Abstract Aims The aim of the present study was to investigate the responses of understory vegetation to soil nutrients and bacterial communities. Methods This study investigated the understory vegetation biomasses and species composition as well as soil physical and chemical properties in 17-year-old Chinese fir plantations with three densities (high-density (KH), medium-density (KM), and low-density (KL)) in Kaihua, Zhejiang. The changes of bacterial community structures were analyzed via 16S rDNA high-throughput sequencing techniques. Important findings The result showed that the total above-ground biomass of the understory vegetation ranged from 0.10 to 2.10 t·hm-2 and the dominant plant species varied in three Chinese fir plantations. The soil pH and available phosphorus content were significantly different between high-density and low-density forest stands. Correlation analysis showed that soil pH was positively correlated with the biomass of herbs, shrubs and the total of understory vegetation, while the content of soil organic matter was just positively related with the last two factors, and the available potassium content was only affected by the biomass of shrub. Based on the analysis of the soil microbial community, the Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi were the dominant phyla in the three Chinese fir plantations. Redundancy analysis showed that soil pH, available nitrogen, available phosphorus and available potassium contents played a crucial role in regulating the soil bacterial community structures. Gp2, Gp1, Gp3 and Gp6 were the dominant subgroups of Acidobacteria, accounting for 51.32%- 57.38% of the Acidobacteria. With the decline of the Chinese fir density, the biomass of understory vegetation and the proportion of Gp1 increased, while the proportion of Gp2 and Gp6 decreased and the relative abundance of Gp6 was negatively correlated with soil pH. Obviously, the moderate reduction in stand density of pure Chinese fir forests was beneficial in the growth of understory vegetation and in maintaining a reasonable bacterial community structure, which helps to maintain the soil fertility of the Chinese fir forests and to achieve sustainable management in the long run. Keywords:Chinese fir;understory vegetation;biomass;soil physical and chemical properties;bacteria;Acidobacteria
PDF (1435KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响. 植物生态学报, 2021, 45(1): 62-73. DOI: 10.17521/cjpe.2020.0158 DING Kai, ZHANG Yu-Ting, ZHANG Jun-Hong, CHAI Xiong, ZHOU Shi-Shui, TONG Zai-Kang. Effects of Chinese fir plantations with different densities on understory vegetation and soil microbial community structure. Chinese Journal of Plant Ecology, 2021, 45(1): 62-73. DOI: 10.17521/cjpe.2020.0158
酸杆菌门(Acidobacteria)是地球上分布最广、数量最丰富的细菌门类之一(Naether et al., 2012), 但因其难培养的特点(Lin et al., 2014), 目前对酸杆菌门细菌在自然环境中的分布和生态功能还知之甚少。基于16S rRNA基因序列, 将酸杆菌门细菌划分为26个亚群(Gp1-Gp26)(Barns et al., 2007)。土壤酸性环境及寡营养条件适合酸杆菌生存, 可作为土壤贫瘠的评价指标(Ward et al., 2009)。对不同生态环境土壤微生物群落结构进行研究, 发现酸杆菌是森林土壤细菌的主导菌群(Turlapati et al., 2013)。Lin等(2018)在研究亚热带森林土壤微生物时, 发现酸杆菌在该类土壤中的相对丰度最高, 占土壤中细菌的42%-48%, 高于其他森林土壤研究中酸杆菌的相对丰度(31%)(Lauber et al., 2009)。
研究区位于浙江省衢州市西北部开化县林场(118.42° E, 29.16° N), 属中亚热带北缘季风气候, 年平均气温16.4 ℃, 7月平均气温27.5 ℃, 1月平均气温4.7 ℃, 年降水量1 805 mm, 年无霜期257天(李婷婷,2011)。试验林位于同一坡向, 海拔234-238 m, 土壤类型为丘陵红壤。2003年造林, 采用K13号杉木优良无性系。依据坡度、坡向相对一致性原则, 设置高密度(KH)、中密度(KM)和低密度(KL) 3种林分密度试验样地, 保留其林下植被。3种林分类型样地基本情况见表1。
Table 1 表1 表1不同密度杉木林试验样地的基本概况(平均值±标准差) Table 1Basic information of the test plots of Chinese fir plantations with different densities (mean ± SD)
类型 Type
林分密度 Stand density (plant·hm-2)
平均胸径 Average DBH (cm)
平均树高 Average tree height (m)
郁闭度 Canopy density
KH
1 783.33 ± 76.38 a
14.3 ± 2.55 b
12.8 ± 0.69 c
0.96 ± 0.02 a
KM
1 616.67 ± 52.65 b
15.6 ± 1.40 b
14.4 ± 1.36 b
0.84 ± 0.02 b
KL
1 436.25 ± 28.87 c
17.4 ± 0.95 a
16.3 ± 0.31 a
0.78 ± 0.01 c
同列不同小写字母表示在p< 0.05水平下差异显著。KH, 高密度; KL, 低密度; KM, 中密度。 Different lowercase letters in the same column indicate significant difference at p< 0.05 level.DBH, diameter at breast height; KH, high-density; KL, low-density; KM, medium-density.
Table 3 表3 表3不同密度杉木人工林林下植被生物量(平均值±标准差) Table 3Understory vegetation biomass of Chinese fir plantations with different densities (mean ± SD)
类型 Type
优势植物种类 Dominate species
地上部分生物量 Aboveground biomass (t·hm-2)
总计 Total (t·hm-2)
灌木层 Shrub layer
草本层 Herb layer
KH
檵木 Loropetalum chinense
0.09 ± 0.15 b
0.01 ± 0.02 b
0.10 ± 0.17 b
KM
檵木、五节芒 L. chinense, Miscanthus floridulus
0.26 ± 0.02 b
0.15 ± 0.02 b
0.40 ± 0.07 b
KL
檵木、芒萁、狗脊、渐尖毛蕨 L. chinense, Dicranopteris pedata, Woodwardia japonica, Cyclosorus acuminatus
0.87 ± 0.15 a
1.23 ± 0.15 a
2.10 ± 0.57 a
同列不同小写字母表示在p < 0.05水平下差异显著。KH, 高密度; KL, 低密度; KM, 中密度。 Different lowercase letters in the same column indicate significant difference at p < 0.05 level. KH, high-density; KL, low-density; KM, medium-density.
Table 4 表4 表4不同密度杉木人工林土壤的理化性质(平均值±标准差) Table 4Soil physical and chemical properties of Chinese fir plantation with different densities (mean ± SD)
类型 Type
pH
束缚水含量(CW) Water content (%)
碱解氮含量 Alkali-hydrolyzable N content (mg·kg-1)
有效磷含量 Available P content (mg·kg-1)
速效钾含量 Available K content (mg·kg-1)
有机质含量 Organic matter content (g·kg-1)
KH
3.44 ± 0.06 b
3.17 ± 0.44 a
142.18 ± 9.30 a
2.51 ± 0.18 b
54.24 ± 9.24 a
34.29 ± 4.11 a
KM
3.52 ± 0.06 ab
3.63 ± 0.45 a
156.88 ± 6.54 a
3.31 ± 0.45 a
66.91 ± 11.63 a
38.58 ± 5.17 a
KL
3.62 ± 0.03 a
3.34 ± 0.55 a
156.63 ± 1.42 a
3.40 ± 0.32 a
74.72 ± 3.90 a
44.58 ± 1.81 a
同列不同小写字母表示在p < 0.05水平下差异显著。KH, 高密度; KL, 低密度; KM, 中密度。 Different lowercase letters in the same column indicate significant difference at p < 0.05 level. KH, high-density; KL, low-density; KM, medium-density.
Table 5 表5 表5不同密度杉木林林下植被地上生物量与土壤理化性质相关性分析 Table 5Correlation analysis of aboveground biomass of understory vegetation and soil physical and chemical properties of Chinese fir plantations with different densities
Table 6 表6 表6不同密度杉木林土壤细菌群落多样性(平均值±标准差) Table 6Diversity of soil bacterial communities in different densities of Chinese fir forests (mean ± SD)
类型 Type
物种数 Observed species
Shannon指数 Shannon index
Chao1指数 Chao1 index
覆盖率 Coverage (%)
KH
4 939.80 ± 173.89 a
10.21 ± 0.04 a
6 223.62 ± 445.90 a
0.973 2 ± 0.004 a
KM
5 171.25 ± 320.72 a
10.27 ± 0.25 a
6 468.85 ± 109.98 a
0.965 3 ± 0.005 a
KL
5 277.67 ± 263.71 a
10.30 ± 0.14 a
6 619.39 ± 214.13 a
0.975 3 ± 0.006 a
同列不同小写字母表示在p< 0.05水平下差异显著。KH, 高密度; KL, 低密度; KM, 中密度。 Different lowercase letters in the same column indicate significant difference at p< 0.05 level. KH, high-density; KL, low-density; KM, medium-density.
Fig. 2Soil dominant bacteria in different densities of Chinese fir forests. Gp, Acidobacteria subgroup. KH, high-density; KL, low-density; KM, medium-density.
Supplement I 附录I 附录I不同密度杉木林土壤细菌群落结构差异分析 Supplement IAnalysis of differences in soil bacterial community structure of Chinese fir forests with different densities
Table 7 表7 表7不同密度杉木林下土壤理化性质对细菌群落结构的影响 Table 7Effects of soil physical and chemical properties on bacterial community structure of Chinese fir plantations with different densities
理化指标 Physical and chemical indicator
Mds1
Mds2
R2
p
pH
-0.580 22
-0.814 46
0.159 7
0.747
束缚水含量 CW
-0.572 27
-0.820 07
0.131 1
0.768
碱解氮含量 AN
0.098 13
-0.995 17
0.803 1
0.049*
有效磷含量 AP
0.128 86
-0.991 66
0.565 5
0.140
速效钾含量 AK
-0.121 23
-0.992 62
0.724 7
0.049*
有机质含量 OM
-0.564 26
-0.825 60
0.472 8
0.267
*代表相关性达到显著水平,p< 0.05。Mds, 多维缩放。 * represents significant correlation atp< 0.05 level. Mds, multi-dimensional scaling.AK, available K content; AN,alkali-hydrolyzable N content; AP, available P content; CW, water content; OM, organic matter content.
Fig. 3Redundancy analysis (RDA) of soil physical and chemical properties and bacteria of Chinese fir plantations with different densities. AK, available K content; AN, alkali- hydrolyzable N content; AP, available P content; CW, water content; OM, organic matter content.
Fig. 4Relative abundance of bacteria genera in different densities of Chinese fir forests. Gp, Acidobacteria subgroup. KH, high-density; KL, low-density; KM, medium-density.
新窗口打开|下载原图ZIP|生成PPT 图5不同密度杉木林土壤的酸杆菌门亚群(Gp)相对丰度聚类。KH, 高密度; KL, 低密度; KM, 中密度。
Fig. 5Clustering of relative abundance of Acidobacteria subgroups (Gp) in different densities of Chinese fir plantations. KH, high-density; KL, low-density; KM, medium-density.
Table 8 表8 表8不同密度杉木林酸杆菌优势亚群(Gp)与土壤理化性质的相关性 Table 8Pearson correlation coefficients between dominant Acidobacteria subgroups (Gp) and soil physicochemical properties of Chinese fir plantations with different densities
分类 Item
pH
束缚水含量 Water content
碱解氮含量 Alkali-hydrolyzable N content
有效磷含量 Available P content
速效钾含量 Available K content
有机质含量 Organic matter content
Gp1
0.257
-0.043
0.118
0.455
0.228
-0.075
Gp2
-0.336
-0.077
0.266
0.316
0.142
0.416
Gp3
-0.006
0.164
0.573
0.693
0.293
0.353
Gp6
-0.890**
0.178
-0.222
0.479
-0.642
-0.475
*代表相关性达到显著水平(p < 0.05); **代表相关性达到极显著水平(p < 0.01)。 * represents significant correlation atp < 0.05 level; ** represents significant correlation at p < 0.01 level.
AnSS, LiGH, ChenLD (2011). Soil microbial functional diversity between rhizosphere and non-rhizosphere soils of typical plants in the hilly area of southern Ningxia , 31,5225-5234. [本文引用: 1]
ArivinRivaie A (2014). The effects of understory vegetation on P availability in Pinus radiata forest stands: a review , 25,489-500. DOI:10.1007/s11676-014-0488-4URL [本文引用: 1]
BarnsSM, CainEC, SommervilleL, KuskeCR (2007). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum , 73,3113-3116. DOI:10.1128/AEM.02012-06URL [本文引用: 1]
CaoM, PanP, OuyangXZ, ZangH, NingJK, GuoLL, LiY (2018). Relationships between the composition and diversity of understory vegetation and environmental factors in aerially seeded Pinus massoniana plantations , 37,1-8. [本文引用: 1]
ChenLC, LiaoLP, WangSL, HuangZQ, XiaoFM (2002). Effect of vanillin and P-hydroxybenzoic acid on physiological characteristics of Chinese fir seedlings , 13,1291-1294. [本文引用: 1]
ChuHY, FiererN, LauberCL, CaporasoJG, KnightR, GroganP (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes , 12,2998-3006. DOI:10.1111/emi.2010.12.issue-11URL [本文引用: 1]
DeBruynJM, NixonLT, FawazMN, JohnsonAM, RadosevichM (2011). Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil , 77,6295-6300. DOI:10.1128/AEM.05005-11URL [本文引用: 1]
DuWC, YuanX, QuTB (2011). Research progress of the relationship between soil microbial diversity and above- ground vegetation types , 20,14-18. [本文引用: 1]
FeltonA, LindbladhM, BrunetJ, Fritz? (2010). Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe , 260,939-947. DOI:10.1016/j.foreco.2010.06.011URL [本文引用: 1]
GriffithsRI, ThomsonBC, JamesP, BellT, BaileyM, WhiteleyAS (2011). The bacterial biogeography of British soils , 13,1642-1654. DOI:10.1111/j.1462-2920.2011.02480.xPMID:21507180 [本文引用: 1] Despite recognition of the importance of soil bacteria to terrestrial ecosystem functioning there is little consensus on the factors regulating belowground biodiversity. Here we present a multi-scale spatial assessment of soil bacterial community profiles across Great Britain (> 1000 soil cores), and show the first landscape scale map of bacterial distributions across a nation. Bacterial diversity and community dissimilarities, assessed using terminal restriction fragment length polymorphism, were most strongly related to soil pH providing a large-scale confirmation of the role of pH in structuring bacterial taxa. However, while α diversity was positively related to pH, the converse was true for β diversity (between sample variance in α diversity). β diversity was found to be greatest in acidic soils, corresponding with greater environmental heterogeneity. Analyses of clone libraries revealed the pH effects were predominantly manifest at the level of broad bacterial taxonomic groups, with acidic soils being dominated by few taxa (notably the group 1 Acidobacteria and Alphaproteobacteria). We also noted significant correlations between bacterial communities and most other measured environmental variables (soil chemistry, aboveground features and climatic variables), together with significant spatial correlations at close distances. In particular, bacterial and plant communities were closely related signifying no strong evidence that soil bacteria are driven by different ecological processes to those governing higher organisms. We conclude that broad scale surveys are useful in identifying distinct soil biomes comprising reproducible communities of dominant taxa. Together these results provide a baseline ecological framework with which to pursue future research on both soil microbial function, and more explicit biome based assessments of the local ecological drivers of bacterial biodiversity.? 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
HeYJ, WangQK, WangSL, YuXJ (2006). Characteristics of soil microbial biomass carbon and nitrogen and their relationships with soil nutrients in Cunninghamia lanceolata plantations , 17,2292-2296. [本文引用: 1]
JonesRT, RobesonMS, LauberCL, HamadyM, KnightR, FiererN (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses , 3,442-453. DOI:10.1038/ismej.2008.127URL [本文引用: 1]
KangB, LiuSR, CaiDX, LuLH (2009). Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties , 20,2323-2331. [本文引用: 1]
LauberCL, HamadyM, KnightR, FiererN (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale , 75,5111-5120. DOI:10.1128/AEM.00335-09URL [本文引用: 1]
LeiB, LiuB, LuoCD, ZhangJ, XueYJ, LiuL (2014). Catabatic effect from artificial mixed plantation of Cunninghamia lanceolata on soil aluminum toxicity , 34,2884-2891. [本文引用: 1]
LiGL, LiuY, YuHQ, LüRH, LiRS (2009). Response of understory vegetation development of Pinus tabulaeformis plantation to growth rhythm of Pinus tabulaeformis , 29,1264-1275. [本文引用: 1]
LiX, SunML, ZhangHH, XuN, SunGY (2016). Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community , 9,293-304. DOI:10.1111/mbt2.2016.9.issue-3URL [本文引用: 1]
LiYJ, CaoGM, LongRJ, YaoT (2016). Effects of land use patterns on grassland biomass and soil properties in three-river headwater area , 24,524-529. [本文引用: 1]
LinYT, HuHW, WhitmanWB, ColemanDC, ChiuCY (2014). Comparison of soil bacterial communities in a natural hardwood forest and coniferous plantations in perhumid subtropical low mountains , 55, 50. DOI: 10.1186/ s40529-014-0050-x. DOI:10.1186/ s40529-014-0050-x [本文引用: 1]
LinYT, WhitmanWB, ColemanDC, ChiuCY (2018). Effects of reforestation on the structure and diversity of bacterial communities in subtropical low mountain forest soils , 9, 1968. DOI: 10.3389/?fmicb.2018.01968. DOI:10.3389/?fmicb.2018.01968 [本文引用: 1]
LiuCL, ZuoWY, ZhaoZY, QiuLH (2012). Bacterial diversity of different successional stage forest soils in Dinghushan , 52,1489-1496. [本文引用: 1]
LiuZF, FuBJ, ZhengXX, LiuGH (2010). Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study , 42,445-450. DOI:10.1016/j.soilbio.2009.11.027URL [本文引用: 1]
LogueJB, Lindstr?mES (2010). Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints , 4,729-738. DOI:10.1038/ismej.2009.156URL [本文引用: 1]
LuRK (2000). . China Agriculture Science Press, Beijing. [本文引用: 1]
MassenssiniAM, BondukiVHA, MeloCAD, TótolaMR, FerreiraFA, CostaMD (2015). Relative importance of soil physico-chemical characteristics and plant species identity to the determination of soil microbial community structure , 91,8-15. DOI:10.1016/j.apsoil.2015.02.009URL [本文引用: 1]
McCaigAE, GloverLA, ProsserJI (1999). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures , 65,1721-1730. DOI:10.1128/AEM.65.4.1721-1730.1999URL [本文引用: 1]
NaetherA, FoeselBU, NaegeleV, WüstPK, WeinertJ, BonkowskiM, AltF, OelmannY, PolleA, LohausG, GockelS, HempA, KalkoEKV, LinsenmairKE, PfeifferS, et al. (2012). Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils , 78,7398-7406. PMID:22885760 [本文引用: 1] In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered.
NavarreteAA, KuramaeEE, deHollander M, PijlAS, vanVeen A, TsaiSM (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils , 83,607-621. DOI:10.1111/1574-6941.12018PMID:23013447 [本文引用: 1] This study focused on the impact of land-use changes and agricultural management of soybean in Amazon forest soils on the abundance and composition of the acidobacterial community. Quantitative real-time PCR (q-PCR) assays and pyrosequencing of 16S rRNA gene were applied to study the acidobacterial community in bulk soil samples from soybean croplands and adjacent native forests, and mesocosm soil samples from soybean rhizosphere. Based on qPCR measurements, Acidobacteria accounted for 23% in forest soils, 18% in cropland soils, and 14% in soybean rhizosphere of the total bacterial signals. From the 16S rRNA gene sequences of Bacteria domain, the phylum Acidobacteria represented 28% of the sequences from forest soils, 16% from cropland soils, and 17% from soybean rhizosphere. Acidobacteria subgroups 1-8, 10, 11, 13, 17, 18, 22, and 25 were detected with subgroup 1 as dominant among them. Subgroups 4, 6, and 7 were significantly higher in cropland soils than in forest soils, which subgroups responded to decrease in soil aluminum. Subgroups 6 and 7 responded to high content of soil Ca, Mg, Mn, and B. These results showed a differential response of the Acidobacteria subgroups to abiotic soil factors, and open the possibilities to explore acidobacterial subgroups as early-warning bioindicators of agricultural soil management effects in the Amazon area.? 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
QinHL, YuanHZ, ZhangH, ZhuYJ, WuMN, WeiWX (2011). Soil bacteria community structure in upland red soil in relation to land use pattern , 48,594-602. [本文引用: 1]
TurlapatiSA, MinochaR, BhiravarasaPS, TisaLS, ThomasWK, MinochaSC (2013). Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. , 83,478-493. DOI:10.1111/1574-6941.12009PMID:22974374 [本文引用: 1] At the Harvard Forest, Petersham, MA, the impact of 20 years of annual ammonium nitrate application to the mixed hardwood stand on soil bacterial communities was studied using 16S rRNA genes pyrosequencing. Amplification of 16S rRNA genes was done using DNA extracted from 30 soil samples (three treatments × two horizons × five subplots) collected from untreated (control), low N-amended (50 kg ha(-1) year(-1)) and high N-amended (150 kg ha(-1) year(-1)) plots. A total of 1.3 million sequences were processed using qiime. Although Acidobacteria represented the most abundant phylum based on the number of sequences, Proteobacteria were the most diverse in terms of operational taxonomic units (OTUs). UniFrac analyses revealed that the bacterial communities differed significantly among soil horizons and treatments. Microsite variability among the five subplots was also evident. Nonmetric multidimensional scaling ordination of normalized OTU data followed by permutational manova further confirmed these observations. Richness indicators and indicator species analyses revealed higher bacterial diversity associated with N amendment. Differences in bacterial diversity and community composition associated with the N treatments were also observed at lower phylogenetic levels. Only 28-35% of the 6 936 total OTUs identified were common to three treatments, while the rest were specific to one treatment or common to two.? 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
WangCX, TianBY, LüRR, LinWL, XuY, HuangQG, HuangJZ (2010). Distribution and diversity of Acidobacteria in tropical rain forest soil of Xishuangbanna , 37,24-29. [本文引用: 1]
WangQ, WangS, FanB, YuX (2007). Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species , 297,201-211. DOI:10.1007/s11104-007-9333-2URL [本文引用: 1]
WardNL, ChallacombeJF, JanssenPH, HenrissatB, CoutinhoPM, WuM, XieG, HaftDH, SaitM, BadgerJ, BaraboteRD, BradleyB, BrettinTS, BrinkacLM, BruceD, et al. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils , 75,2046-2056. DOI:10.1128/AEM.02294-08URL [本文引用: 1]
XiaBC, ZhouJZ, JamesMT (1998). Effect of vegetation on structure of soil microbial community , 9,296-300. [本文引用: 1]
YangJL, FuXL, MaZQ, DiYB, LiuQJ, WangHM (2015). Characteristics of soil microbial community in five forest types in mid-subtropical China , 28,720-727. [本文引用: 1]
ZhangYG, CongJ, LuH, LiGL, QuYY, SuXJ, ZhouJZ, LiDQ (2014). Community structure and elevational diversity patterns of soil Acidobacteria , 26,1717-1724. DOI:10.1016/j.jes.2014.06.012URL [本文引用: 1]
ZhangYQ, LiZC, HouLY, SongLG, YangHG, SunQW (2019). Effects of stand density on species diversity and soil nutrients of Chinese fir plantations , 57,239-250. [本文引用: 1]
ZhaoL, HuYL, LinGG, GaoYC, FangYT, ZengDH (2013). Mixing effects of understory plant litter on decomposition and nutrient release of tree litter in two plantations in Northeast China , 8,e76334. DOI: 10.1371/journal.pone.0076334. DOI:10.1371/journal.pone.0076334URL [本文引用: 1]
ZhaoX, ZhongYM, YangJP, LüYM, WangXP (2017). The response of soil nutrients (carbon and nitrogen) and extracellular enzyme activities to drought in various cultivation ages from tea orchards , 37,387-394. [本文引用: 1]
Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum 1 2007
... 酸杆菌门(Acidobacteria)是地球上分布最广、数量最丰富的细菌门类之一(Naether et al., 2012), 但因其难培养的特点(Lin et al., 2014), 目前对酸杆菌门细菌在自然环境中的分布和生态功能还知之甚少.基于16S rRNA基因序列, 将酸杆菌门细菌划分为26个亚群(Gp1-Gp26)(Barns et al., 2007).土壤酸性环境及寡营养条件适合酸杆菌生存, 可作为土壤贫瘠的评价指标(Ward et al., 2009).对不同生态环境土壤微生物群落结构进行研究, 发现酸杆菌是森林土壤细菌的主导菌群(Turlapati et al., 2013).Lin等(2018)在研究亚热带森林土壤微生物时, 发现酸杆菌在该类土壤中的相对丰度最高, 占土壤中细菌的42%-48%, 高于其他森林土壤研究中酸杆菌的相对丰度(31%)(Lauber et al., 2009). ...
Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil 1 2011
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
土壤微生物多样性与地上植被类型关系的研究进展 1 2011
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
土壤微生物多样性与地上植被类型关系的研究进展 1 2011
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
Bacterial communities associated with benthic organic matter in headwater stream microhabitats 1 2005
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe 1 2010
... 采用典型样地法, 分别在3种林分密度试验地内各设置3个20 m × 20 m 样地.采用对角线法, 在每个样方内选取5个2 m × 2 m的样方调查灌木层, 同时选取5个1 m × 1 m的小样方调查草本层, 记录每种植物的种名(康冰等, 2009).分别测定灌木与草本植物地上部分鲜质量, 茎、叶部分均匀取样, 带回实验室测定干质量.草本植物及叶片部分在58 ℃干燥箱烘干至恒质量, 木本植物在105 ℃烘干至恒质量并测定干质量, 计算含水率及林下植被地上部分生物量. ...
马尾松人工林林分密度对林下植被及土壤性质的影响 1 2009
... 采用典型样地法, 分别在3种林分密度试验地内各设置3个20 m × 20 m 样地.采用对角线法, 在每个样方内选取5个2 m × 2 m的样方调查灌木层, 同时选取5个1 m × 1 m的小样方调查草本层, 记录每种植物的种名(康冰等, 2009).分别测定灌木与草本植物地上部分鲜质量, 茎、叶部分均匀取样, 带回实验室测定干质量.草本植物及叶片部分在58 ℃干燥箱烘干至恒质量, 木本植物在105 ℃烘干至恒质量并测定干质量, 计算含水率及林下植被地上部分生物量. ...
Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale 1 2009
... 酸杆菌门(Acidobacteria)是地球上分布最广、数量最丰富的细菌门类之一(Naether et al., 2012), 但因其难培养的特点(Lin et al., 2014), 目前对酸杆菌门细菌在自然环境中的分布和生态功能还知之甚少.基于16S rRNA基因序列, 将酸杆菌门细菌划分为26个亚群(Gp1-Gp26)(Barns et al., 2007).土壤酸性环境及寡营养条件适合酸杆菌生存, 可作为土壤贫瘠的评价指标(Ward et al., 2009).对不同生态环境土壤微生物群落结构进行研究, 发现酸杆菌是森林土壤细菌的主导菌群(Turlapati et al., 2013).Lin等(2018)在研究亚热带森林土壤微生物时, 发现酸杆菌在该类土壤中的相对丰度最高, 占土壤中细菌的42%-48%, 高于其他森林土壤研究中酸杆菌的相对丰度(31%)(Lauber et al., 2009). ...
Comparison of soil bacterial communities in a natural hardwood forest and coniferous plantations in perhumid subtropical low mountains 1 2014
... 酸杆菌门(Acidobacteria)是地球上分布最广、数量最丰富的细菌门类之一(Naether et al., 2012), 但因其难培养的特点(Lin et al., 2014), 目前对酸杆菌门细菌在自然环境中的分布和生态功能还知之甚少.基于16S rRNA基因序列, 将酸杆菌门细菌划分为26个亚群(Gp1-Gp26)(Barns et al., 2007).土壤酸性环境及寡营养条件适合酸杆菌生存, 可作为土壤贫瘠的评价指标(Ward et al., 2009).对不同生态环境土壤微生物群落结构进行研究, 发现酸杆菌是森林土壤细菌的主导菌群(Turlapati et al., 2013).Lin等(2018)在研究亚热带森林土壤微生物时, 发现酸杆菌在该类土壤中的相对丰度最高, 占土壤中细菌的42%-48%, 高于其他森林土壤研究中酸杆菌的相对丰度(31%)(Lauber et al., 2009). ...
Effects of reforestation on the structure and diversity of bacterial communities in subtropical low mountain forest soils 1 2018
... 酸杆菌门(Acidobacteria)是地球上分布最广、数量最丰富的细菌门类之一(Naether et al., 2012), 但因其难培养的特点(Lin et al., 2014), 目前对酸杆菌门细菌在自然环境中的分布和生态功能还知之甚少.基于16S rRNA基因序列, 将酸杆菌门细菌划分为26个亚群(Gp1-Gp26)(Barns et al., 2007).土壤酸性环境及寡营养条件适合酸杆菌生存, 可作为土壤贫瘠的评价指标(Ward et al., 2009).对不同生态环境土壤微生物群落结构进行研究, 发现酸杆菌是森林土壤细菌的主导菌群(Turlapati et al., 2013).Lin等(2018)在研究亚热带森林土壤微生物时, 发现酸杆菌在该类土壤中的相对丰度最高, 占土壤中细菌的42%-48%, 高于其他森林土壤研究中酸杆菌的相对丰度(31%)(Lauber et al., 2009). ...
鼎湖山不同演替阶段森林土壤细菌多样性 1 2012
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
鼎湖山不同演替阶段森林土壤细菌多样性 1 2012
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study 1 2010
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints 1 2010
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
Relative importance of soil physico-chemical characteristics and plant species identity to the determination of soil microbial community structure 1 2015
Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures 1 1999
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils 1 2012
... 酸杆菌门(Acidobacteria)是地球上分布最广、数量最丰富的细菌门类之一(Naether et al., 2012), 但因其难培养的特点(Lin et al., 2014), 目前对酸杆菌门细菌在自然环境中的分布和生态功能还知之甚少.基于16S rRNA基因序列, 将酸杆菌门细菌划分为26个亚群(Gp1-Gp26)(Barns et al., 2007).土壤酸性环境及寡营养条件适合酸杆菌生存, 可作为土壤贫瘠的评价指标(Ward et al., 2009).对不同生态环境土壤微生物群落结构进行研究, 发现酸杆菌是森林土壤细菌的主导菌群(Turlapati et al., 2013).Lin等(2018)在研究亚热带森林土壤微生物时, 发现酸杆菌在该类土壤中的相对丰度最高, 占土壤中细菌的42%-48%, 高于其他森林土壤研究中酸杆菌的相对丰度(31%)(Lauber et al., 2009). ...
Acidobacterial community responses to agricultural management of soybean in Amazon forest soils 1 2013
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究 1 2015
... 不同密度杉木林土壤细菌群落存在指示性物种(附录II, III), 但功能不确定.本研究中, 3种密度杉木林地土壤酸杆菌门、变形菌门、放线菌门、绿弯菌门和浮霉菌门为优势菌门, 与土壤呈酸性的鼎湖山森林土壤(柳春林等, 2012)和三江平原土壤(隋心等, 2015)中微生物群落结构具相似性.已有研究表明, 变形菌门和放线菌门主要参与有机质分解(Li et al., 2016), 绿弯菌门主要进行碳氮的固定(De-Bruyn et al., 2011).变形菌门的相对丰度与土壤碳含量呈正相关关系(Fazi et al., 2005), 且在营养较为丰富的土壤中比例更高(McCaig et al., 1999), 本研究结果与此类似.土壤微生物多样性与其植物群落多样性呈正相关关系(杜玮超等, 2011), 林地植被通过改变土壤的营养物质含量、pH等环境因子会间接或直接影响土壤微生物的群落结构和丰度(Liu et al., 2010).本研究中, 较低密度林分的土壤细菌多样性较高, 3种密度样地的细菌群落结构间存在较大差异.综合土壤理化因子和优势细菌门的RDA表明, pH、碱解氮、有效磷和速效钾含量显著影响细菌的群落结构, 这与相关研究(Logue & Lindstr?m, 2010; 安韶山等, 2011)结果基本一致.表明土壤pH、速效养分含量等不仅是影响植物生长发育的主要环境因子, 也是影响土壤细菌组成和群落结构的重要因子. ...
Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. 1 2013
... 酸杆菌门(Acidobacteria)是地球上分布最广、数量最丰富的细菌门类之一(Naether et al., 2012), 但因其难培养的特点(Lin et al., 2014), 目前对酸杆菌门细菌在自然环境中的分布和生态功能还知之甚少.基于16S rRNA基因序列, 将酸杆菌门细菌划分为26个亚群(Gp1-Gp26)(Barns et al., 2007).土壤酸性环境及寡营养条件适合酸杆菌生存, 可作为土壤贫瘠的评价指标(Ward et al., 2009).对不同生态环境土壤微生物群落结构进行研究, 发现酸杆菌是森林土壤细菌的主导菌群(Turlapati et al., 2013).Lin等(2018)在研究亚热带森林土壤微生物时, 发现酸杆菌在该类土壤中的相对丰度最高, 占土壤中细菌的42%-48%, 高于其他森林土壤研究中酸杆菌的相对丰度(31%)(Lauber et al., 2009). ...
Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species 1 2007
Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils 1 2009
... 酸杆菌门(Acidobacteria)是地球上分布最广、数量最丰富的细菌门类之一(Naether et al., 2012), 但因其难培养的特点(Lin et al., 2014), 目前对酸杆菌门细菌在自然环境中的分布和生态功能还知之甚少.基于16S rRNA基因序列, 将酸杆菌门细菌划分为26个亚群(Gp1-Gp26)(Barns et al., 2007).土壤酸性环境及寡营养条件适合酸杆菌生存, 可作为土壤贫瘠的评价指标(Ward et al., 2009).对不同生态环境土壤微生物群落结构进行研究, 发现酸杆菌是森林土壤细菌的主导菌群(Turlapati et al., 2013).Lin等(2018)在研究亚热带森林土壤微生物时, 发现酸杆菌在该类土壤中的相对丰度最高, 占土壤中细菌的42%-48%, 高于其他森林土壤研究中酸杆菌的相对丰度(31%)(Lauber et al., 2009). ...