?il T (2013). Structure and activity of strigolactones: new plant hormones with a rich future
Mol Plant 6, 38-62.

DOI:10.1093/mp/sss141URL [本文引用: 1]
Strigolactones are new plant hormones that induce germination of parasitic weed seeds, inhibit shoot branching, and are branching factors for AM fungi. Structureactivity relationships provide insight into their mode of action and give a model substrate for designing new active analogs.Strigolactones (SLs) constitute a new class of plant hormones which are active as germination stimulants for seeds of parasitic weeds of Striga, Orobanche, and Pelipanchi spp, in hyphal branching of arbuscular mycorrhizal (AM) fungi and as inhibitors of shoot branching. In this review, the focus is on molecular features of these SLs. The occurrence of SLs in root exudates of host plants is described. The naming protocol for SL according to the International Union of Pure and Applied Chemistry (IUPAC) rules and the oat a glance' method is explained. The total synthesis of some natural SLs is described with details for all eight stereoisomers of strigol. The problems encountered with assigning the correct structure of natural SLs are analyzed for orobanchol, alectrol, and solanacol. The structureactivity relationship of SLs as germination stimulants leads to the identification of the bioactiphore of SLs. Together with a tentative mechanism for the mode of action, a model has been derived that can be used to design and prepare active SL analogs. This working model has been used for the preparation of a series of new SL analogs such as Nijmegen-1, and analogs derived from simple ketones, keto enols, and saccharine. The serendipitous finding of SL mimics which are derived from the D-ring in SLs (appropriately substituted butenolides) is reported. For SL mimics, a mode of action is proposed as well. Recent new results support this proposal. The stability of SLs and SL analogs towards hydrolysis is described and some details of the mechanism of hydrolysis are discussed as well. The attempted isolation of the protein receptor for germination and the current status concerning the biosynthesis of natural SLs are briefly discussed. Some non-SLs as germinating agents are mentioned. The structureactivity relationship for SLs in hyphal branching of AM fungi and in repression of shoot branching is also analyzed. For each of the principle functions, a working model for the design of new active SL analogs is described and its applicability and implications are discussed. It is shown that the three principal functions use a distinct perception system. The importance of stereochemistry for bioactivity has been described for the various functions.
Differential growth at the apical hook: all roads lead to auxin
1
2013

... 为揭示生长素如何被感知并介导植物发育, Vain等(2019)利用生长素泛素化蛋白AXR1进行化学生物学筛选(Hua and Vierstra, 2011; Mergner and Schwechheimer, 2014; Weijers and Wagner, 2016), 鉴定出一种人工合成的类生长素小分子RNs (RubNeddins), 包括RN1-4 (RubNeddin 1-4), 均是生长素激动剂.RNs可以促进SCFTIR1/AFB-AUX/IAA共受体的组装, 加强TIR1与Aux/IAA蛋白之间的相互作用, 并促进该蛋白降解; RNs还能够诱导特定生长素启动子; 以及在转录、生化和形态学水平上引起特定生长素反应.其中, RN3显著促进侧根生长, RN4促进下胚轴生长但抑制侧根发育.此外, RN4还诱导AXR2/IAA7蛋白降解, 促进ATP酶编码基因BRAHMA的转录, 从而抑制生长素介导的顶端弯钩(apical hook)形成(Abbas et al., 2013; Wu et al., 2015; Vain et al., 2019). ...

Current opinion in chemical biology
1
2012

... 随着化学与植物生物学、分子生物学学科之间的不断碰撞与融合, 科学家将外源天然化合物或人工合成的小分子作为探针, 用于探究生物体生理代谢过程的分子机制, 主要包括分子识别与分子间相互作用、细胞分化与发育及细胞信号转导等小分子调控作用.因而, 化学生物学作为植物学、分子生物学与化学等学科之间一个新的前沿交叉学科随之诞生(Hicks and Raikhel, 2009; Armstrong and Que, 2012). ...

A new cotton defoliant
1
1976

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases
2
1999

... 冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物.起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005).COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010).COR还能诱导花青素、 ...

... 生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003).当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015).冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本. ...

Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio
1
2002

... 生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003).当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015).冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本. ...

Ethylene: a gaseous signal molecule in plants
1
2000

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

A new bioassay for auxins and cytokinins
1
1992

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

Rhizosphere communication of plants, parasitic plants and AM fungi
1
2007

... 独脚金属(Striga)植物寄生于农作物, 对农业生产造成毁灭性的破坏(Zwanenburg and Pospí?il, 2013).SLs可以诱导Striga种子自杀式萌发, 即在没有寄主的条件下萌发而致死(Wigchert et al., 1999; Bouwmeester et al., 2007).这促使研究人员开发出只作用于Striga而不妨碍作物正常生长的高效且低剂量的独脚金内酯类似化合物(Wigchert et al., 1999).Uraguchi等(2018)合成了一种独脚金内酯激动剂SPL7 (sphynolactone-7), 它通过烯醇醚与环状基团丁烯内酯环相连, 同时结合天然SLs中负责受体选择模块的abc环(三环系统)和发挥功能模块的D环.这两大重要组分协同激活高亲和力独脚金内酯受体ShHTL7, 使得SPL7在微摩尔范围内起作用(Toh et al., 2015; Yao et al., 2017), 因而成为一种有效的Striga自杀式萌发刺激剂.在没有寄主存在的情况下, SPL7能够高效诱导Striga种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018). ...

Enantioselective synthesis of the strigolactone mimic (+)-GR24
2
2014

... 早期合成的独脚金内酯(strigolactones, SLs)类似物GR系列包括GR24、GR18、GR7及GR5等, 其中GR24是被广泛应用的人工合成的独脚金内酯类似物(Zwanenburg et al., 2009; Bromhead et al., 2014).GR24能够促进种子萌发, 降低生长素从芽运输至茎的能力, 从而抑制芽的生长; 能以微克级水平诱导丛枝菌根真菌分枝, 并间接调控分枝发育(Yoneyama et al., 2007, 2012; Crawford et al., 2010).此外, GR24以依赖于MAX2 (MORE AXILLARY BRANCHES 2)的方式降低生长素水平和生长素报告基因DR5-GUS的表达, 减少PIN1 (PIN-FORMED 1)的积累和离体茎段生长素的转运(Crawford et al., 2010; Ruyter-Spira et al., 2011).因此, GR24是用于探究独脚金内酯生理功能的最佳模拟物. ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana
1
2005

... 冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物.起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005).COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010).COR还能诱导花青素、 ...

Weed resistance to synthetic auxin herbicides
3
2018

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

... SAHs能够通过TIR/AFB (transport inhibitor response/auxin-signaling F-box)泛素蛋白降解途径, 激活ABA和乙烯生物合成基因, 产生大量活性氧, 裂解细胞壁, 最终使植物生长停滞或死亡(Grossmann, 2007, 2010).最近发现一类新的SAHs家族——芳基吡啶酸酯, 它们是吡啶羧酸的衍生物, 具有独特的除草活性, 在低剂量下具有广谱且较高的药效(Busi et al., 2018), 可以安全地用于谷类作物中(Schmitzer et al., 2015).芳基吡啶类除草剂的兴起为开发新的SAHs提供了理论支撑及实践样例. ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants
7
2013

... 虽然pyrabactin具有高稳定性和低成本的特点, 但其生理活性和功能作用次于天然ABA (Peterson et al., 2010; Cao et al., 2013; Fan et al., 2015).因此, 在pyrabactin结构已知的基础上, 科学家将继续开发出其它具有更强ABA活性的类似物, 以应用于农业生产(Cao et al., 2013, 2017; Vaidya et al., 2017a). ...

... ).因此, 在pyrabactin结构已知的基础上, 科学家将继续开发出其它具有更强ABA活性的类似物, 以应用于农业生产(Cao et al., 2013, 2017; Vaidya et al., 2017a). ...

... 根据激活ABA受体的能力及类ABA功能检测筛选出一种人工合成的ABA类似物AM1 (ABA mimc1) (Cao et al., 2013), 又称quinabactin (Okamoto et al., 2013).AM1也属于磺胺类化合物, 具有与pyrabactin相似的稳定结构(Cao et al., 2013).但AM1拥有比pyrabactin更强的ABA激动效应, 能够高效结合ABA受体(Cao et al., 2013; Okamoto et al., 2013). ...

... ).AM1也属于磺胺类化合物, 具有与pyrabactin相似的稳定结构(Cao et al., 2013).但AM1拥有比pyrabactin更强的ABA激动效应, 能够高效结合ABA受体(Cao et al., 2013; Okamoto et al., 2013). ...

... ).但AM1拥有比pyrabactin更强的ABA激动效应, 能够高效结合ABA受体(Cao et al., 2013; Okamoto et al., 2013). ...

... AM1在非生物胁迫响应方面的功能也很显著, 可提高植物对干旱和寒冷逆境的耐受性(Cao et al., 2013; Cheng et al., 2016).在干旱条件下, AM1可以提高植物的生长速率、生物量和叶面积(Naeem et al., 2016), 调节气孔运动, 减少植株的水分流失(Hartung et al., 2002).AM1还可以抑制光合作用相关基因的表达, 显著改善植株光合器官的超微结构, 调节荧光发射和叶绿素含量, 从而减轻细胞氧化应激, 最终增强植株的抗旱性(Parmar et al., 2013; Naeem et al., 2016; Xiong et al., 2018).此外, AM1能诱导ABF1表达, 显著降低活性氧含量, 提高抗氧化酶活性, 维持活性氧代谢的稳态和积累, 进而提高狗牙根(Cynodon dactylon)的耐冷能力(Cheng et al., 2016). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Combining chemical and genetic approaches to increase drought resistance in plants
5
2017

... 虽然pyrabactin具有高稳定性和低成本的特点, 但其生理活性和功能作用次于天然ABA (Peterson et al., 2010; Cao et al., 2013; Fan et al., 2015).因此, 在pyrabactin结构已知的基础上, 科学家将继续开发出其它具有更强ABA活性的类似物, 以应用于农业生产(Cao et al., 2013, 2017; Vaidya et al., 2017a). ...

... 通过在AM1的4-甲基苯环中加入氟原子, 合成了一种化合物AMFs (AM1 fluorine derivatives) (Cao et al., 2017).加入的氟原子能增加其氢键的数量和强度, 使AMF比AM1更贴合PYL蛋白的空间结构, 具有更高的受体亲和力(Gillis et al., 2015; Cao et al., 2017).因此, AMF可以激活并长时间维持ABA应激基因的表达, 尤其是持续诱导植物干旱应答基因的转录.AMF通过增加细胞脱水的耐受性增强植株的抗旱性, 其作用甚至比天然ABA和AM1都更加稳定和有效(Cao et al., 2017). ...

... ; Cao et al., 2017).因此, AMF可以激活并长时间维持ABA应激基因的表达, 尤其是持续诱导植物干旱应答基因的转录.AMF通过增加细胞脱水的耐受性增强植株的抗旱性, 其作用甚至比天然ABA和AM1都更加稳定和有效(Cao et al., 2017). ...

... ).因此, AMF可以激活并长时间维持ABA应激基因的表达, 尤其是持续诱导植物干旱应答基因的转录.AMF通过增加细胞脱水的耐受性增强植株的抗旱性, 其作用甚至比天然ABA和AM1都更加稳定和有效(Cao et al., 2017). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Cytokinins: new apoptotic inducers in plants
2
2003

... 6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016).6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011).6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究.在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008).6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Effects of agar concentration and vessel closure on the organogenesis and hyperhydricity of adventitious carnation shoots
2
2008

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Rapid growth responses of dwarf corn coleoptile sections to picloram
1
1983

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon)
2
2016

... AM1在非生物胁迫响应方面的功能也很显著, 可提高植物对干旱和寒冷逆境的耐受性(Cao et al., 2013; Cheng et al., 2016).在干旱条件下, AM1可以提高植物的生长速率、生物量和叶面积(Naeem et al., 2016), 调节气孔运动, 减少植株的水分流失(Hartung et al., 2002).AM1还可以抑制光合作用相关基因的表达, 显著改善植株光合器官的超微结构, 调节荧光发射和叶绿素含量, 从而减轻细胞氧化应激, 最终增强植株的抗旱性(Parmar et al., 2013; Naeem et al., 2016; Xiong et al., 2018).此外, AM1能诱导ABF1表达, 显著降低活性氧含量, 提高抗氧化酶活性, 维持活性氧代谢的稳态和积累, 进而提高狗牙根(Cynodon dactylon)的耐冷能力(Cheng et al., 2016). ...

... )的耐冷能力(Cheng et al., 2016). ...

Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances
1
2015

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

Strigolactones enhance competition between shoot branches by dampening auxin transport
2
2010

... 早期合成的独脚金内酯(strigolactones, SLs)类似物GR系列包括GR24、GR18、GR7及GR5等, 其中GR24是被广泛应用的人工合成的独脚金内酯类似物(Zwanenburg et al., 2009; Bromhead et al., 2014).GR24能够促进种子萌发, 降低生长素从芽运输至茎的能力, 从而抑制芽的生长; 能以微克级水平诱导丛枝菌根真菌分枝, 并间接调控分枝发育(Yoneyama et al., 2007, 2012; Crawford et al., 2010).此外, GR24以依赖于MAX2 (MORE AXILLARY BRANCHES 2)的方式降低生长素水平和生长素报告基因DR5-GUS的表达, 减少PIN1 (PIN-FORMED 1)的积累和离体茎段生长素的转运(Crawford et al., 2010; Ruyter-Spira et al., 2011).因此, GR24是用于探究独脚金内酯生理功能的最佳模拟物. ...

... 的表达, 减少PIN1 (PIN-FORMED 1)的积累和离体茎段生长素的转运(Crawford et al., 2010; Ruyter-Spira et al., 2011).因此, GR24是用于探究独脚金内酯生理功能的最佳模拟物. ...

Influence of 6- benzylaminopurine on fruit-set and seed development in two soybean, Glycine max (L.) Merr. genotypes
1
1981

... 6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016).6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011).6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究.在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008).6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016). ...

Transcriptional regulation of ABA core signaling component genes in sorghum (Sorghum bicolor L. Moench)
1
2014

... AM1参与调控ABA信号转导的一系列基因的表达.外源ABA和AM1处理均可下调PYR/PYL表达, 上调PP2C表达, 并改变SnRK2基因家族的表达水平, 进而下调AREB/ABF (ABA-responsive element binding protein/ABRE-binding factor)家族的ABF1, 最终提高甘蓝型油菜(Brassica napus)的抗旱性(Xiong et al., 2018).其中, SnRK2和ABF1是ABA信号通路的正调控因子, ABA处理植株中SnRK2ABF家族基因的表达存在物种特异性(Dalal and Inupakutika, 2014; Yoshida et al., 2015; Wang et al., 2016). ...

Molecular cloning and expression of the early auxin-responsive Aux/IAA gene family in Nicotiana tabacum
1
1998

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

Carbon dioxide and 1-MCP inhibit ethylene production and respiration of pear fruit by different mechanisms
1
1999

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene
1
2005

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

The history of fruit thinning
1
2000

... 乙烯利(2-氯乙基磷酸, ethephon)俗称催熟剂, 是一种具有乙烯功效的植物生长调节剂, 可释放乙烯进而诱导果实变薄和成熟(Dennis, 2000; John-Karuppiah and Burns, 2010; Ish-Shalom et al., 2011).乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

Ripening of 'Red Rosa' plums: effect of ethylene and 1-methylcyclopropene
1
2001

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton
2
2014

... 生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003).当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015).冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本. ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Defining and exploiting hypersensitivity hotspots to facilitate abscisic acid agonist optimization
1
2019

... 基于对现有ABA激动剂(tetralone ABA、cyanabactin、AM1和AMF4)进行结构分析, 结合虚拟筛选、X射线晶体学和结构导向, 科学家设计合成了一种ABA类似物OP (opabactin).与ABA相比, 其受体亲和力增加了近7倍, 体内生物活性增加了10倍(Vaidya et al., 2019).OP与PYR1结合是由焓驱动的, 其酰胺支架可提供比以往的磺胺类化合物更多的焓驱动和更高的亲和力, 极显著地抑制种子萌发(Ladbury et al., 2010; Elzinga et al., 2019; Vaidya et al., 2019).OP具有抗蒸腾剂活性, 可快速启动ABA信号, 且相对于ABA和其它激动剂, OP在番茄(Lycopersicon esculentum)和小麦(Triticum aestivum)中具有更加持久的作用效果.除了磺胺类激动剂所需的PYR1和PYL1外, PYL2也参与OP的蒸腾效应(Vaidya et al., 2017b, 2019).这表明PYL2为可被合成激动剂激活的细胞靶点, 能够调控植物蒸腾作用和ABA反应.因此, OP是一种新型的动态控制植物水分利用的激动剂, 能有效缓解干旱对作物产量的影响. ...

Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner
2
2015

... Pyrabactin是一种以磺胺为基础的激动剂, 与ABA没有化学结构上的相似性, 但在功能上二者却极其相似(Zhao et al., 2007; Park et al., 2009).Pyrabactin能够与PYL受体特异结合, 使PYR1与下游效应分子的蛋白相互作用, 从而抑制种子萌发和下胚轴生长(Nishimura et al., 2010; Puli and Raghavendra, 2012; Yang et al., 2017).Pyrabactin还通过介导气孔运动和维持植物体水分平衡, 调节水分亏缺相关的胁迫响应.一方面, pyrabactin能够识别气孔保卫细胞及其它植物组织中的ABA相关信号, 并通过ABA-PYL-PP2C复合物激活ABA反应激酶, 随后, 保卫细胞pH值上升, NADPH氧化酶活性增强, 活性氧和NO水平升高(Kim et al., 2010; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015).在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

... 虽然pyrabactin具有高稳定性和低成本的特点, 但其生理活性和功能作用次于天然ABA (Peterson et al., 2010; Cao et al., 2013; Fan et al., 2015).因此, 在pyrabactin结构已知的基础上, 科学家将继续开发出其它具有更强ABA活性的类似物, 以应用于农业生产(Cao et al., 2013, 2017; Vaidya et al., 2017a). ...

Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen
1
1994

... 生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003).当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015).冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本. ...

(+)-7-iso-jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate
1
2009

... 冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物.起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005).COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010).COR还能诱导花青素、 ...

Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
1
2010

... 乙烯利(2-氯乙基磷酸, ethephon)俗称催熟剂, 是一种具有乙烯功效的植物生长调节剂, 可释放乙烯进而诱导果实变薄和成熟(Dennis, 2000; John-Karuppiah and Burns, 2010; Ish-Shalom et al., 2011).乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

Applications of fluorine in medicinal chemistry
1
2015

... 通过在AM1的4-甲基苯环中加入氟原子, 合成了一种化合物AMFs (AM1 fluorine derivatives) (Cao et al., 2017).加入的氟原子能增加其氢键的数量和强度, 使AMF比AM1更贴合PYL蛋白的空间结构, 具有更高的受体亲和力(Gillis et al., 2015; Cao et al., 2017).因此, AMF可以激活并长时间维持ABA应激基因的表达, 尤其是持续诱导植物干旱应答基因的转录.AMF通过增加细胞脱水的耐受性增强植株的抗旱性, 其作用甚至比天然ABA和AM1都更加稳定和有效(Cao et al., 2017). ...

Auxin herbicide action: lifting the veil step by step
1
2007

... SAHs能够通过TIR/AFB (transport inhibitor response/auxin-signaling F-box)泛素蛋白降解途径, 激活ABA和乙烯生物合成基因, 产生大量活性氧, 裂解细胞壁, 最终使植物生长停滞或死亡(Grossmann, 2007, 2010).最近发现一类新的SAHs家族——芳基吡啶酸酯, 它们是吡啶羧酸的衍生物, 具有独特的除草活性, 在低剂量下具有广谱且较高的药效(Busi et al., 2018), 可以安全地用于谷类作物中(Schmitzer et al., 2015).芳基吡啶类除草剂的兴起为开发新的SAHs提供了理论支撑及实践样例. ...

Auxin herbicides: current status of mechanism and mode of action
3
2010

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

... SAHs能够通过TIR/AFB (transport inhibitor response/auxin-signaling F-box)泛素蛋白降解途径, 激活ABA和乙烯生物合成基因, 产生大量活性氧, 裂解细胞壁, 最终使植物生长停滞或死亡(Grossmann, 2007, 2010).最近发现一类新的SAHs家族——芳基吡啶酸酯, 它们是吡啶羧酸的衍生物, 具有独特的除草活性, 在低剂量下具有广谱且较高的药效(Busi et al., 2018), 可以安全地用于谷类作物中(Schmitzer et al., 2015).芳基吡啶类除草剂的兴起为开发新的SAHs提供了理论支撑及实践样例. ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants
1
1996

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

Ethephon induced abscission in mango: physiological fruitlet responses
2
2015

... 乙烯利(2-氯乙基磷酸, ethephon)俗称催熟剂, 是一种具有乙烯功效的植物生长调节剂, 可释放乙烯进而诱导果实变薄和成熟(Dennis, 2000; John-Karuppiah and Burns, 2010; Ish-Shalom et al., 2011).乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus
1
1994

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

Abscisic acid in the xylem: where does it come from, where does it go to?
1
2002

... AM1在非生物胁迫响应方面的功能也很显著, 可提高植物对干旱和寒冷逆境的耐受性(Cao et al., 2013; Cheng et al., 2016).在干旱条件下, AM1可以提高植物的生长速率、生物量和叶面积(Naeem et al., 2016), 调节气孔运动, 减少植株的水分流失(Hartung et al., 2002).AM1还可以抑制光合作用相关基因的表达, 显著改善植株光合器官的超微结构, 调节荧光发射和叶绿素含量, 从而减轻细胞氧化应激, 最终增强植株的抗旱性(Parmar et al., 2013; Naeem et al., 2016; Xiong et al., 2018).此外, AM1能诱导ABF1表达, 显著降低活性氧含量, 提高抗氧化酶活性, 维持活性氧代谢的稳态和积累, 进而提高狗牙根(Cynodon dactylon)的耐冷能力(Cheng et al., 2016). ...

Evolution of abscisic acid synthesis and signaling mechanisms
1
2011

... 植物激素广泛参与调控植物各个生长发育阶段, 包括种子萌发、幼苗建成、开花、果实成熟及脱落凋零等过程, 同时也调节植物生长以适应不断变化的各类生物或非生物逆境胁迫(Wolters and Jürgens, 2009).植物激素的信号转导通路一般包括激素受体、正/负调节因子和下游应答基因(Hauser et al., 2011).化学生物学研究的生物活性小分子可以通过激活或抑制各种激素信号转导的级联反应, 从而精细调节细胞中由激素调控的各代谢通路.因此, 很多植物激素的研究一直与小分子类似物的开发紧密相关.全面、深入地理解植物激素人工合成类似物对于探究激素在植物发育过程中的功能至关重要. ...

Auxin transport sites are visualized in planta using fluorescent auxin analogs
3
2014

... 研究人员结合荧光标记技术设计出荧光标记生长素类似物NBD-NAA [7-硝基-2,1,3-苯并恶唑(NBD)-共轭萘-1-乙酸(NAA)]和NBD-IAA (Hayashi et al., 2014).该类化合物与NAA和IAA分子具有相同的转运特性, 但不与TIR1受体结合, 也不影响生长素响应基因的表达, 在生长素信号和代谢方面不起作用.但NBD-NAA/IAA对根系的重力性有一定的抑制效应, 可用于模拟生长素运输和运输位点成像, 有助于观察根部细胞内外分布及深入了解生长素转运动力学特征(Ottenschl?ger et al., 2003). ...

... IAA通过与2种不同的荧光染料FITC (fluorescein isothiocyanate)和RITC (rhodamine isothiocyanate)在吲哚亚胺基(-NH)基团上直接结合, 得到具有类似天然生长素生物活性和运输能力的荧光标记生长素IAA-FITC和IAA-RITC (Soko?owska et al., 2014).它们能够使胚芽鞘弯曲, 诱导器官原基形成, 并模拟根的重力反应.这些生长素类似物也可以像游离生长素一样被运输, 特别是在根分生组织中.研究表明, FITC/RITC与IAA偶联可能对TIR1/AFB-Aux/ IAA受体复合物起作用(Hayashi et al., 2014). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Postharvest application of 1-MCP to improve the quality of various avocado cultivars
1
2005

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

Opportunities and challenges in plant chemical biology
1
2009

... 随着化学与植物生物学、分子生物学学科之间的不断碰撞与融合, 科学家将外源天然化合物或人工合成的小分子作为探针, 用于探究生物体生理代谢过程的分子机制, 主要包括分子识别与分子间相互作用、细胞分化与发育及细胞信号转导等小分子调控作用.因而, 化学生物学作为植物学、分子生物学与化学等学科之间一个新的前沿交叉学科随之诞生(Hicks and Raikhel, 2009; Armstrong and Que, 2012). ...

The cullin-RING ubiquitinprotein ligases
1
2011

... 为揭示生长素如何被感知并介导植物发育, Vain等(2019)利用生长素泛素化蛋白AXR1进行化学生物学筛选(Hua and Vierstra, 2011; Mergner and Schwechheimer, 2014; Weijers and Wagner, 2016), 鉴定出一种人工合成的类生长素小分子RNs (RubNeddins), 包括RN1-4 (RubNeddin 1-4), 均是生长素激动剂.RNs可以促进SCFTIR1/AFB-AUX/IAA共受体的组装, 加强TIR1与Aux/IAA蛋白之间的相互作用, 并促进该蛋白降解; RNs还能够诱导特定生长素启动子; 以及在转录、生化和形态学水平上引起特定生长素反应.其中, RN3显著促进侧根生长, RN4促进下胚轴生长但抑制侧根发育.此外, RN4还诱导AXR2/IAA7蛋白降解, 促进ATP酶编码基因BRAHMA的转录, 从而抑制生长素介导的顶端弯钩(apical hook)形成(Abbas et al., 2013; Wu et al., 2015; Vain et al., 2019). ...

Does ethylene play a role in thidia- zuron-regulated somatic embryogenesis of geranium (Pelargonium × hortorum Bailey) hypocotyl cultures?
1
1997

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

Cloning and molecular characterization of an ethylene receptor gene, MiERS1, expressed during mango fruitlet abscission and fruit ripening
2
2011

... 乙烯利(2-氯乙基磷酸, ethephon)俗称催熟剂, 是一种具有乙烯功效的植物生长调节剂, 可释放乙烯进而诱导果实变薄和成熟(Dennis, 2000; John-Karuppiah and Burns, 2010; Ish-Shalom et al., 2011).乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

... ).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

Substituted phthalimide AC94377 is a selective agonist of the gibberellin receptor GID1
2
2017

... 早在1976年, 美国氰胺公司合成了具有类似赤霉素(gibberellin, GA)活性的化合物1-(3-氯肽酰亚胺)-环己烷羧酰胺(AC-94377) (Suttle and Hultstrand, 1987).它能够打破种子休眠, 促进种子萌发、茎伸长及调节开花, 特别是对杂草种子萌发和幼苗生长的影响甚至强于GA (Metzger, 1983; Suttle and Hultstrand, 1987; Rodaway et al., 1991).2017年, 一系列的生化和遗传证据表明, AC-94377能够与可溶性GA受体GID1 (gibberellin insensitive dwarf 1)结合, 形成GID1-AC94377-DELLA复合物, 从而诱导DELLA蛋白降解(Jiang et al., 2017a).同时, AC-94377被认定是GID1的激动剂, 对特定的GID1亚型具有选择性.因此, AC-94377可为新型GA功能类似物的生物学设计提供模型(Li et al., 2015). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Chemical screening and development of novel gibberellin mimics
2
2017

... 通过化学文库筛选并利用PAC (GA生物合成抑制剂)抑制种子萌发的功能, 科学家鉴定出另一种GA类似物67D (Jiang et al., 2017b).它能够与GID1结合, 使种子萌发过程免受PAC的抑制, 并能回补ga1-3突变体种子不萌发的表型.进一步研究表明, 67D的衍生物可以作为GID1的激动剂, 降解DELLA蛋白RGA, 下调GA3ox1表达, 且与GA具有相同的信号通路(Jiang et al., 2017b).67D及其系列衍生物具有合成工艺简单及生产成本低等优点, 有望作为植物生长调节剂应用于基础研究和农业领域. ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Expression of ethylene biosynthesis and signaling genes during differential abscission responses of sweet orange leaves and mature fruit
2
2010

... 乙烯利(2-氯乙基磷酸, ethephon)俗称催熟剂, 是一种具有乙烯功效的植物生长调节剂, 可释放乙烯进而诱导果实变薄和成熟(Dennis, 2000; John-Karuppiah and Burns, 2010; Ish-Shalom et al., 2011).乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

... ).乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems
1
2007

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine
1
2008

... 冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物.起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005).COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010).COR还能诱导花青素、 ...

The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine
1
1992

... 生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003).当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015).冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本. ...

Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling
1
2010

... Pyrabactin是一种以磺胺为基础的激动剂, 与ABA没有化学结构上的相似性, 但在功能上二者却极其相似(Zhao et al., 2007; Park et al., 2009).Pyrabactin能够与PYL受体特异结合, 使PYR1与下游效应分子的蛋白相互作用, 从而抑制种子萌发和下胚轴生长(Nishimura et al., 2010; Puli and Raghavendra, 2012; Yang et al., 2017).Pyrabactin还通过介导气孔运动和维持植物体水分平衡, 调节水分亏缺相关的胁迫响应.一方面, pyrabactin能够识别气孔保卫细胞及其它植物组织中的ABA相关信号, 并通过ABA-PYL-PP2C复合物激活ABA反应激酶, 随后, 保卫细胞pH值上升, NADPH氧化酶活性增强, 活性氧和NO水平升高(Kim et al., 2010; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015).在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive ( coi1) mutation occurs through two distinct mechanisms
1
2001

... 冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物.起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005).COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010).COR还能诱导花青素、 ...

Adding calorimetric data to decision making in lead discovery: a hot tip
1
2010

... 基于对现有ABA激动剂(tetralone ABA、cyanabactin、AM1和AMF4)进行结构分析, 结合虚拟筛选、X射线晶体学和结构导向, 科学家设计合成了一种ABA类似物OP (opabactin).与ABA相比, 其受体亲和力增加了近7倍, 体内生物活性增加了10倍(Vaidya et al., 2019).OP与PYR1结合是由焓驱动的, 其酰胺支架可提供比以往的磺胺类化合物更多的焓驱动和更高的亲和力, 极显著地抑制种子萌发(Ladbury et al., 2010; Elzinga et al., 2019; Vaidya et al., 2019).OP具有抗蒸腾剂活性, 可快速启动ABA信号, 且相对于ABA和其它激动剂, OP在番茄(Lycopersicon esculentum)和小麦(Triticum aestivum)中具有更加持久的作用效果.除了磺胺类激动剂所需的PYR1和PYL1外, PYL2也参与OP的蒸腾效应(Vaidya et al., 2017b, 2019).这表明PYL2为可被合成激动剂激活的细胞靶点, 能够调控植物蒸腾作用和ABA反应.因此, OP是一种新型的动态控制植物水分利用的激动剂, 能有效缓解干旱对作物产量的影响. ...

Indanoyl amino acid conjugates: tunable elicitors of plant secondary metabolism
1
2003

... 生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003).当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015).冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本. ...

Non-specificity of ethylene inhibitors: ‘double-edged’ tools to find out new targets involved in the root morphogenetic programme
2
2016

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species
1
2015

... 乙烯利(2-氯乙基磷酸, ethephon)俗称催熟剂, 是一种具有乙烯功效的植物生长调节剂, 可释放乙烯进而诱导果实变薄和成熟(Dennis, 2000; John-Karuppiah and Burns, 2010; Ish-Shalom et al., 2011).乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

Computational insight into the structure-activity relationship of novel N-substituted phthalimides with gibberellin-like activity
1
2015

... 早在1976年, 美国氰胺公司合成了具有类似赤霉素(gibberellin, GA)活性的化合物1-(3-氯肽酰亚胺)-环己烷羧酰胺(AC-94377) (Suttle and Hultstrand, 1987).它能够打破种子休眠, 促进种子萌发、茎伸长及调节开花, 特别是对杂草种子萌发和幼苗生长的影响甚至强于GA (Metzger, 1983; Suttle and Hultstrand, 1987; Rodaway et al., 1991).2017年, 一系列的生化和遗传证据表明, AC-94377能够与可溶性GA受体GID1 (gibberellin insensitive dwarf 1)结合, 形成GID1-AC94377-DELLA复合物, 从而诱导DELLA蛋白降解(Jiang et al., 2017a).同时, AC-94377被认定是GID1的激动剂, 对特定的GID1亚型具有选择性.因此, AC-94377可为新型GA功能类似物的生物学设计提供模型(Li et al., 2015). ...

Changes in physiology and quality of Laiyang pear in long time storage
1
2013

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

The use of thidiazuron in tissue culture
2
1993

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Regulators of PP2C phosphatase activity function as abscisic acid sensors
2
2009

... 利用化学遗传学方法合成的一种名为pyrabactin的生长抑制剂具有脱落酸(abscisic acid, ABA)激动剂的效应, 这是第一个人工合成的ABA类似物(Park et al., 2009; Ma et al., 2009).通过对pyrabactin进行研究, 已鉴定出ABA受体蛋白家族PYR/PYL/RCAR (简称PYLs) (Park et al., 2009).ABA及其受体PYLs与PP2C (type 2C protein phosphatase)形成PYLs- ABA-PP2C复合体, 从而抑制PP2C的活性并激活SnRK2 (sucrose non-fermenting 1-related protein kinase 2)激酶活性, 最终激活下游基因, 使ABA信号得以传递(Melcher et al., 2009; Soon et al., 2012). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

A gate-latch-lock mechanism for hormone signaling by abscisic acid receptors
1
2009

... 利用化学遗传学方法合成的一种名为pyrabactin的生长抑制剂具有脱落酸(abscisic acid, ABA)激动剂的效应, 这是第一个人工合成的ABA类似物(Park et al., 2009; Ma et al., 2009).通过对pyrabactin进行研究, 已鉴定出ABA受体蛋白家族PYR/PYL/RCAR (简称PYLs) (Park et al., 2009).ABA及其受体PYLs与PP2C (type 2C protein phosphatase)形成PYLs- ABA-PP2C复合体, 从而抑制PP2C的活性并激活SnRK2 (sucrose non-fermenting 1-related protein kinase 2)激酶活性, 最终激活下游基因, 使ABA信号得以传递(Melcher et al., 2009; Soon et al., 2012). ...

The NEDD8 modification pathway in plants
1
2014

... 为揭示生长素如何被感知并介导植物发育, Vain等(2019)利用生长素泛素化蛋白AXR1进行化学生物学筛选(Hua and Vierstra, 2011; Mergner and Schwechheimer, 2014; Weijers and Wagner, 2016), 鉴定出一种人工合成的类生长素小分子RNs (RubNeddins), 包括RN1-4 (RubNeddin 1-4), 均是生长素激动剂.RNs可以促进SCFTIR1/AFB-AUX/IAA共受体的组装, 加强TIR1与Aux/IAA蛋白之间的相互作用, 并促进该蛋白降解; RNs还能够诱导特定生长素启动子; 以及在转录、生化和形态学水平上引起特定生长素反应.其中, RN3显著促进侧根生长, RN4促进下胚轴生长但抑制侧根发育.此外, RN4还诱导AXR2/IAA7蛋白降解, 促进ATP酶编码基因BRAHMA的转录, 从而抑制生长素介导的顶端弯钩(apical hook)形成(Abbas et al., 2013; Wu et al., 2015; Vain et al., 2019). ...

Promotion of germination of dormant weed seeds by substituted phthalimides and gibberellic acid
1
1983

... 早在1976年, 美国氰胺公司合成了具有类似赤霉素(gibberellin, GA)活性的化合物1-(3-氯肽酰亚胺)-环己烷羧酰胺(AC-94377) (Suttle and Hultstrand, 1987).它能够打破种子休眠, 促进种子萌发、茎伸长及调节开花, 特别是对杂草种子萌发和幼苗生长的影响甚至强于GA (Metzger, 1983; Suttle and Hultstrand, 1987; Rodaway et al., 1991).2017年, 一系列的生化和遗传证据表明, AC-94377能够与可溶性GA受体GID1 (gibberellin insensitive dwarf 1)结合, 形成GID1-AC94377-DELLA复合物, 从而诱导DELLA蛋白降解(Jiang et al., 2017a).同时, AC-94377被认定是GID1的激动剂, 对特定的GID1亚型具有选择性.因此, AC-94377可为新型GA功能类似物的生物学设计提供模型(Li et al., 2015). ...

Thidiazuron: a potent regulator of in vitro plant morphogenesis
1
1998

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

AM1 is a potential ABA substitute for drought tolerance as revealed by physiological and ultra-structural responses of oilseed rape
2
2016

... AM1在非生物胁迫响应方面的功能也很显著, 可提高植物对干旱和寒冷逆境的耐受性(Cao et al., 2013; Cheng et al., 2016).在干旱条件下, AM1可以提高植物的生长速率、生物量和叶面积(Naeem et al., 2016), 调节气孔运动, 减少植株的水分流失(Hartung et al., 2002).AM1还可以抑制光合作用相关基因的表达, 显著改善植株光合器官的超微结构, 调节荧光发射和叶绿素含量, 从而减轻细胞氧化应激, 最终增强植株的抗旱性(Parmar et al., 2013; Naeem et al., 2016; Xiong et al., 2018).此外, AM1能诱导ABF1表达, 显著降低活性氧含量, 提高抗氧化酶活性, 维持活性氧代谢的稳态和积累, 进而提高狗牙根(Cynodon dactylon)的耐冷能力(Cheng et al., 2016). ...

... ; Naeem et al., 2016; Xiong et al., 2018).此外, AM1能诱导ABF1表达, 显著降低活性氧含量, 提高抗氧化酶活性, 维持活性氧代谢的稳态和积累, 进而提高狗牙根(Cynodon dactylon)的耐冷能力(Cheng et al., 2016). ...

PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C- interacting proteins in Arabidopsis
1
2010

... Pyrabactin是一种以磺胺为基础的激动剂, 与ABA没有化学结构上的相似性, 但在功能上二者却极其相似(Zhao et al., 2007; Park et al., 2009).Pyrabactin能够与PYL受体特异结合, 使PYR1与下游效应分子的蛋白相互作用, 从而抑制种子萌发和下胚轴生长(Nishimura et al., 2010; Puli and Raghavendra, 2012; Yang et al., 2017).Pyrabactin还通过介导气孔运动和维持植物体水分平衡, 调节水分亏缺相关的胁迫响应.一方面, pyrabactin能够识别气孔保卫细胞及其它植物组织中的ABA相关信号, 并通过ABA-PYL-PP2C复合物激活ABA反应激酶, 随后, 保卫细胞pH值上升, NADPH氧化酶活性增强, 活性氧和NO水平升高(Kim et al., 2010; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015).在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

Plant- growth substances as selective weed-killers: inhibition of plant growth by 2,4-dichlorophenoxyacetic acid and other plant-growth substances
1
1945

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

Activation of dimeric ABA receptors elicits guard cell closure, ABA- regulated gene expression, and drought tolerance
3
2013

... 根据激活ABA受体的能力及类ABA功能检测筛选出一种人工合成的ABA类似物AM1 (ABA mimc1) (Cao et al., 2013), 又称quinabactin (Okamoto et al., 2013).AM1也属于磺胺类化合物, 具有与pyrabactin相似的稳定结构(Cao et al., 2013).但AM1拥有比pyrabactin更强的ABA激动效应, 能够高效结合ABA受体(Cao et al., 2013; Okamoto et al., 2013). ...

... ; Okamoto et al., 2013). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Gravity-regulated differential auxin transport from columella to lateral root cap cells
1
2003

... 研究人员结合荧光标记技术设计出荧光标记生长素类似物NBD-NAA [7-硝基-2,1,3-苯并恶唑(NBD)-共轭萘-1-乙酸(NAA)]和NBD-IAA (Hayashi et al., 2014).该类化合物与NAA和IAA分子具有相同的转运特性, 但不与TIR1受体结合, 也不影响生长素响应基因的表达, 在生长素信号和代谢方面不起作用.但NBD-NAA/IAA对根系的重力性有一定的抑制效应, 可用于模拟生长素运输和运输位点成像, 有助于观察根部细胞内外分布及深入了解生长素转运动力学特征(Ottenschl?ger et al., 2003). ...

Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas
1
2011

... 6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016).6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011).6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究.在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008).6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016). ...

Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins
4
2009

... 利用化学遗传学方法合成的一种名为pyrabactin的生长抑制剂具有脱落酸(abscisic acid, ABA)激动剂的效应, 这是第一个人工合成的ABA类似物(Park et al., 2009; Ma et al., 2009).通过对pyrabactin进行研究, 已鉴定出ABA受体蛋白家族PYR/PYL/RCAR (简称PYLs) (Park et al., 2009).ABA及其受体PYLs与PP2C (type 2C protein phosphatase)形成PYLs- ABA-PP2C复合体, 从而抑制PP2C的活性并激活SnRK2 (sucrose non-fermenting 1-related protein kinase 2)激酶活性, 最终激活下游基因, 使ABA信号得以传递(Melcher et al., 2009; Soon et al., 2012). ...

... ).通过对pyrabactin进行研究, 已鉴定出ABA受体蛋白家族PYR/PYL/RCAR (简称PYLs) (Park et al., 2009).ABA及其受体PYLs与PP2C (type 2C protein phosphatase)形成PYLs- ABA-PP2C复合体, 从而抑制PP2C的活性并激活SnRK2 (sucrose non-fermenting 1-related protein kinase 2)激酶活性, 最终激活下游基因, 使ABA信号得以传递(Melcher et al., 2009; Soon et al., 2012). ...

... Pyrabactin是一种以磺胺为基础的激动剂, 与ABA没有化学结构上的相似性, 但在功能上二者却极其相似(Zhao et al., 2007; Park et al., 2009).Pyrabactin能够与PYL受体特异结合, 使PYR1与下游效应分子的蛋白相互作用, 从而抑制种子萌发和下胚轴生长(Nishimura et al., 2010; Puli and Raghavendra, 2012; Yang et al., 2017).Pyrabactin还通过介导气孔运动和维持植物体水分平衡, 调节水分亏缺相关的胁迫响应.一方面, pyrabactin能够识别气孔保卫细胞及其它植物组织中的ABA相关信号, 并通过ABA-PYL-PP2C复合物激活ABA反应激酶, 随后, 保卫细胞pH值上升, NADPH氧化酶活性增强, 活性氧和NO水平升高(Kim et al., 2010; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015).在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress
1
2013

... AM1在非生物胁迫响应方面的功能也很显著, 可提高植物对干旱和寒冷逆境的耐受性(Cao et al., 2013; Cheng et al., 2016).在干旱条件下, AM1可以提高植物的生长速率、生物量和叶面积(Naeem et al., 2016), 调节气孔运动, 减少植株的水分流失(Hartung et al., 2002).AM1还可以抑制光合作用相关基因的表达, 显著改善植株光合器官的超微结构, 调节荧光发射和叶绿素含量, 从而减轻细胞氧化应激, 最终增强植株的抗旱性(Parmar et al., 2013; Naeem et al., 2016; Xiong et al., 2018).此外, AM1能诱导ABF1表达, 显著降低活性氧含量, 提高抗氧化酶活性, 维持活性氧代谢的稳态和积累, 进而提高狗牙根(Cynodon dactylon)的耐冷能力(Cheng et al., 2016). ...

Expression and activities of ethylene biosynthesis enzymes during ripening of banana fruits and effect of 1-MCP treatment
1
2003

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

Structural basis for selective activation of ABA receptors
1
2010

... 虽然pyrabactin具有高稳定性和低成本的特点, 但其生理活性和功能作用次于天然ABA (Peterson et al., 2010; Cao et al., 2013; Fan et al., 2015).因此, 在pyrabactin结构已知的基础上, 科学家将继续开发出其它具有更强ABA活性的类似物, 以应用于农业生产(Cao et al., 2013, 2017; Vaidya et al., 2017a). ...

Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik
1
1988

... 6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016).6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011).6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究.在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008).6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016). ...

The auxin-induced transcriptome for etiolated Arabidopsis seed-lings using a structure/function approach
1
2003

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

Pyrabactin, an ABA agonist, induced stomatal closure and changes in signaling components of guard cells in abaxial epidermis of Pisum sativum
3
2012

... Pyrabactin是一种以磺胺为基础的激动剂, 与ABA没有化学结构上的相似性, 但在功能上二者却极其相似(Zhao et al., 2007; Park et al., 2009).Pyrabactin能够与PYL受体特异结合, 使PYR1与下游效应分子的蛋白相互作用, 从而抑制种子萌发和下胚轴生长(Nishimura et al., 2010; Puli and Raghavendra, 2012; Yang et al., 2017).Pyrabactin还通过介导气孔运动和维持植物体水分平衡, 调节水分亏缺相关的胁迫响应.一方面, pyrabactin能够识别气孔保卫细胞及其它植物组织中的ABA相关信号, 并通过ABA-PYL-PP2C复合物激活ABA反应激酶, 随后, 保卫细胞pH值上升, NADPH氧化酶活性增强, 活性氧和NO水平升高(Kim et al., 2010; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015).在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

... ; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015).在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

... )种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

A cheminformatics review of auxins as herbicides
1
2018

... 早在1945年, 第一种合成生长素类除草剂(synthetic auxin herbicides, SAHs) 2,4-二氯苯氧乙酸(2,4-D)就已投入商业使用(Nutman et al., 1945).SAHs比天然生长素(auxin, IAA)更稳定, 作用于双子叶杂草(Grossmann, 2010; Busi et al., 2018).根据化学结构SAHs分为5类: 苯氧基羧酸类(如2,4-D)、苯甲酸类(如麦草畏)、吡啶酸类(如毒莠定、二氯吡啶酸)、喹啉羧酸类(如二氯喹啉酸)及嘧啶羧酸类(如氯丙嘧啶酸) (Christoffoleti et al., 2015; Quareshy et al., 2018).虽然它们的化学结构不同, 但都能引发相似的植物形态、生理和分子水平的变化(Chang and Foy, 1983; Boerjan et al., 1992; Grossmann et al., 1996; Dargeviciute et al., 1998; Pufky et al., 2003). ...

Thraustochytrid marine protists: production of PUFAs and other emerging technologies
1
2008

... 6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016).6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011).6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究.在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008).6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016). ...

Control of early seedling growth in varietal lines of hexaploid wheat (Triticum aestivum), durum wheat (Triticum durum), and barley (Hordeum vulgare) in response to the phthalimide growth regulant, AC94377
1
1991

... 早在1976年, 美国氰胺公司合成了具有类似赤霉素(gibberellin, GA)活性的化合物1-(3-氯肽酰亚胺)-环己烷羧酰胺(AC-94377) (Suttle and Hultstrand, 1987).它能够打破种子休眠, 促进种子萌发、茎伸长及调节开花, 特别是对杂草种子萌发和幼苗生长的影响甚至强于GA (Metzger, 1983; Suttle and Hultstrand, 1987; Rodaway et al., 1991).2017年, 一系列的生化和遗传证据表明, AC-94377能够与可溶性GA受体GID1 (gibberellin insensitive dwarf 1)结合, 形成GID1-AC94377-DELLA复合物, 从而诱导DELLA蛋白降解(Jiang et al., 2017a).同时, AC-94377被认定是GID1的激动剂, 对特定的GID1亚型具有选择性.因此, AC-94377可为新型GA功能类似物的生物学设计提供模型(Li et al., 2015). ...

Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?
1
2011

... 早期合成的独脚金内酯(strigolactones, SLs)类似物GR系列包括GR24、GR18、GR7及GR5等, 其中GR24是被广泛应用的人工合成的独脚金内酯类似物(Zwanenburg et al., 2009; Bromhead et al., 2014).GR24能够促进种子萌发, 降低生长素从芽运输至茎的能力, 从而抑制芽的生长; 能以微克级水平诱导丛枝菌根真菌分枝, 并间接调控分枝发育(Yoneyama et al., 2007, 2012; Crawford et al., 2010).此外, GR24以依赖于MAX2 (MORE AXILLARY BRANCHES 2)的方式降低生长素水平和生长素报告基因DR5-GUS的表达, 减少PIN1 (PIN-FORMED 1)的积累和离体茎段生长素的转运(Crawford et al., 2010; Ruyter-Spira et al., 2011).因此, GR24是用于探究独脚金内酯生理功能的最佳模拟物. ...

Discovery and SAR of halauxifen methyl: a novel auxin herbicide
1
2015

... SAHs能够通过TIR/AFB (transport inhibitor response/auxin-signaling F-box)泛素蛋白降解途径, 激活ABA和乙烯生物合成基因, 产生大量活性氧, 裂解细胞壁, 最终使植物生长停滞或死亡(Grossmann, 2007, 2010).最近发现一类新的SAHs家族——芳基吡啶酸酯, 它们是吡啶羧酸的衍生物, 具有独特的除草活性, 在低剂量下具有广谱且较高的药效(Busi et al., 2018), 可以安全地用于谷类作物中(Schmitzer et al., 2015).芳基吡啶类除草剂的兴起为开发新的SAHs提供了理论支撑及实践样例. ...

Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants
1
1994

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor
1
2010

... 冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物.起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005).COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010).COR还能诱导花青素、 ...

Inhibitors of ethylene responses in plants at the receptor level: recent developments
1
1997

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

Comparison of cyclopropene, 1-methylcyclopropene, and 3,3-dimethylcyclopropene as ethylene antagonists in plants
1
1996

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

Auxin conjugated to fluorescent dyes—a tool for the analysis of auxin transport pathways
2
2014

... IAA通过与2种不同的荧光染料FITC (fluorescein isothiocyanate)和RITC (rhodamine isothiocyanate)在吲哚亚胺基(-NH)基团上直接结合, 得到具有类似天然生长素生物活性和运输能力的荧光标记生长素IAA-FITC和IAA-RITC (Soko?owska et al., 2014).它们能够使胚芽鞘弯曲, 诱导器官原基形成, 并模拟根的重力反应.这些生长素类似物也可以像游离生长素一样被运输, 特别是在根分生组织中.研究表明, FITC/RITC与IAA偶联可能对TIR1/AFB-Aux/ IAA受体复合物起作用(Hayashi et al., 2014). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases
1
2012

... 利用化学遗传学方法合成的一种名为pyrabactin的生长抑制剂具有脱落酸(abscisic acid, ABA)激动剂的效应, 这是第一个人工合成的ABA类似物(Park et al., 2009; Ma et al., 2009).通过对pyrabactin进行研究, 已鉴定出ABA受体蛋白家族PYR/PYL/RCAR (简称PYLs) (Park et al., 2009).ABA及其受体PYLs与PP2C (type 2C protein phosphatase)形成PYLs- ABA-PP2C复合体, 从而抑制PP2C的活性并激活SnRK2 (sucrose non-fermenting 1-related protein kinase 2)激酶活性, 最终激活下游基因, 使ABA信号得以传递(Melcher et al., 2009; Soon et al., 2012). ...

Physiological studies of a synthetic gibberellin-like bioregulator II. Effect of site of application on biological activity
2
1987

... 早在1976年, 美国氰胺公司合成了具有类似赤霉素(gibberellin, GA)活性的化合物1-(3-氯肽酰亚胺)-环己烷羧酰胺(AC-94377) (Suttle and Hultstrand, 1987).它能够打破种子休眠, 促进种子萌发、茎伸长及调节开花, 特别是对杂草种子萌发和幼苗生长的影响甚至强于GA (Metzger, 1983; Suttle and Hultstrand, 1987; Rodaway et al., 1991).2017年, 一系列的生化和遗传证据表明, AC-94377能够与可溶性GA受体GID1 (gibberellin insensitive dwarf 1)结合, 形成GID1-AC94377-DELLA复合物, 从而诱导DELLA蛋白降解(Jiang et al., 2017a).同时, AC-94377被认定是GID1的激动剂, 对特定的GID1亚型具有选择性.因此, AC-94377可为新型GA功能类似物的生物学设计提供模型(Li et al., 2015). ...

... ; Suttle and Hultstrand, 1987; Rodaway et al., 1991).2017年, 一系列的生化和遗传证据表明, AC-94377能够与可溶性GA受体GID1 (gibberellin insensitive dwarf 1)结合, 形成GID1-AC94377-DELLA复合物, 从而诱导DELLA蛋白降解(Jiang et al., 2017a).同时, AC-94377被认定是GID1的激动剂, 对特定的GID1亚型具有选择性.因此, AC-94377可为新型GA功能类似物的生物学设计提供模型(Li et al., 2015). ...

Structure-function analysis identifies highly sensitive strigolactone receptors in Striga
1
2015

... 独脚金属(Striga)植物寄生于农作物, 对农业生产造成毁灭性的破坏(Zwanenburg and Pospí?il, 2013).SLs可以诱导Striga种子自杀式萌发, 即在没有寄主的条件下萌发而致死(Wigchert et al., 1999; Bouwmeester et al., 2007).这促使研究人员开发出只作用于Striga而不妨碍作物正常生长的高效且低剂量的独脚金内酯类似化合物(Wigchert et al., 1999).Uraguchi等(2018)合成了一种独脚金内酯激动剂SPL7 (sphynolactone-7), 它通过烯醇醚与环状基团丁烯内酯环相连, 同时结合天然SLs中负责受体选择模块的abc环(三环系统)和发挥功能模块的D环.这两大重要组分协同激活高亲和力独脚金内酯受体ShHTL7, 使得SPL7在微摩尔范围内起作用(Toh et al., 2015; Yao et al., 2017), 因而成为一种有效的Striga自杀式萌发刺激剂.在没有寄主存在的情况下, SPL7能够高效诱导Striga种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018). ...

The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato
1
2005

... 冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物.起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005).COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010).COR还能诱导花青素、 ...

A femtomolar-range suicide germination stimulant for the parasitic plant Striga hermonthica
3
2018

... 独脚金属(Striga)植物寄生于农作物, 对农业生产造成毁灭性的破坏(Zwanenburg and Pospí?il, 2013).SLs可以诱导Striga种子自杀式萌发, 即在没有寄主的条件下萌发而致死(Wigchert et al., 1999; Bouwmeester et al., 2007).这促使研究人员开发出只作用于Striga而不妨碍作物正常生长的高效且低剂量的独脚金内酯类似化合物(Wigchert et al., 1999).Uraguchi等(2018)合成了一种独脚金内酯激动剂SPL7 (sphynolactone-7), 它通过烯醇醚与环状基团丁烯内酯环相连, 同时结合天然SLs中负责受体选择模块的abc环(三环系统)和发挥功能模块的D环.这两大重要组分协同激活高亲和力独脚金内酯受体ShHTL7, 使得SPL7在微摩尔范围内起作用(Toh et al., 2015; Yao et al., 2017), 因而成为一种有效的Striga自杀式萌发刺激剂.在没有寄主存在的情况下, SPL7能够高效诱导Striga种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018). ...

... 种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Dynamic control of plant water use using designed ABA receptor agonists
4
2019

... 基于对现有ABA激动剂(tetralone ABA、cyanabactin、AM1和AMF4)进行结构分析, 结合虚拟筛选、X射线晶体学和结构导向, 科学家设计合成了一种ABA类似物OP (opabactin).与ABA相比, 其受体亲和力增加了近7倍, 体内生物活性增加了10倍(Vaidya et al., 2019).OP与PYR1结合是由焓驱动的, 其酰胺支架可提供比以往的磺胺类化合物更多的焓驱动和更高的亲和力, 极显著地抑制种子萌发(Ladbury et al., 2010; Elzinga et al., 2019; Vaidya et al., 2019).OP具有抗蒸腾剂活性, 可快速启动ABA信号, 且相对于ABA和其它激动剂, OP在番茄(Lycopersicon esculentum)和小麦(Triticum aestivum)中具有更加持久的作用效果.除了磺胺类激动剂所需的PYR1和PYL1外, PYL2也参与OP的蒸腾效应(Vaidya et al., 2017b, 2019).这表明PYL2为可被合成激动剂激活的细胞靶点, 能够调控植物蒸腾作用和ABA反应.因此, OP是一种新型的动态控制植物水分利用的激动剂, 能有效缓解干旱对作物产量的影响. ...

... ; Vaidya et al., 2019).OP具有抗蒸腾剂活性, 可快速启动ABA信号, 且相对于ABA和其它激动剂, OP在番茄(Lycopersicon esculentum)和小麦(Triticum aestivum)中具有更加持久的作用效果.除了磺胺类激动剂所需的PYR1和PYL1外, PYL2也参与OP的蒸腾效应(Vaidya et al., 2017b, 2019).这表明PYL2为可被合成激动剂激活的细胞靶点, 能够调控植物蒸腾作用和ABA反应.因此, OP是一种新型的动态控制植物水分利用的激动剂, 能有效缓解干旱对作物产量的影响. ...

... , 2019).这表明PYL2为可被合成激动剂激活的细胞靶点, 能够调控植物蒸腾作用和ABA反应.因此, OP是一种新型的动态控制植物水分利用的激动剂, 能有效缓解干旱对作物产量的影响. ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

A rationally designed agonist defines subfamily IIIA abscisic acid receptors as critical targets for manipulating transpiration
2
2017

... 虽然pyrabactin具有高稳定性和低成本的特点, 但其生理活性和功能作用次于天然ABA (Peterson et al., 2010; Cao et al., 2013; Fan et al., 2015).因此, 在pyrabactin结构已知的基础上, 科学家将继续开发出其它具有更强ABA活性的类似物, 以应用于农业生产(Cao et al., 2013, 2017; Vaidya et al., 2017a). ...

... 基于对现有ABA激动剂(tetralone ABA、cyanabactin、AM1和AMF4)进行结构分析, 结合虚拟筛选、X射线晶体学和结构导向, 科学家设计合成了一种ABA类似物OP (opabactin).与ABA相比, 其受体亲和力增加了近7倍, 体内生物活性增加了10倍(Vaidya et al., 2019).OP与PYR1结合是由焓驱动的, 其酰胺支架可提供比以往的磺胺类化合物更多的焓驱动和更高的亲和力, 极显著地抑制种子萌发(Ladbury et al., 2010; Elzinga et al., 2019; Vaidya et al., 2019).OP具有抗蒸腾剂活性, 可快速启动ABA信号, 且相对于ABA和其它激动剂, OP在番茄(Lycopersicon esculentum)和小麦(Triticum aestivum)中具有更加持久的作用效果.除了磺胺类激动剂所需的PYR1和PYL1外, PYL2也参与OP的蒸腾效应(Vaidya et al., 2017b, 2019).这表明PYL2为可被合成激动剂激活的细胞靶点, 能够调控植物蒸腾作用和ABA反应.因此, OP是一种新型的动态控制植物水分利用的激动剂, 能有效缓解干旱对作物产量的影响. ...

Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development
3
2019

... 为揭示生长素如何被感知并介导植物发育, Vain等(2019)利用生长素泛素化蛋白AXR1进行化学生物学筛选(Hua and Vierstra, 2011; Mergner and Schwechheimer, 2014; Weijers and Wagner, 2016), 鉴定出一种人工合成的类生长素小分子RNs (RubNeddins), 包括RN1-4 (RubNeddin 1-4), 均是生长素激动剂.RNs可以促进SCFTIR1/AFB-AUX/IAA共受体的组装, 加强TIR1与Aux/IAA蛋白之间的相互作用, 并促进该蛋白降解; RNs还能够诱导特定生长素启动子; 以及在转录、生化和形态学水平上引起特定生长素反应.其中, RN3显著促进侧根生长, RN4促进下胚轴生长但抑制侧根发育.此外, RN4还诱导AXR2/IAA7蛋白降解, 促进ATP酶编码基因BRAHMA的转录, 从而抑制生长素介导的顶端弯钩(apical hook)形成(Abbas et al., 2013; Wu et al., 2015; Vain et al., 2019). ...

... ; Vain et al., 2019). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Changes in metabolic enzyme activities during thidiazuron-induced lateral budbreak of apple
2
1991

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

... ).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

Changes in the activities of catalase, peroxidase, and polyphenol oxidase in apple buds during bud break induced by thidiazuron
1
1991

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

Breaking bud dormancy in apple with a plant bioregulator, thidiazuron
1
1986

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

Effects of exogenous abscisic acid on the expression of citrus fruit ripening-related genes and fruit ripening
1
2016

... AM1参与调控ABA信号转导的一系列基因的表达.外源ABA和AM1处理均可下调PYR/PYL表达, 上调PP2C表达, 并改变SnRK2基因家族的表达水平, 进而下调AREB/ABF (ABA-responsive element binding protein/ABRE-binding factor)家族的ABF1, 最终提高甘蓝型油菜(Brassica napus)的抗旱性(Xiong et al., 2018).其中, SnRK2和ABF1是ABA信号通路的正调控因子, ABA处理植株中SnRK2ABF家族基因的表达存在物种特异性(Dalal and Inupakutika, 2014; Yoshida et al., 2015; Wang et al., 2016). ...

Rapid 1-methylcyclopropene (1-MCP) treatment and delayed controlled atmosphere storage of apples
1
2012

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

Transcriptional responses to the auxin hormone
1
2016

... 为揭示生长素如何被感知并介导植物发育, Vain等(2019)利用生长素泛素化蛋白AXR1进行化学生物学筛选(Hua and Vierstra, 2011; Mergner and Schwechheimer, 2014; Weijers and Wagner, 2016), 鉴定出一种人工合成的类生长素小分子RNs (RubNeddins), 包括RN1-4 (RubNeddin 1-4), 均是生长素激动剂.RNs可以促进SCFTIR1/AFB-AUX/IAA共受体的组装, 加强TIR1与Aux/IAA蛋白之间的相互作用, 并促进该蛋白降解; RNs还能够诱导特定生长素启动子; 以及在转录、生化和形态学水平上引起特定生长素反应.其中, RN3显著促进侧根生长, RN4促进下胚轴生长但抑制侧根发育.此外, RN4还诱导AXR2/IAA7蛋白降解, 促进ATP酶编码基因BRAHMA的转录, 从而抑制生长素介导的顶端弯钩(apical hook)形成(Abbas et al., 2013; Wu et al., 2015; Vain et al., 2019). ...

Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR24 and Nijmegen 1
2
1999

... 独脚金属(Striga)植物寄生于农作物, 对农业生产造成毁灭性的破坏(Zwanenburg and Pospí?il, 2013).SLs可以诱导Striga种子自杀式萌发, 即在没有寄主的条件下萌发而致死(Wigchert et al., 1999; Bouwmeester et al., 2007).这促使研究人员开发出只作用于Striga而不妨碍作物正常生长的高效且低剂量的独脚金内酯类似化合物(Wigchert et al., 1999).Uraguchi等(2018)合成了一种独脚金内酯激动剂SPL7 (sphynolactone-7), 它通过烯醇醚与环状基团丁烯内酯环相连, 同时结合天然SLs中负责受体选择模块的abc环(三环系统)和发挥功能模块的D环.这两大重要组分协同激活高亲和力独脚金内酯受体ShHTL7, 使得SPL7在微摩尔范围内起作用(Toh et al., 2015; Yao et al., 2017), 因而成为一种有效的Striga自杀式萌发刺激剂.在没有寄主存在的情况下, SPL7能够高效诱导Striga种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018). ...

... 而不妨碍作物正常生长的高效且低剂量的独脚金内酯类似化合物(Wigchert et al., 1999).Uraguchi等(2018)合成了一种独脚金内酯激动剂SPL7 (sphynolactone-7), 它通过烯醇醚与环状基团丁烯内酯环相连, 同时结合天然SLs中负责受体选择模块的abc环(三环系统)和发挥功能模块的D环.这两大重要组分协同激活高亲和力独脚金内酯受体ShHTL7, 使得SPL7在微摩尔范围内起作用(Toh et al., 2015; Yao et al., 2017), 因而成为一种有效的Striga自杀式萌发刺激剂.在没有寄主存在的情况下, SPL7能够高效诱导Striga种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018). ...

Benzyladenine affects cell division and cell size during apple fruit thinning
1
1995

... 6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016).6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011).6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究.在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008).6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016). ...

Survival of the flexible: hormonal growth control and adaptation in plant development
1
2009

... 植物激素广泛参与调控植物各个生长发育阶段, 包括种子萌发、幼苗建成、开花、果实成熟及脱落凋零等过程, 同时也调节植物生长以适应不断变化的各类生物或非生物逆境胁迫(Wolters and Jürgens, 2009).植物激素的信号转导通路一般包括激素受体、正/负调节因子和下游应答基因(Hauser et al., 2011).化学生物学研究的生物活性小分子可以通过激活或抑制各种激素信号转导的级联反应, 从而精细调节细胞中由激素调控的各代谢通路.因此, 很多植物激素的研究一直与小分子类似物的开发紧密相关.全面、深入地理解植物激素人工合成类似物对于探究激素在植物发育过程中的功能至关重要. ...

Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate
1
2015

... 为揭示生长素如何被感知并介导植物发育, Vain等(2019)利用生长素泛素化蛋白AXR1进行化学生物学筛选(Hua and Vierstra, 2011; Mergner and Schwechheimer, 2014; Weijers and Wagner, 2016), 鉴定出一种人工合成的类生长素小分子RNs (RubNeddins), 包括RN1-4 (RubNeddin 1-4), 均是生长素激动剂.RNs可以促进SCFTIR1/AFB-AUX/IAA共受体的组装, 加强TIR1与Aux/IAA蛋白之间的相互作用, 并促进该蛋白降解; RNs还能够诱导特定生长素启动子; 以及在转录、生化和形态学水平上引起特定生长素反应.其中, RN3显著促进侧根生长, RN4促进下胚轴生长但抑制侧根发育.此外, RN4还诱导AXR2/IAA7蛋白降解, 促进ATP酶编码基因BRAHMA的转录, 从而抑制生长素介导的顶端弯钩(apical hook)形成(Abbas et al., 2013; Wu et al., 2015; Vain et al., 2019). ...

Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity
1
2008

... 生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003).当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015).冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本. ...

Transcriptome and physiological analyses reveal that AM1 as an ABA- mimicking ligand improves drought resistance in Brassica napus
2
2018

... AM1参与调控ABA信号转导的一系列基因的表达.外源ABA和AM1处理均可下调PYR/PYL表达, 上调PP2C表达, 并改变SnRK2基因家族的表达水平, 进而下调AREB/ABF (ABA-responsive element binding protein/ABRE-binding factor)家族的ABF1, 最终提高甘蓝型油菜(Brassica napus)的抗旱性(Xiong et al., 2018).其中, SnRK2和ABF1是ABA信号通路的正调控因子, ABA处理植株中SnRK2ABF家族基因的表达存在物种特异性(Dalal and Inupakutika, 2014; Yoshida et al., 2015; Wang et al., 2016). ...

... AM1在非生物胁迫响应方面的功能也很显著, 可提高植物对干旱和寒冷逆境的耐受性(Cao et al., 2013; Cheng et al., 2016).在干旱条件下, AM1可以提高植物的生长速率、生物量和叶面积(Naeem et al., 2016), 调节气孔运动, 减少植株的水分流失(Hartung et al., 2002).AM1还可以抑制光合作用相关基因的表达, 显著改善植株光合器官的超微结构, 调节荧光发射和叶绿素含量, 从而减轻细胞氧化应激, 最终增强植株的抗旱性(Parmar et al., 2013; Naeem et al., 2016; Xiong et al., 2018).此外, AM1能诱导ABF1表达, 显著降低活性氧含量, 提高抗氧化酶活性, 维持活性氧代谢的稳态和积累, 进而提高狗牙根(Cynodon dactylon)的耐冷能力(Cheng et al., 2016). ...

Post-translational control of ABA signaling: the roles of protein phosphorylation and ubiquitination
1
2017

... Pyrabactin是一种以磺胺为基础的激动剂, 与ABA没有化学结构上的相似性, 但在功能上二者却极其相似(Zhao et al., 2007; Park et al., 2009).Pyrabactin能够与PYL受体特异结合, 使PYR1与下游效应分子的蛋白相互作用, 从而抑制种子萌发和下胚轴生长(Nishimura et al., 2010; Puli and Raghavendra, 2012; Yang et al., 2017).Pyrabactin还通过介导气孔运动和维持植物体水分平衡, 调节水分亏缺相关的胁迫响应.一方面, pyrabactin能够识别气孔保卫细胞及其它植物组织中的ABA相关信号, 并通过ABA-PYL-PP2C复合物激活ABA反应激酶, 随后, 保卫细胞pH值上升, NADPH氧化酶活性增强, 活性氧和NO水平升高(Kim et al., 2010; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015).在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit
1
2013

... 1-甲基环丙烯(1-methylcyclopropene, 1-MCP)是乙烯受体最强且最有效的竞争性抑制剂, 其结构简单、化学性质稳定、毒性低、作用持续时间长(Le Deunff and Lecourt, 2016), 其与乙烯受体的亲和力比乙烯本身高10倍(Serek et al., 1994; Sisler et al., 1996; Sisler and Serek, 1997).1-MCP不仅能有效降低乙烯释放速率与呼吸强度, 抑制衰老和成熟相关基因的激活, 延缓组织衰老(Bleecker and Kende, 2000; Watkins and Nock, 2012; Yang et al., 2013), 还能抑制果实褐变与病原菌侵害, 增强抗氧化酶的活性, 延缓色泽变化(Hershkovitz et al., 2005; Liu et al., 2013).研究表明, 1-MCP显著抑制编码乙烯生物合成关键酶基因ACSACO的转录, 降低相关酶活性, 抑制乙烯的合成和释放(de Wild et al., 1999; Dong et al., 2001; Pathak et al., 2003; Defilippi et al., 2005). ...

ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds
1
2017

... 独脚金属(Striga)植物寄生于农作物, 对农业生产造成毁灭性的破坏(Zwanenburg and Pospí?il, 2013).SLs可以诱导Striga种子自杀式萌发, 即在没有寄主的条件下萌发而致死(Wigchert et al., 1999; Bouwmeester et al., 2007).这促使研究人员开发出只作用于Striga而不妨碍作物正常生长的高效且低剂量的独脚金内酯类似化合物(Wigchert et al., 1999).Uraguchi等(2018)合成了一种独脚金内酯激动剂SPL7 (sphynolactone-7), 它通过烯醇醚与环状基团丁烯内酯环相连, 同时结合天然SLs中负责受体选择模块的abc环(三环系统)和发挥功能模块的D环.这两大重要组分协同激活高亲和力独脚金内酯受体ShHTL7, 使得SPL7在微摩尔范围内起作用(Toh et al., 2015; Yao et al., 2017), 因而成为一种有效的Striga自杀式萌发刺激剂.在没有寄主存在的情况下, SPL7能够高效诱导Striga种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018). ...

How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?
1
2012

... 早期合成的独脚金内酯(strigolactones, SLs)类似物GR系列包括GR24、GR18、GR7及GR5等, 其中GR24是被广泛应用的人工合成的独脚金内酯类似物(Zwanenburg et al., 2009; Bromhead et al., 2014).GR24能够促进种子萌发, 降低生长素从芽运输至茎的能力, 从而抑制芽的生长; 能以微克级水平诱导丛枝菌根真菌分枝, 并间接调控分枝发育(Yoneyama et al., 2007, 2012; Crawford et al., 2010).此外, GR24以依赖于MAX2 (MORE AXILLARY BRANCHES 2)的方式降低生长素水平和生长素报告基因DR5-GUS的表达, 减少PIN1 (PIN-FORMED 1)的积累和离体茎段生长素的转运(Crawford et al., 2010; Ruyter-Spira et al., 2011).因此, GR24是用于探究独脚金内酯生理功能的最佳模拟物. ...

Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites
1
2007

... 早期合成的独脚金内酯(strigolactones, SLs)类似物GR系列包括GR24、GR18、GR7及GR5等, 其中GR24是被广泛应用的人工合成的独脚金内酯类似物(Zwanenburg et al., 2009; Bromhead et al., 2014).GR24能够促进种子萌发, 降低生长素从芽运输至茎的能力, 从而抑制芽的生长; 能以微克级水平诱导丛枝菌根真菌分枝, 并间接调控分枝发育(Yoneyama et al., 2007, 2012; Crawford et al., 2010).此外, GR24以依赖于MAX2 (MORE AXILLARY BRANCHES 2)的方式降低生长素水平和生长素报告基因DR5-GUS的表达, 减少PIN1 (PIN-FORMED 1)的积累和离体茎段生长素的转运(Crawford et al., 2010; Ruyter-Spira et al., 2011).因此, GR24是用于探究独脚金内酯生理功能的最佳模拟物. ...

Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signaling in response to osmotic stress
1
2015

... AM1参与调控ABA信号转导的一系列基因的表达.外源ABA和AM1处理均可下调PYR/PYL表达, 上调PP2C表达, 并改变SnRK2基因家族的表达水平, 进而下调AREB/ABF (ABA-responsive element binding protein/ABRE-binding factor)家族的ABF1, 最终提高甘蓝型油菜(Brassica napus)的抗旱性(Xiong et al., 2018).其中, SnRK2和ABF1是ABA信号通路的正调控因子, ABA处理植株中SnRK2ABF家族基因的表达存在物种特异性(Dalal and Inupakutika, 2014; Yoshida et al., 2015; Wang et al., 2016). ...

Physical and functional characterization of the gene cluster encoding the polyketide phytotoxin coronatine in Pseudomonas syringae pv. glycinea
1
1992

... 冠菌素(coronatine, COR)是一种新型的茉莉酸(jasmonic acid, JA)功能类似物.起初其被认为是一种引发植物黄萎病的生物致病毒素(Kloek et al., 2001), 随后发现COR的结构、生理功能与茉莉酸具有显著同源性(Young et al., 1992; Bender et al., 1999; Brooks et al., 2005; Uppalapati et al., 2005).COR与JA的活性形式JA-Ile最为相似, 能够直接作用于COI1-JAZ (CORONATINE INSENSITIVE 1- Jasmonate ZIM domain)受体复合物, 促进JAZ抑制因子的降解(Katsir et al., 2008; Fonseca et al., 2009; Sheard et al., 2010).COR还能诱导花青素、 ...

Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability
3
2017

... 乙烯利(2-氯乙基磷酸, ethephon)俗称催熟剂, 是一种具有乙烯功效的植物生长调节剂, 可释放乙烯进而诱导果实变薄和成熟(Dennis, 2000; John-Karuppiah and Burns, 2010; Ish-Shalom et al., 2011).乙烯利也是一种高效生长延缓剂, 用于作物抗倒伏(John- Karuppiah and Burns, 2010).乙烯利还可调控植物中乙烯的合成(Ish-Shalom et al., 2011).在干旱胁迫下, 乙烯利能够显著上调ZmERE (拟南芥蜡/角质合成调控基因WIN1/SHN1的同源基因)的表达, 调控蜡质生物合成, 增加角质层的蜡质积累(Lee and Suh, 2015; Yu et al., 2017).乙烯利还能够显著降低丙二醛和过氧化氢的积累, 减少电解质泄漏, 增加脯氨酸积累, 增强过氧化物歧化酶、过氧化物酶和过氧化氢酶的活性, 减少细胞氧化损伤, 保持膜的完整性和稳定性, 提高植株抗旱性(Gill and Tuteja, 2010; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

... ; Yu et al., 2017).此外, 乙烯利可以降低花梗中生长素的极性运输能力, 促进乙烯受体基因MiERS1MiETR1的表达上调, 降低蔗糖浓度, 诱导果实脱落(Hagemann et al., 2015). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Metabolomics analysis reveals 6-benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytrium sp
1
2016

... 6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016).6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011).6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究.在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008).6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016). ...

Identification of thidiazuron-induced ESTs expressed differentially during callus differentiation of alfalfa (Medicago sativa)
1
2006

... 噻苯隆(thidiazuron, TDZ)是一种人工合成的植物生长调节剂, 最初由德国先灵制药公司注册为棉花(Gossypium hirsutum)脱叶剂(Arndt et al., 1976), 是具有类似细胞分裂素生理功能的亚硫代苯脲化合物, 在结构上不含有嘌呤环(Wang et al., 1986).TDZ是植物形态发生的重要调控因子, 特别是对愈伤组织诱导、体细胞胚胎发生、器官发生和增殖都具有促进作用(Lu, 1993; Casanova et al., 2008).TDZ能够影响与细胞壁、细胞膜及其流动性相关酶的活性, 对细胞分裂素氧化酶有较强的抑制作用, 稳定性较高(Wang et al., 1991a; Hare and van Staden, 1994).TDZ能够诱导器官发生代谢级联, 促进腺嘌呤型细胞分裂素的合成, 调控植物激素信号转导(Wang et al., 1991a; 1991b; Murthy et al., 1998).TDZ还能够诱导应激基因表达, 促进乙烯和脱落酸等应激信号分子的积累(Hutchinson et al., 1997; Zhang et al., 2006; Jones et al., 2007). ...

Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for the analysis of 6-benzylaminopurine and its ribose adduct in bean sprouts
2
2016

... 6-苄基氨基嘌呤(6-benzylaminopurine, 6-BA)又称苄腺嘌呤, 是第一个人工合成的细胞分裂素(cytokinin, CTK)类植物生长调节剂(Carimi et al., 2003; Zhang et al., 2016).6-BA具有与天然细胞分裂素相似的生理功能, 可促进细胞分裂、加快果实生长、促进芽的形成、提高结实率和产量(Crosby et al., 1981; Polanco et al., 1988; Wismer et al., 1995; Pan and Xu, 2011).6-BA具有高效、低成本的特点, 因而广泛用于基础及应用研究.在发酵培养基中添加6-BA, 可显著提高海洋破囊壶菌(Aurantiochytrium)的脂质积累和DHA (docosahexaenoic acid)产量(Raghukumar, 2008).6-BA还可提高微生物对葡萄糖的利用率, 增加糖酵解、TCA循环及甲羟戊酸等途径向脂肪酸生物合成转移的代谢通量(Yu et al., 2016). ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated
1
2007

... Pyrabactin是一种以磺胺为基础的激动剂, 与ABA没有化学结构上的相似性, 但在功能上二者却极其相似(Zhao et al., 2007; Park et al., 2009).Pyrabactin能够与PYL受体特异结合, 使PYR1与下游效应分子的蛋白相互作用, 从而抑制种子萌发和下胚轴生长(Nishimura et al., 2010; Puli and Raghavendra, 2012; Yang et al., 2017).Pyrabactin还通过介导气孔运动和维持植物体水分平衡, 调节水分亏缺相关的胁迫响应.一方面, pyrabactin能够识别气孔保卫细胞及其它植物组织中的ABA相关信号, 并通过ABA-PYL-PP2C复合物激活ABA反应激酶, 随后, 保卫细胞pH值上升, NADPH氧化酶活性增强, 活性氧和NO水平升高(Kim et al., 2010; Puli and Raghavendra, 2012); 另一方面, pyrabactin能够激活质膜水通道蛋白基因(ZmPIP)的表达, 显著增加ZmPIP2;1/2;2蛋白含量, 提高根系的导水率, 维持植物体内特别是根系的水分平衡(Fan et al., 2015).在大田实际应用中, pyrabactin不仅可作为豌豆(Pisum sativum)种子胎萌抑制剂, 还可作为抗蒸腾剂, 提高作物的耐旱性(Puli and Raghavendra, 2012). ...

Phytotoxin coronatine enhances heat tolerance via maintaining photosynthetic performance in wheat based on electrophoresis and TOF-MS analysis
2
2015

... 生物碱和乙烯的积累, 调节气孔开闭, 抑制根的伸长等(Kenyon and Turner, 1992; Feys et al., 1994; Bender et al., 1999; Benedetti and Arruda, 2002; Lauchli and Boland, 2003).当植物遭受逆境胁迫时, COR能够上调相关蛋白的表达量, 增加渗透调节物质, 维持细胞膜的稳定性, 调节光合作用和抗氧化系统, 提高植物的抗逆能力(Xie et al., 2008; Du et al., 2014; Zhou et al., 2015).冠菌素在农业生产中用途广泛, 且安全性高, 可降低生产成本. ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Structure and function of natural and synthetic signaling molecules in parasitic weed germination
2
2009

... 早期合成的独脚金内酯(strigolactones, SLs)类似物GR系列包括GR24、GR18、GR7及GR5等, 其中GR24是被广泛应用的人工合成的独脚金内酯类似物(Zwanenburg et al., 2009; Bromhead et al., 2014).GR24能够促进种子萌发, 降低生长素从芽运输至茎的能力, 从而抑制芽的生长; 能以微克级水平诱导丛枝菌根真菌分枝, 并间接调控分枝发育(Yoneyama et al., 2007, 2012; Crawford et al., 2010).此外, GR24以依赖于MAX2 (MORE AXILLARY BRANCHES 2)的方式降低生长素水平和生长素报告基因DR5-GUS的表达, 减少PIN1 (PIN-FORMED 1)的积累和离体茎段生长素的转运(Crawford et al., 2010; Ruyter-Spira et al., 2011).因此, GR24是用于探究独脚金内酯生理功能的最佳模拟物. ...

... Functions and applications of major phytohormone analogues in plant
Table 1
植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
首先, 应针对植物激素信号系统靶标(激素受体、激素合成和代谢酶)设计更多高活性的激素功能类似物.这些小分子类似物与其对应的天然植物激素在功能上相似, 但化学结构上却不一定一致.它们结构上的差异为探究激素与受体相结合的内在机理提供了全新角度.依照化学结构的分析来优化类似物设计, 能够将弱的化学键改造成更强的化学键, 改变化学空间结构, 从而开发出比天然植物激素功能更强且结构更稳定的类似物.此外, 类似物与激素受体的结合力比植物激素强, 表明大多类似物与植物激素呈竞争关系.植物激素类似物主要通过与受体结合介入激素信号通路, 因而理论上能够设计在功能上完全取代植物激素的小分子化合物, 精细调控植物的生长发育. ...

Structure and activity of strigolactones: new plant hormones with a rich future
1
2013

... 独脚金属(Striga)植物寄生于农作物, 对农业生产造成毁灭性的破坏(Zwanenburg and Pospí?il, 2013).SLs可以诱导Striga种子自杀式萌发, 即在没有寄主的条件下萌发而致死(Wigchert et al., 1999; Bouwmeester et al., 2007).这促使研究人员开发出只作用于Striga而不妨碍作物正常生长的高效且低剂量的独脚金内酯类似化合物(Wigchert et al., 1999).Uraguchi等(2018)合成了一种独脚金内酯激动剂SPL7 (sphynolactone-7), 它通过烯醇醚与环状基团丁烯内酯环相连, 同时结合天然SLs中负责受体选择模块的abc环(三环系统)和发挥功能模块的D环.这两大重要组分协同激活高亲和力独脚金内酯受体ShHTL7, 使得SPL7在微摩尔范围内起作用(Toh et al., 2015; Yao et al., 2017), 因而成为一种有效的Striga自杀式萌发刺激剂.在没有寄主存在的情况下, SPL7能够高效诱导Striga种子萌发, 其幼苗因寄主的缺失很快死亡, 进而保护寄主植物免受寄生引起的衰老(Uraguchi et al., 2018). ...




备案号: 京ICP备16067583号-21
版权所有 © 2021 《植物学报》编辑部
地址:北京香山南辛村20号 邮编:100093
电话:010-62836135 010-62836131 E-mail:cbb@ibcas.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发

相关话题/植物 基因 信号 生物 结构