National Natural Science Foundation of China(41371109) National Key R&D Program of China(2018YFE0207800) Guangdong Province Forestry Science and Technology Innovation Project(2020KJCX003) Guangdong Province Special Fund for Disaster Prevention and Emergency Management(2020-06)
Abstract Aims As a discontinuous disturbance factor, forest fire is one of the drivers of biogeochemical cycles. It significantly changes the structure and function, nutrient cycling, and energy transfer of ecosystems and alters the forest carbon pools and carbon distribution patterns, consequently affecting the processes of forest succession and carbon sequestration capacity. This study aims to determine the impacts of incidental forest fire on soil organic carbon density, and to explore the mechanisms of forest fire impacts on soil organic carbon fixation. Methods The study was conducted in secondary Pinus massoniana forests of different ages in Guangdong Province, using the method of space for time substitution. The sampling plots were set up on adjacent sites of burned and control stands, and soil samples (0-60 cm) were collected from each plot for indoor tests and analysis of the physical and chemical properties. The soil organic carbon components were measured and calculated for density. Changes in soil physical and chemical properties and soil organic carbon with forest ages were quantified. Important findings Fire reduced the soil organic carbon density in secondary P. massoniana forests; the level of reduction in soil organic carbon density decreased with forest age and soil depth. Compared with the controls, the soil organic carbon density in the burned plots of young, mid-age and mature forests were 10.93%, 8.52% and 7.56% lower, respectively. The soil organic carbon density in the burned plots of young, mid-age and mature forests varied in the range of 5.04-7.76, 5.26-10.27 and 6.33-13.58 t·hm-2, respectively, along the soil profile of 0-60 cm, which were 2.51%-16.83%, 1.31%-11.85% and 1.09%-12.50% lower, respectively, than the controls. Fire significantly reduced the soil organic carbon density of the young and the mid-age forests in the 0-30 cm soil layer, and of the mature forest in the 0-20 cm soil layer. There were significant correlations between soil organic carbon density and soil physical and chemical properties. Path analysis revealed the greatest direct effect of soil total nitrogen content on soil organic carbon density in both the control and burned plots; fine root biomass had a smaller direct effect, but imposed an indirect effect on soil organic carbon density via its controls on soil total nitrogen content. Nested ANOVA showed that soil depth accounted for 70.60% of the variations in soil organic carbon density, forest age 25.35%, and fire 2.34%. Keywords:forest fire;secondary forest of Pinus massoniana;soil organic carbon;different forest ages;influence mechanism
PDF (1419KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响. 植物生态学报, 2020, 44(10): 1073-1086. DOI: 10.17521/cjpe.2020.0084 LUO Si-Sheng, LUO Bi-Zhen, WEI Shu-Jing, HU Hai-Qing, LI Xiao-Chuan, WU Ze-Peng, WANG Zhen-Shi, ZHOU Yu-Fei, ZHONG Ying-Xia. Effects of moderate forest fires on soil organic carbon density in secondary forests of Pinus massoniana. Chinese Journal of Plant Ecology, 2020, 44(10): 1073-1086. DOI: 10.17521/cjpe.2020.0084
森林生态系统碳储量是陆地生态系统碳库的主体, 在全球的生物地球化学循环中起着重要作用(Barbero et al., 2015; Andela et al., 2017)。森林碳汇作为重要的碳库, 被认为是一种减缓气候变化的有效清洁机制, 在减缓气候变化方面发挥重要作用(Dixon et al., 1994)。马尾松(Pinus massoniana)次生林作为我国亚热带地区重要的林型在气候变暖背 景下发挥重要碳汇效应, 而土壤有机碳库作为陆地生态系统重要碳储库, 在遭受森林火灾后会直接 或间接对大气含碳气体产生影响, 增加大气中的碳含量。
Table 3 表3 表3鹤山市马尾松次生林对照样地和过火样地土壤理化性质特征(平均值±标准偏差) Table 3Characteristics of soil physicochemical properties in the control plots and the postfire plots of secondary Pinus massoniana forests in Heshan (mean±SD)
CK代表对照样地; Postfire forest代表过火样地。BD,土壤容重; Moisture,土壤含水率; SOC,土壤有机碳含量; TN,土壤全氮含量; TP,土壤全磷含量。同一行中不同小写字母代表同一处理间差异显著(p <0.05),不同大写字母代表同一土层2种处理之间差异显著(p <0.05)。 CK, control plots; Postire forest, burned plots. BD, soil bulk density; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content. Different lowercase ltters in the same row indicates significant differences between the same treatments (p < 0.05), and different uppercase letters indicates significant differences between the two treatments in the same soil layers (p <0.05).
Fig. 2Vertical profile of soil organic carbon density in secondary Pinus massoniana forests of different ages in Heshan. A, CK forest. B, Postfire forest.
Table 4 表4 表4鹤山市马尾松次生林对照样地与过火样地不同林龄同一土层土壤有机碳密度t检验 Table 4t-tests of the difference in soil organic carbon density between controls and burned plots in same soil layers in secondary Pinus massoniana forest of different ages in Heshan
相关分析(表5)表明, 马尾松次生林对照样地和过火样地土壤有机碳密度与土壤理化性质均有显著相关性。在对照样地中, 土壤有机碳密度与土壤有机碳含量(r = 0.988, p < 0.01), 土壤全氮含量(r = 0.953, p < 0.01), 土壤全磷含量(r = 0.682, p < 0.01), 土壤含水率(r = 0.949, p < 0.01), C:N (r = 0.782, p < 0.01)、C:P (r = 0.899, p < 0.01), N:P (r = 0.728, p < 0.01), 细根生物量(r = 0.937, p < 0.01)呈极显著正相关关系, 而与土壤容重(r = -0.831, p < 0.01)和土壤pH (r = -0.820, p < 0.01)呈极显著负相关关系。在过火样地中, 土壤有机碳密度与土壤有机碳含量(r = 0.989, p < 0.01), 土壤全氮含量(r = 0.957, p < 0.01)、土壤全磷含量(r = 0.868, p < 0.01), 土壤含水率(r = 0.924, p < 0.01),C:N (r = 0.628, p < 0.01), C:P (r = 0.931, p < 0.01),N:P (r = 0.601, p < 0.01), 细根生物量(r = 0.832, p < 0.01)呈极显著正相关关系, 而与土壤容重(r = -0.726, p < 0.01)和土壤pH (r = -0.774, p < 0.01)呈极显著负相关关系。
Table 5 表5 表5鹤山市马尾松次生林对照样地与过火样地土壤有机碳密度与土壤理化性质、生物量的相关关系 Table 5Correlation coefficients of soil organic carbon density with soil properties and fine root biomass in controls and burned plots of secondary Pinus massoniana forests in Heshan
样地类型 Plot type
土壤有机碳含量 SOC
土壤全氮 含量 TN
土壤全磷 含量 TP
土壤容重 BD
土壤含水率 Moisture
pH
C:N
C:P
N:P
细根生物量 Fine root biomass
CK
0.988**
0.953**
0.682**
-0.831**
0.949**
-0.820**
0.782**
0.899**
0.728**
0.937**
Postfire forest
0.989**
0.957**
0.868**
-0.726**
0.924**
-0.774**
0.628**
0.931**
0.601**
0.832**
CK, 对照样地; Postfire forest, 过火样地。*, p < 0.05; **, p < 0.01。 BD, soil bulk density; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content. *, p < 0.05; **, p < 0.01.
Table 6 表6 表6鹤山市马尾松次生林对照样地土壤理化性质与土壤有机碳密度的通径系数 Table 6Path analysis between soil properties and soil organic carbon density in control plots of secondary Pinus massoniana forests in Heshan
变量 Variable
X1-Y1
X2-Y1
X3-Y1
X4-Y1
X5-Y1
X6-Y1
X7-Y1
X8-Y1
X9-Y1
X10-Y1
X1
0.148
0.666
0.053
-0.310
0.016
0.027
0.292
0.120
-0.038
0.015
X2
0.139
0.706
0.055
-0.287
0.016
0.025
0.214
0.112
-0.042
0.015
X3
0.099
0.500
0.078
-0.227
0.011
0.018
0.157
0.044
-0.008
0.008
X4
-0.131
-0.579
-0.051
0.349
-0.012
-0.030
-0.288
-0.107
0.031
-0.013
X5
0.137
0.667
0.049
-0.256
0.017
0.023
0.226
0.112
-0.041
0.015
X6
-0.128
-0.568
-0.046
0.336
-0.013
-0.031
-0.281
-0.108
0.033
-0.014
X7
0.120
0.420
0.034
-0.280
0.011
0.024
0.359
0.104
-0.022
0.013
X8
0.135
0.600
0.026
-0.284
0.014
0.025
0.283
0.132
-0.047
0.016
X9
0.106
0.558
0.011
-0.206
0.013
0.019
0.150
0.116
-0.054
0.014
X10
0.136
0.631
0.037
-0.279
0.016
0.025
0.273
0.124
0.045
0.016
X1为土壤有机碳含量, X2为土壤全氮含量, X3为土壤全磷含量, X4为土壤容重, X5为土壤含水率, X6为土壤pH, X7为C:N, X8为C:P, X9为N:P, X10为土壤细根生物量。Y1代表对照样地土壤有机碳密度。表中数据下划线示为直接通径系数, 其余为间接通径系数。 X1, soil organic carbon content; X2, soil total nitrogen content; X3, soil total phosphorus content; X4, soil bulk density; X5, soil moisture; X6, soil pH; X7, C:N; X8, C:P; X9, N:P; X10, soil fine root biomass. Y1 represents soil organic carbon density in CK. The underlined data in the table are shown as the direct path coefficients and the others are the indirect path coefficients.
Table 7 表7 表7鹤山市马尾松次生林过火样地土壤理化性质与土壤有机碳密度的通径系数 Table 7Path analysis between soil properties and soil organic carbon density in burned plots of secondary Pinus massoniana forests in Heshan
变量 Variable
X1-Y2
X2-Y2
X3-Y2
X4-Y2
X5-Y2
X6-Y2
X7-Y2
X8-Y2
X9-Y2
X10-Y2
X1
0.118
0.658
0.092
-0.206
0.012
0.006
0.072
0.377
-0.141
0.004
X2
0.111
0.700
0.086
-0.171
0.012
0.005
0.043
0.358
-0.190
0.004
X3
0.104
0.580
0.103
-0.214
0.011
0.005
0.069
0.268
-0.061
0.003
X4
-0.095
-0.467
-0.086
0.256
-0.008
-0.006
-0.083
-0.268
0.032
-0.003
X5
0.104
0.644
0.082
-0.146
0.013
0.004
0.047
0.341
-0.170
0.004
X6
-0.098
-0.534
-0.078
0.237
-0.009
-0.007
-0.069
-0.312
0.099
-0.003
X7
0.080
0.286
0.068
-0.201
0.006
0.004
0.105
0.245
0.032
0.002
X8
0.109
0.617
0.068
-0.169
0.011
0.005
0.064
0.406
-0.184
0.004
X9
0.064
0.513
0.025
-0.032
0.009
0.003
-0.013
0.288
-0.259
0.003
X10
0.095
0.561
0.065
-0.149
0.012
0.005
0.055
0.352
-0.168
0.005
X1为土壤有机碳含量, X2为土壤全氮含量, X3为土壤全磷含量, X4为土壤容重, X5为土壤含水率, X6为土壤pH, X7为C:N, X8为C:P, X9为N:P, X10为土壤细根生物量。Y2代表代表过火样地土壤有机碳密度。表中数据下划线示为直接通径系数, 其余为间接通径系数。 X1, soil organic carbon content; X2, soil total nitrogen content; X3, soil total phosphorus content; X4, soil bulk density; X5, soil moisture; X6, soil pH; X7, C:N; X8, C:P; X9, N:P; X10, soil fine root biomass. Y2 represents soil organic carbon density in burned plots. The underlined data in the table are shown as the direct path coefficients and the others are the indirect path coefficients.
Fig. 3Variance partitioning of soil organic carbon density in secondary Pinus massoniana forests. The proportion of variation explained here is based on the value obtained from a nested ANOVA variance partitioning procedure (No interactions).
Alca?izM, OuteiroL, FrancosM, úbedaX (2018). Effects of prescribed fires on soil properties: a review 613, 944-957. [本文引用: 1]
AlexanderME (1982). Calculating and interpreting forest fire intensities 60, 349-357. [本文引用: 1]
AndelaN, MortonDC, GiglioL, ChenY, van der WerfGR, KasibhatlaPS, BacheletD (2017). A human-driven decline in global burned area 356, 1356-1362. [本文引用: 1]
AndreaeMO, MerletP (2001). Emissions of trace gases and aerosols from biomass burning 15, 955-966. [本文引用: 2]
AugustoL, de SchrijverA, VesterdalL, SmolanderA, PrescottC, RangerJ (2015). Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests 90, 444-466. [本文引用: 1]
BarberoR, AbatzoglouJT, LarkinNK, KoldenCA, StocksB (2015). Climate change presents increased potential for very large fires in the contiguous United States 24, 892-899. [本文引用: 1]
BennettLT, AponteC, BakerTG, TolhurstKG (2014). Evaluating long-term effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest 328, 219-228. [本文引用: 1]
BennettLT, BruceMJ, MachunterJ, KohoutM, KrishnarajSJ, AponteC (2017). Assessing fire impacts on the carbon stability of fire-tolerant forests 27, 2497-2513. [本文引用: 1]
BoruvkaL, MladkovaL, DrabekO (2005). Factors controlling spatial distribution of soil acidification and Al forms in forest soils 99, 1796-1806. [本文引用: 1]
CleverlyJ, BoulainN, Villalobos-VegaR, GrantN, FauxR, WoodC, CookPG, YuQ, LeighA, EamusD (2013). Dynamics of component carbon fluxes in a semi-arid Acacia woodland, central Australia 118, 1168-1185. [本文引用: 1]
CochraneMA (2003). Fire science for rainforests 421, 913-919. [本文引用: 1]
CuiXY, HaoJM, ZhaoSS, SangY, WangHQ, DiXY (2012). Temporal and spacial changes of total soil organic carbon content as affected by an experimental forest fire in the Greater Xing?an Mountains Journal of Soil and Water Conservation, 26(5), 195-200. [本文引用: 2]
DixonRK, SolomonAM, BrownS, HoughtonRA, TrexierMC, WisniewskiJ (1994). Carbon pools and flux of global forest ecosystems 263, 185-190. DOI:10.1126/science.263.5144.185URL [本文引用: 1]
FrenchNHF, GoovaertsP, KasischkeES (2004). Uncertainty in estimating carbon emissions from boreal forest fires 109, D14S08. DOI: 10.1029/2003JD003635. [本文引用: 1]
GiglioL, RandersonJT, van der WerfGR (2013). Analysis of daily, monthly, and annual burned area using the fourth- generation global fire emissions database (GFED4) 118, 317-328. [本文引用: 2]
GleasonCJ, ImJ (2011). A review of remote sensing of forest biomass and biofuel: options for small-area applications 48(2), 141-170. [本文引用: 3]
HammillKA, BradstockRA (2006). Remote sensing of fire severity in the Blue Mountains: influence of vegetation type and inferring fire intensity 15, 213-226. [本文引用: 1]
HeM, DijkstraFA (2014). Drought effect on plant nitrogen and phosphorus: a meta-analysis 204, 924-931. [本文引用: 1]
HeikkinenRK, LuotoM, KuussaariM, P?yryJ (2005). New insights into butterfly-environment relationships using partitioning methods 272, 2203-2210. [本文引用: 1]
HollandEA, BraswellBH, LamarqueJF, TownsendA, SulzmanJ, MüllerJF, RoelofsGJ (1997). Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems 102, 15849-15866. [本文引用: 1]
HuHQ (2005). Forest Fire Ecology and Management. China Forestry Publishing House, Beijing. 98. [本文引用: 1]
HuHQ, LuoSS, LuoBZ, WeiSJ, WangZJ, WuZP (2019). Effects of forest fire disturbance on soil organic carbon and its components of Cunninghamia lanceolata forest in Guangdong Province, southern China Journal of Beijing Forestry University, 41(12), 108-118. [本文引用: 2]
HuHQ, WeiSJ, SunL (2012). Estimation of carbon emissions from forest fires in 2010 in Huzhong of Daxing?anling Mountain Scientia Silvae Sinicae, 48(10), 109-119. [本文引用: 1]
HumeA, ChenHYH, TaylorAR, KayaharaGJ, ManR (2016). Soil C:N:P dynamics during secondary succession following fire in the boreal forest of central Canada 369, 1-9. [本文引用: 1]
JobbágyEG, JacksonRB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation 10, 423-436. [本文引用: 1]
JohnsonDW, CurtisPS (2001). Effects of forest management on soil C and N storage: meta analysis 140, 227-238. [本文引用: 1]
KongJJ, YangJ (2014). Short- and long-term effects of fire on soil properties in a Dahurian larch forest in Great Xing?an Mountains Chinese Journal of Ecology, 33, 1445-1450. [本文引用: 1]
LaganièreJ, PareD, BradleyRL (2010). How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions 40, 465-475. [本文引用: 1]
LohbeckM, PoorterL, Martínez-RamosM, BongersF (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession 96, 1242-1252. [本文引用: 1]
LuoBZ, LuoSS, WeiSJ, SunL, HuHQ (2018). Review on emission from biomass combustion Journal of Nanjing Forestry University (Natural Sciences Edition), 42(6), 191-196. [本文引用: 1]
McGroddyME, DaufresneT, HedinLO (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios 85, 2390-2401. [本文引用: 1]
MeersmansJ, de RidderF, CantersF, De BaetsS, van MolleM (2008). A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium) 143, 1-13. [本文引用: 1]
MládkováL, BoruvkaL, DrábekO (2004). Distribution of aluminium among its mobilizable forms in soils of the Jizera mountains region 50, 346-351. [本文引用: 1]
MoutevaGO, CzimczikCI, FahrniSM, WigginsEB, RogersBM, VeraverbekeS, RandersonJT (2015). Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils 29, 1977-2000. [本文引用: 1]
NearyDG, KlopatekCC, DeBanoLF, FfolliottPF (1999). Fire effects on belowground sustainability: a review and synthesis 122, 51-71. [本文引用: 2]
PageSS, SiegertF, RieleyJO, BoehmHDV, JayaA, LiminS (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997 420, 61-65. [本文引用: 1]
ParéD, BergeronY, CamiréC (1993). Changes in the forest floor of Canadian southern boreal forest after disturbance 4, 811-818. [本文引用: 1]
PellegriniAFA, Ahlstr?mA, HobbieSE, ReichPB, NieradzikLP, StaverAC, JacksonRB (2018). Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity 553, 194-198. [本文引用: 1]
PrescottCE, ChappellHN, VesterdalL (2000). Nitrogen turnover in forest floors of coastal douglas-fir at sites differing in soil nitrogen capital 81, 1878-1886. [本文引用: 1]
SchulzeED, SchulzeW, KochH, ArnethA, BauerG, KelliherFM, ZieglerW (1995). Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia 25, 943-960. [本文引用: 1]
SeilerW, CrutzenJP (1980). Estimates of the gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning 2, 207-247. [本文引用: 2]
ShresthaBM, ChenHYH (2010). Effects of stand age, wildfire and clearcut harvesting on forest floor in boreal mixedwood forests 336, 267-277. [本文引用: 1]
SpringobG, KirchmannH (2003). Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils 35, 629-632. [本文引用: 1]
SunMX (2011). The Impacts on Soil Properties and Revegetation from Forest Fire in Tahe Forest Region PhD dissertation, Beijing Forestry University, Beijing. [本文引用: 1]
SunQ, MeyerWS, KoerberGR, MarschnerP (2016). A wildfire event influences ecosystem carbon fluxes but not soil respiration in a semi-arid woodland 226, 57-66. [本文引用: 1]
Survey and Design Institute of State Forestry Administration (2011). Technical regulations for inventory for forest management planning and design: China, GBT26424- 2010. 2011-01-14. [本文引用: 1]
VergnouxA, Di RoccoR, DomeizelM, GuilianoM, DoumenqP, ThéraulazF (2011). Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV-vis and fluorescence spectroscopy approaches 160, 434-443. [本文引用: 1]
WangXQ, WangCK (2019). Variations in topsoil carbon and nitrogen contents of five temperate plantations in Northeast China Chinese Journal of Applied Ecology, 30, 1911-1918. [本文引用: 1]
YuanZY, ChenHYH (2012). A global analysis of fine root production as affected by soil nitrogen and phosphorus 279, 3796-3802. [本文引用: 1]
ZhangPX, FanSS, HouCM, HuCZ, RenH (2012). The conception planning study on ecological forestry in Heshan city, Guangdong Province Ecological Science, 31, 488-493. [本文引用: 1]
ZhangSJ, LiYM, ZhouY, SuZY (2010). Distribution patterns of soil organic carbon density in western Guangdong and its influencing factors Journal of Central South University of Forestry & Technology, 30(5), 22-28. [本文引用: 1]
ZhouG, GuanL, WeiX, ZhangD, ZhangQ, YanJ, KongG (2007). Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China 188, 77-89. [本文引用: 1]
Effects of prescribed fires on soil properties: a review 1 2018
... 森林火燃烧过程改变了碳源(地上凋落物生物量和地下细根生物量)输入和土壤有机质分解速率的平衡调节(Zhou et al., 2007; 崔晓阳等, 2012; Alca?iz et al., 2018; 胡海清等, 2020); 另一方面, 森林火灾减少了土壤覆盖层, 通过增加太阳光的穿透,改变了地表土壤温度和水热条件, 影响微生物对土壤有机碳的转化和分解, 可提供的有机碳来源减少, 进而减少了土壤有机碳密度(Hammill & Bradstock, 2006).本研究结论与之一致, 森林火灾显著减少了不同林龄马尾松次生林土壤有机碳密度(p < 0.05).相比对照样地, 幼龄林、中龄林、成熟林土壤有机碳密度分别下降10.93%、8.52%、7.56%, 方差分解表明, 森林火灾解释土壤有机碳密度变异的2.34%, 林龄因素解释了其变异的25.35%.火后成熟林的土壤有机碳密度降低最小, 这表明由于不同林龄的土壤有机碳的积累能力存在差异(图1), 且成熟林有较高的固氮能力使土壤肥力增加, 同时也促进了植被生长, 有更多的净初级生力(NPP), 而这是土壤功能和结构的最直接驱动力(Lohbeck et al., 2015), 在同等的温度条件下, 火灾将成熟林的植被中的碳相对更多地转移到土壤中, 即土壤碳释放到大气中相对更少(崔晓阳等, 2012).森林火灾对土壤有机碳密度的影响具有很大不确定性, 取决于多种因素, 包括不同火灾类型、林火强度、土壤类型、植被、气候和地形(French et al., 2004; Vergnoux et al., 2011; Mouteva et al., 2015).一些研究表明, 计划烧除或轻度森林火灾后, 土壤有机碳密度增加(Johnson & Curtis, 2001; Bennett et al., 2014), 这可能是由于火后未完全燃烧的剩余物部分和稳定性疏水有机物的累积, 以及火灾后固氮植物的增多使碳输入源增多. ...
Calculating and interpreting forest fire intensities 1 1982
How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions 1 2010
... 土壤有机碳密度与土壤全氮含量呈极显著正相关关系(p < 0.01).相关研究表明氮的有效性通常会限制森林中碳的积累(Schulze et al., 1995; Holland et al., 1997).火后减少的有机碳和较高的土壤pH可能会抑制微生物的活动以及氮的转化和固氮植物的生长, 从而导致火后土壤中的全氮含量减少(孙明学, 2011).因此, 火后不同林龄土壤有机碳含量和土壤全氮含量在土壤剖面分布的下降趋势相似, 这与土壤有机碳密度与土壤全氮含量呈极显著正相关关系具有一致性.通常认为较低的C:N有利于土壤氮的矿化, 能反映土壤有机质的分解速度且比值与分解速度成反比(Prescott et al., 2000; Springob & Kirchmann, 2003), 而本研究中火后土壤C:N增加, 影响了土壤养分的释放转化, 间接降低了植物氮利用率, 这在一定程度上不利于林分植物的生长和土壤有机碳的积累(McGroddy et al., 2004; Laganière et al., 2010; Augusto et al., 2015).结合通径分析表 明, 对照样地和过火样地均为土壤全氮含量对土壤有机碳密度的直接影响最大, C:N对土壤有机碳密度的直接影响系数分别为0.359和0.105, 通过土壤全氮含量对土壤有机碳密度的间接影响系数分别为0.420和0.286, 这说明火后C:N对土壤有机碳密度的影响下降, 火后提供给植物的有机氮量小于微生物同化量, 这亦表明减缓了林分植物的生长, 减少了碳源输入量. ...
Biomass is the main driver of changes in ecosystem process rates during tropical forest succession 1 2015
... 森林火燃烧过程改变了碳源(地上凋落物生物量和地下细根生物量)输入和土壤有机质分解速率的平衡调节(Zhou et al., 2007; 崔晓阳等, 2012; Alca?iz et al., 2018; 胡海清等, 2020); 另一方面, 森林火灾减少了土壤覆盖层, 通过增加太阳光的穿透,改变了地表土壤温度和水热条件, 影响微生物对土壤有机碳的转化和分解, 可提供的有机碳来源减少, 进而减少了土壤有机碳密度(Hammill & Bradstock, 2006).本研究结论与之一致, 森林火灾显著减少了不同林龄马尾松次生林土壤有机碳密度(p < 0.05).相比对照样地, 幼龄林、中龄林、成熟林土壤有机碳密度分别下降10.93%、8.52%、7.56%, 方差分解表明, 森林火灾解释土壤有机碳密度变异的2.34%, 林龄因素解释了其变异的25.35%.火后成熟林的土壤有机碳密度降低最小, 这表明由于不同林龄的土壤有机碳的积累能力存在差异(图1), 且成熟林有较高的固氮能力使土壤肥力增加, 同时也促进了植被生长, 有更多的净初级生力(NPP), 而这是土壤功能和结构的最直接驱动力(Lohbeck et al., 2015), 在同等的温度条件下, 火灾将成熟林的植被中的碳相对更多地转移到土壤中, 即土壤碳释放到大气中相对更少(崔晓阳等, 2012).森林火灾对土壤有机碳密度的影响具有很大不确定性, 取决于多种因素, 包括不同火灾类型、林火强度、土壤类型、植被、气候和地形(French et al., 2004; Vergnoux et al., 2011; Mouteva et al., 2015).一些研究表明, 计划烧除或轻度森林火灾后, 土壤有机碳密度增加(Johnson & Curtis, 2001; Bennett et al., 2014), 这可能是由于火后未完全燃烧的剩余物部分和稳定性疏水有机物的累积, 以及火灾后固氮植物的增多使碳输入源增多. ...
Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV-vis and fluorescence spectroscopy approaches 1 2011
... 森林火燃烧过程改变了碳源(地上凋落物生物量和地下细根生物量)输入和土壤有机质分解速率的平衡调节(Zhou et al., 2007; 崔晓阳等, 2012; Alca?iz et al., 2018; 胡海清等, 2020); 另一方面, 森林火灾减少了土壤覆盖层, 通过增加太阳光的穿透,改变了地表土壤温度和水热条件, 影响微生物对土壤有机碳的转化和分解, 可提供的有机碳来源减少, 进而减少了土壤有机碳密度(Hammill & Bradstock, 2006).本研究结论与之一致, 森林火灾显著减少了不同林龄马尾松次生林土壤有机碳密度(p < 0.05).相比对照样地, 幼龄林、中龄林、成熟林土壤有机碳密度分别下降10.93%、8.52%、7.56%, 方差分解表明, 森林火灾解释土壤有机碳密度变异的2.34%, 林龄因素解释了其变异的25.35%.火后成熟林的土壤有机碳密度降低最小, 这表明由于不同林龄的土壤有机碳的积累能力存在差异(图1), 且成熟林有较高的固氮能力使土壤肥力增加, 同时也促进了植被生长, 有更多的净初级生力(NPP), 而这是土壤功能和结构的最直接驱动力(Lohbeck et al., 2015), 在同等的温度条件下, 火灾将成熟林的植被中的碳相对更多地转移到土壤中, 即土壤碳释放到大气中相对更少(崔晓阳等, 2012).森林火灾对土壤有机碳密度的影响具有很大不确定性, 取决于多种因素, 包括不同火灾类型、林火强度、土壤类型、植被、气候和地形(French et al., 2004; Vergnoux et al., 2011; Mouteva et al., 2015).一些研究表明, 计划烧除或轻度森林火灾后, 土壤有机碳密度增加(Johnson & Curtis, 2001; Bennett et al., 2014), 这可能是由于火后未完全燃烧的剩余物部分和稳定性疏水有机物的累积, 以及火灾后固氮植物的增多使碳输入源增多. ...