删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素

本站小编 Free考研考试/2022-01-01

解梦怡1,2, 冯秀秀1,2, 马寰菲1,2, 胡汗1,2, 王洁莹1,2, 郭垚鑫3, 任成杰4, 王俊1,2, 赵发珠,1,2,*1陕西省地表系统与环境承载力重点实验室, 西安 710127
2西北大学城市与环境学院, 西安 710127
3西北大学生命科学学院, 西安 710127
4西北农林科技大学农学院, 陕西杨凌 712100

Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains

Meng-Yi XIE1,2, Xiu-Xiu FENG1,2, Huan-Fei MA1,2, Han HU1,2, Jie-Ying WANG1,2, Yao-Xin GUO3, Cheng-Jie REN4, Jun WANG1,2, Fa-Zhu ZHAO,1,2,*1Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi?an 710127, China
2College of Urban and Environment Science, Northwest University, Xi?an 710127, China
3College of Life Sciences, Northwest University, Xi?an 710127, China
4College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China

通讯作者: *zhaofazhu@nwu.edu.cn

编委: 阎恩荣
责任编辑: 赵航
收稿日期:2019-12-23接受日期:2020-04-23网络出版日期:2020-08-20
基金资助:国家自然科学基金(41601578)
中国博士后特别资助(2018T111089)


Corresponding authors: *zhaofazhu@nwu.edu.cn
Received:2019-12-23Accepted:2020-04-23Online:2020-08-20
Fund supported: National Natural Science Foundation of China(41601578)
China Postdoctoral Science Foundation(2018T111089)


摘要
研究微尺度海拔梯度土壤酶活性与化学计量学比值的动态变化及驱动因素对于探讨生态系统养分循环过程具有重要意义。该研究以秦岭太白山6个海拔(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎(Quercus aliena var. acuteserrata)林作为研究对象, 测定锐齿栎叶片、凋落物、细根和土壤的碳(C)、氮(N)、磷(P)含量以及碱性磷酸酶(AKP)、β-1,4-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、木糖苷酶(βX)与β-N-乙酰氨基葡萄糖苷酶(NAG)的活性, 探究不同海拔植物、土壤、酶含量如何变化及驱动土壤酶活性变化的主要因子。结果表明: 5种土壤酶活性在海拔梯度上表现出不同的变化趋势, CBH和βG活性随海拔升高整体呈先增后减趋势, βX与之相反; NAG与AKP活性在1 408-1 694 m呈下降趋势, 在1 803 m处有所升高; 土壤总体酶活性随海拔上升整体表现为降低趋势。相关性分析表明, 土壤酶活性及其化学计量比不同程度上受到植物和土壤C、N、P资源及土壤水热条件等的调控, 其中与土壤有机碳含量的相关性较高, 土壤有机碳含量可被认为是锐齿栎林中影响土壤酶活性变化的主要因子。总之, 土壤酶活性及化学计量比在微尺度海拔梯度上具有差异性, 且受到植物和土壤C、N、P资源的综合影响。
关键词: 生态化学计量比;土壤酶活性;养分循环;海拔梯度;锐齿栎林

Abstract
Aims The dynamics and driving factors of soil enzyme activities and stoichiometry in the micro-scale elevation gradient is of great significance in the study of nutrient cycling processes.
Methods In the present study, the Quercus aliena var. acuteserrata forest belts at the elevation of 1 308, 1 403, 1 503, 1 603, 1 694 and 1 803 m in Taibai Mountain were sampled to determine the contents of carbon (C), nitrogen (N), and phosphorus (P) in leaves, litters, roots and soils, and the activities of alkaline phosphatase (AKP), β-1,4-glucosidase (βG), cellobiohydrolase (CBH), β-1,4-xylosidase (βX) and β-1,4-N-acetylglucosaminidase (NAG).
Important findings Our results showed that altitude had a great impact on the activities of five soil enzymes. CBH and βG increased first and then decreased with the altitude, while βX showed the opposite trend. The NAG and AKP activity showed a downward trend from 1 408 to 1 694 m and increased with elevation since 1 803 m. The total enzyme activity index exhibited a decreasing trend with altitudes increases. The correlation analysis results indicated that soil enzyme activities and their stoichiometry were controlled by plant, soil C, N, P resources, and soil water and heat conditions. Among these factors, the content of soil organic carbon had high correlation with these parameters and was the main factor affecting the change of soil enzyme activities in the Quercus aliena var. acuteserrata forest. In short, the soil enzyme activities and stoichiometry were different along the micro-scale elevation gradient, affected by the C, N, and P resources of plant and soil.
Keywords:ecological stoichiometry;soil enzyme activity;nutrient cycle;elevation gradient;Quercus aliena var. acuteserrata forest


PDF (1260KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素. 植物生态学报, 2020, 44(8): 885-894. DOI: 10.17521/cjpe.2019.0358
XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains. Chinese Journal of Plant Ecology, 2020, 44(8): 885-894. DOI: 10.17521/cjpe.2019.0358


森林作为陆地生态系统的主体, 有着丰富的碳氮储量及复杂的物质循环过程, 因此在全球生物地球化学循环过程中扮演着关键角色(刘顺等, 2017)。微生物是森林土壤碳(C)、氮(N)、磷(P)库转化的根本动力, 其对有机碳的分解需要经过胞外酶的解聚作用, 微生物胞外酶对大分子有机质的解聚是土壤有机碳库分解的限制性环节(Xu et al., 2017)。因此, 森林生态系统中土壤胞外酶活性及其化学计量比是近年来的研究热点(Xu et al., 2015; 杨瑞等, 2016)。

目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论。如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加。但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降。究其原因, 可能是海拔尺度的不同造成了研究结果的差异。以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度。因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性。此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016)。因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义。

秦岭是中国南北气候天然的分界线, 是重要的森林生态区, 其主峰太白山位居秦岭北坡中段, 自上而下有着复杂且完整的植被垂直带谱, 现已成为了解森林生态系统物质循环的热点研究区域(杨瑞等, 2016)。锐齿栎林(Quercus aliena var. acuteserrata forest)作为秦岭地区落叶乔木的代表类型, 广泛分布于太白山1 000-2 000 m海拔间, 多形成单优群落, 可为我们在微海拔尺度同一植被类型研究土壤胞外酶活性及化学计量比提供天然的试验平台(赵永华等, 2003)。因此, 本研究选取太白山6个海拔高度(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎林作为研究对象, 探究微尺度不同海拔土壤酶活性及其化学计量比的动态变化与关键驱动因子, 我们假设: (1)微尺度海拔梯度土壤酶活性及其化学计量存在显著差异, 且酶的C:N和N:P变化趋势基本一致; (2)微海拔尺度土壤酶活性的变化受植物-土壤理化特性影响显著, 尤其是土壤有机碳(SOC)含量。本研究可为认识森林生态系统养分循环及资源限制状况提供新的视角, 有助于完善森林生态系统土壤酶化学计量特征的理论研究体系, 以期为太白山不同海拔高度上锐齿栎林长期发展和管理提供科学依据。

1 材料和方法

1.1 研究区概况

研究地点位于秦岭北麓太白山(107.37°- 107.85° E, 33.82°-34.08° N), 该地区属于温带季风气候, 气候垂直变化明显, 光照不足, 年平均气温13 ℃, 年无霜期140天左右, 降水年际变化较小, 但年内分配不均, 平均年降水量为694.2 mm (主要集中在7-9月), 植被类型丰富, 垂直地带性明显。我们选取海拔梯度上锐齿栎林带(海拔1 308-1 803 m)作为研究对象, 研究区内土壤类型均为灰棕壤(唐志尧等, 2004)。

1.2 样品采集

2018年7月在太白山锐齿栎林带中(海拔1 308-1 803 m)选择地形、地貌、坡向、坡度等基本一致的标准样地(100 m海拔为间隔), 采集锐齿栎林带土壤、叶片、凋落物和细根样品。锐齿栎林作为该林带优势物种, 其相对优势度和土壤特性如表1所示。每个林带中设置3个20 m × 20 m样方(3个重复), 共18个, 各样方间距离均大于20 m。在每个样方内随机选择5株锐齿栎(姜沛沛等, 2017), 根据不同高度(低、中、高)、不同方位(东、南、西、北)采集完全成熟的叶片, 用于后续叶片C、N、P含量的测定。同时, 在每个样方内按照对角线法设置3个1 m × 1 m小样方, 收集锐齿栎树木的凋落物, 将每个样方中3个小样方的凋落物样品混合均匀作为一个样品, 用于后续凋落物C、N、P含量的测定。细根及土壤样品的采集: 按照“S”形5点取样, 在每个样方内分别采集0-10 cm土壤及直径约为2 mm的新鲜细根, 将其分别混合为一个样品。土壤样品过2 mm筛, 剔除残留细根、石块等杂物。接着, 将混合后的土壤样品一分为二, 一部分用自封袋装好常温带回实验室并自然风干, 用于后续土壤理化性质的测定; 另一部分土壤冷藏带回并尽快放入冰箱保存, 用于后续土壤酶活性的测定。采样的同时使用环刀测定土壤容重。

Table 1
表1
表1锐齿栎林带不同海拔高度采样点主要特征(平均值±标准误差)
Table 1Main characteristics of the sampling sites at different altitude of the Quercus aliena var. acuteserrata forest (mean ± SE)
海拔
Altitude (m)
纬度
Latitude (N)
经度
Longitude (E)
锐齿栎优势度1)
(as % of total basal area)1)
pH土壤温度
ST (℃)
土壤容重
BD (g·cm-3)
土壤含水量
SMC (%)
1 30834.08°107.70°0.795.32 ± 0.04bc16.81 ± 0.03a1.15 ± 0.08a22.96 ± 0.75c
1 40834.08°107.69°0.725.28 ± 0.01bc16.60 ± 0.02b1.00 ± 0.06a28.94 ± 1.52b
1 50334.08°107.69°0.815.57 ± 0.03ab16.50 ± 0.01b1.11 ± 0.03a21.97 ± 1.03c
1 60334.07°107.69°0.685.71 ± 0.03a16.24 ± 0.03c1.01 ± 0.07a26.85 ± 0.74b
1 69434.07°107.69°0.745.06 ± 0.04c16.01 ± 0.05d1.01 ± 0.09a44.93 ± 1.43a
1 80334.06°107.70°0.624.19 ± 0.22d15.84 ± 0.04e1.06 ± 0.09a23.32 ± 0.59c
1)锐齿栎种群胸高断面积占总断面积的百分比。同列不同小写字母表示不同海拔间差异显著(p < 0.05)。
1) The percentage of thoracic height fracture area in the total fracture area of Quercus aliena var. acuteserrata population. BD, soil bulk density; SMC, soil moisture content; ST, soil temperature. Different lowercase letters within the same column mean significant differences among altitudes (p < 0.05).

新窗口打开|下载CSV

1.3 植物及土壤样品测定

将采集到的植物叶片、凋落物及根样品 65 ℃烘干至恒质量, 经植物粉碎机磨碎, 过60目筛保存于样品瓶中, 被用于测定C、N、P等养分元素的含量。所有植物(叶片、凋落物、细根)样品中C、N采用EA3000元素分析仪(Euro Vector, Pavia, Italy)测定, P采用H2SO4-H2O2消煮法制备浸提液后用紫外分光光度计比色法测定。

土壤含水量(SMC)采用铝盒烘干法测定, 用质量含水量表示(%); 土壤容重(BD)采用环刀法进行测定(g·cm-3); 土壤pH用酸度计测定(土水质量比1:2.5); SOC、全氮(TN)含量采用EA3000元素分析仪测定; 土壤全磷(TP)含量用酸溶-钼锑抗比色法测定。

1.4 土壤酶活性测定

土壤酶活性参照Qi等(2016)的方法, 测定水解酶类: 碱性磷酸酶(AKP)、β-1,4-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、木糖苷酶(βX)以及β-N-乙酰氨基葡萄糖苷酶(NAG)。取1 g鲜土加入到125 mL去离子水中振荡2 h (25 ℃, 180 r·min-1)制成悬浊液, 取200 μL悬浊液加入到96孔微孔板中, 每个样品有6个重复(200 μL样品悬浊液+ 50 μL 200 μmol·L-1底物), 6个阴性对照(200 μL去离子水+ 50 μL 200 μmol·L-1底物)和6个空白(200 μL样品悬浊液+ 50 μL去离子水)作为对照, 再加以6个淬火标准(200 μL样品悬浊液+ 50 μL 10 μmol·L-1标准液)及参考标准(200 μL去离子水+ 50 μL 10 μmol·L-1标准液)进行校正。微孔板在25 ℃黑暗条件下培育4 h后向每个微孔中加入10 μL 0.5 mol·L-1的NaOH溶液使其停止反应。用Synergy H4多功能酶标仪(Molecular Devices, SanJose, USA)测定荧光值, 荧光激发光和检测光波长分别在365和450 nm处, 酶活性以每小时每克干物质产生底物的摩尔数(nmol·g-1·h-1)来表示。

土壤酶活性计算公式为:

${A_{\text{b}}} = F \times V/{\text{(}}e{V_1}{\text{t}} \times m{\text{)}}$
$F = {\text{(}}f - {f_{\text{b}}}{\text{)}}/q - {f_{\text{s}}}$
$e = {f_{\text{r}}}/{\text{(}}{c_{\text{s}}}{V_{\text{2}}}{\text{)}}$
$q = ({f_{\text{q}}} - {f_{\text{b}}})/{f_{\text{r}}}$
式中, Ab为土壤样品的酶活性(nmol·g-1·h-1); F为校正后的样品荧光值; V为土壤样品悬浊液的总体积(125 mL); V1为微孔板每孔中加入的样品悬浊液的体积(0.2 mL); t为暗培养时间(4 h); m为干土样的质量(1 g鲜土样换算成干土的结果); f为酶标仪读取样品微孔的荧光值; fb为空白微孔的荧光值; q为淬火系数; fs为阴性对照微孔的荧光值; e为荧光释放系数; fr为参考标准微孔的荧光值; cs为参考标准微孔的浓度(10 μmol·L-1); V2为加入参考标准物的体积(0.05 mL); fq为淬火标准微孔的荧光值。

1.5 数据处理

由于单个土壤酶只能反映一部分的酶活性信息, 不能包括海拔上整体酶信息。因此我们借助土壤总体酶活性(TEI)(和文祥等, 2010)这个指标来评价不同海拔上土壤肥力水平的高低。

$TEI = \sum\limits_{i = {\text{1}}}^n {E{A_i}{\text{/}}\overline {EA} }$
式中, i表示第i种酶, n表示酶种类总数, EAi表示第i种土壤酶活性的实测值, $\overline {EA}$表示不同海拔上同一种土壤酶活性的平均值。

数据经过Excel 2016软件处理后, 使用SPSS 19.0软件进行统计分析。采用单因素方差分析检验微尺度海拔对锐齿栎林植物、土壤C、N、P含量和土壤酶活性及其化学计量比是否具有显著影响, 同时采用Duncan法检验组间差异的显著性(p < 0.05), 并选择Pearson相关系数分析生物与非生物因素(土壤含水量、pH、土壤温度、植物和土壤C:N:P)与土壤酶活性及其化学计量比的相关性, 明确微尺度海拔土壤酶活性变化的主要影响因子。使用Origin 8.0软件绘图。

2 结果和分析

2.1 植物C、N、P含量及化学计量比随海拔高度的变化特征

叶片N、P与细根P含量和C:N随着海拔高度的上升先增后减, 而凋落物C:N与细根N含量、C:P和N:P随海拔升高表现出先减后增的趋势(图1)。叶片C:N、C:P与凋落物C:P在海拔上升过程中具有整体上升的趋势; 叶片N:P与凋落物C、N含量和N:P在不同海拔间有显著差异(p < 0.05), 但无明显变化趋势。此外, 海拔高度变化对叶片C、凋落物P与细根C含量均无显著影响(p > 0.05)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1秦岭植物碳(C)、氮(N)、磷(P)含量及其化学计量比随海拔变化特征(平均值±标准误差)。不同小写字母表示不同海拔高度间差异显著(p < 0.05)。

Fig. 1Altitudinal variation of plants carbon (C), nitrogen (N), phosphorus (P) content and stoichiometry characteristics in the Qinling Mountains (mean ± SE). Different lowercase letters within the same column mean significant differences among different altitudes (p < 0.05).



2.2 土壤C、N、P含量及化学计量比随海拔高度的变化特征

随海拔升高, SOC、TN、TP含量均呈现出先增加后减少的趋势(图2), 其中, 在海拔1 803 m处TN与TP含量均显著低于其他海拔高度(p < 0.05)。土壤C:N随海拔高度升高具有上升趋势, 而C:P与N:P在1 308-1 603 m和1 603-1 803 m两个海拔区间内均呈先减后增趋势。

图2

新窗口打开|下载原图ZIP|生成PPT
图2秦岭土壤碳(C)、氮(N)、磷(P)含量及其化学计量比随海拔变化特征(平均值±标准误差)。不同小写字母表示不同海拔高度间差异显著(p < 0.05)。

Fig. 2Altitudinal variation of soils carbon (C), nitrogen (N), phosphorus (P) content and stoichiometric characteristics in the Qinling Mountains (mean ± SE). Different lowercase letters within the same column mean significant differences among different altitudes (p < 0.05).



2.3 土壤酶活性及化学计量比随海拔高度的变化特征

图3可知, 土壤CBH酶活性随海拔上升呈先增后减趋势, 而βX酶活性与之相反。βG酶活性在1 308-1 694 m海拔间呈先升后降趋势, 且各海拔高度间差异显著(p < 0.05)。NAG和AKP酶活性在1 408-1 694 m呈下降趋势, 在1 803 m处有所升高, 其中AKP酶活性在1 694 m显著低于其他海拔(p < 0.05)。除1 803 m外, 土壤总体酶活性在各海拔高度间总体表现为降低趋势。与1 308 m相比, 1 694 m土壤总体酶活性显著下降了63.92%。

图3

新窗口打开|下载原图ZIP|生成PPT
图3秦岭土壤酶活性及总体酶活性沿海拔变化特征(平均值±标准误差)。不同小写字母表示不同海拔高度间差异显著(p < 0.05)。AKP, 碱性磷酸酶; CBH, 纤维二糖水解酶; NAG, β-N-乙酰氨基葡萄糖苷酶; βG, β-葡萄糖苷酶; βX, 木糖苷酶; TEI, 土壤总体酶活性。

Fig. 3Altitudinal variation of soil enzyme activities and the total enzyme activity index in the Qinling Mountain (mean ± SE). Different lowercase letters within the same column mean significant differences among different altitudes (p < 0.05). AKP, alkaline phosphatase; CBH, cellobiohydrolase; NAG, β-1,4-N-acetylglucosaminidase; βG, β-1,4-glucosidase; βX, β-1,4-xylosidase; TEI, total enzyme activity index.



土壤酶活性进行以e为底的对数转换后, 得出ln(βG):ln(NAG)平均为0.99 ± 0.03, 相应的C:P以ln(βG):ln(AKP)表示, 为0.78 ± 0.02 (表2)。从这些指标来看, 平均土壤酶C:N:P活性比约为1:1:0.8。ln(βG):ln(NAG)在1 408-1 803 m区间内呈先上升后下降趋势, 各海拔高度间差异显著; ln(βG):ln(AKP)与ln(βG):ln(NAG)趋势基本相同, 在1 603 m处显著高于其他海拔高度。ln(NAG):ln(AKP)比值在1 408 m海拔显著高于其他海拔高度, 与ln(βG):ln(AKP)和ln(βG):ln(NAG)趋势正好相反。

Table 2
表2
表2锐齿栎林土壤酶活性化学计量比沿海拔的变化特征(平均值±标准误差)
Table 2Stoichiometry characteristics of soil enzyme activities in Quercus aliena var. acuteserrata forest along the elevation gradient (mean ± SE)
海拔 Altitude (m)
1 3081 4081 5031 6031 6941 803平均值 Mean
ln(βG):ln(NAG)0.91 ± 0.02cd0.84 ± 0.02d1.12 ± 0.01ab1.16 ± 0.06a1.02 ± 0.07bc0.93 ± 0.01cd0.99 ± 0.03
ln(βG):ln(AKP)0.73 ± 0.03c0.75 ± 0.03bc0.81 ± 0.02b0.88 ± 0.02a0.77 ± 0.03bc0.78 ± 0.01bc0.78 ± 0.02
ln(NAG):ln(AKP)0.80 ± 0.00bc0.90 ± 0.02a0.73 ± 0.01d0.76 ± 0.03cd0.76 ± 0.03cd0.84 ± 0.01b0.80 ± 0.02
AKP, 碱性磷酸酶; CBH, 纤维二糖水解酶; NAG, β-N-乙酰氨基葡萄糖苷酶; βG, β-葡萄糖苷酶。同列不同小写字母表示不同海拔高度间差异显著(p < 0.05)。
AKP, alkaline phosphatase; CBH, cellobiohydrolase; NAG, β-1,4-N-acetylglucosaminidase; βG, β-1,4-glucosidase. Different lowercase letters within the same column mean significant differences among different altitudes (p < 0.05).

新窗口打开|下载CSV

2.4 土壤酶活性及化学计量比与生物和非生物因素的相关性

相关性分析结果(表3)显示, ln(βG):ln(NAG)与土壤C:P呈显著负相关关系(p < 0.05), 与细根C:P显著正相关; ln(βG):ln(AKP)和ln(NAG):ln(AKP)与SOC含量显著正相关(p < 0.05)。此外, ln(βG):ln(AKP)与叶片P、凋落物N含量和N:P、TN含量呈现显著的正相关关系(p < 0.05), 与凋落物C:N显著负相关(p < 0.05); ln(NAG):ln(AKP)与pH、叶片N含量、土壤C:P显著正相关(p < 0.05), 但与叶片C:N、细根C:P和N:P呈显著负相关关系(p < 0.05)。除CBH和βG外, βX、NAG、AKP均与pH和叶片N含量呈显著负相关关系(p < 0.05), 与叶片C:N显著正相关(p < 0.05); βX和AKP还与细根C:N、SOC含量显著负相关(p < 0.05), 与细根N含量和N:P显著正相关(p < 0.05)。CBH与ST、叶片P含量呈显著正相关关系(p < 0.05), 与叶片C:P和N:P呈显著负相关关系(p < 0.05)。然而βG仅与土壤TP含量和C:P、SMC有显著相关关系(p < 0.05), 植物特征对其影响较小。

Table 3
表3
表3锐齿栎林土壤酶活性及化学计量比与生物和非生物因素的相关性系数
Table 3Correlation coefficients of activities of soil enzymes and stoichiometry characteristics with abiotic factors and biotic factors in Quercus aliena var. acuteserrata forest
酶 Enzyme
CBHβXβGNAGAKPln(βG):ln(NAG)ln(βG):ln(AKP)ln(NAG):ln(AKP)
叶片
Leaf
C-0.33-0.360.18-0.26-0.23-0.360.020.31
N0.17-0.62**0.10-0.74**-0.59**-0.450.440.72**
P0.57*0.06-0.18-0.21-0.090.060.59**0.08
C:N-0.310.51*0.040.62**0.57*0.28-0.39-0.55*
C:P-0.61**-0.020.300.150.23-0.14-0.420.01
N:P-0.61**-0.450.40-0.24-0.15-0.43-0.370.43
凋落物
Litter
C-0.56*0.300.150.030.410.040.09-0.18
N0.180.090.22-0.390.09-0.200.75**0.30
P-0.12-0.390.32-0.100.04-0.38-0.270.40
C:N-0.57*0.13-0.100.350.190.21-0.57*-0.39
C:P-0.240.45-0.100.080.210.270.27-0.35
N:P0.190.290.01-0.190.050.080.66**-0.01
细根
Fine root
C0.42-0.38-0.33-0.28-0.57*0.010.120.19
N0.010.50*0.180.410.69**0.17-0.23-0.32
P0.19-0.390.37-0.57*-0.33-0.49*0.59*0.72**
C:N0.15-0.53*-0.32-0.45-0.78**-0.090.260.30
C:P-0.130.51*-0.390.440.370.54*-0.30-0.70**
N:P-0.170.60**-0.150.460.58*0.44-0.25-0.62**
土壤
Soil
pH0.41-0.57*-0.11-0.44-0.63**-0.250.160.47*
ST0.78**0.12-0.080.070.160.070.16-0.02
SMC-0.30-0.18-0.69**-0.08-0.66**0.43-0.13-0.28
SOC-0.24-0.59*0.01-0.82**-0.72**-0.300.54*0.68**
TN-0.06-0.36-0.24-0.67**-0.69**-0.010.61**0.40
TP0.04-0.19-0.56*-0.27-0.67**0.250.33-0.06
C:N-0.38-0.250.47-0.130.11-0.44-0.200.37
C:P-0.38-0.350.62**-0.460.02-0.55*0.080.69**
N:P-0.19-0.200.41-0.45-0.01-0.330.250.54*
*, p < 0.05; **, p < 0.01. AKP, 碱性磷酸酶; CBH, 纤维二糖水解酶; NAG, β-N-乙酰氨基葡萄糖苷酶; βG, β-葡萄糖苷酶; βX, 木糖苷酶。C, 碳; N, 氮; P, 磷; SMC, 土壤含水量; SOC, 土壤有机碳; ST, 土壤温度; TN, 全氮; TP, 全磷。
AKP, alkaline phosphatase; CBH, cellobiohydrolase; NAG, β-1,4-N-acetylglucosaminidase; βG, β-1,4-glucosidase; βX, β-1,4-xylosidasef. C, carbon; N, nitrogen; P, phosphorus; SMC, soil moisture content; SOC, soil organic carbon; ST, soil temperature; TN, total nitrogen; TP, total phosphorus.

新窗口打开|下载CSV

3 讨论

3.1 不同海拔高度上土壤酶含量及其化学计量比变化特征

本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升。这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m)。这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993)。杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异。此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似。有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致。在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大。

随海拔升高, ln(βG):ln(NAG)和ln(βG):ln(AKP)具有先增后减趋势, 且低海拔处显著低于中高海拔。而殷爽等(2019)在海拔800-1 700 m的4种植被类型的研究发现随海拔升高, 胞外酶C:N和C:P表现出不同的变化趋势, 本研究结果与其不同。究其原因一方面是因为在不同植被类型中植物凋落物与根系分泌物差异较大(Bach et al., 2010), 且多种影响因素之间紧密联系存在一个复杂的影响机制(Xu et al., 2017), 综合起来会对土壤酶化学计量比产生不同的影响; 另一方面是由于在微海拔尺度上, 土壤理化性质相比于海拔因子或气候会对土壤酶活性有着更强烈的影响(斯贵才等, 2014)。本研究中SOC含量与土壤酶活性及其化学计量比有着较大的相关性也证实了这一点。总的来说, 土壤酶活性及其化学计量比会因为植物-土壤理化特性的影响在微尺度海拔梯度内表现出明显的变化特征。

3.2 驱动土壤酶活性和化学计量变化的因素

已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017)。相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子。这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致。土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007)。SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017)。然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性。此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3)。鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010)。例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3)。这与Xu等(2017)报道的结果不同。可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013)。

同时, 我们研究发现, 在6个土壤、植物养分组成差异较大的不同海拔同一植被类型中, 土壤酶活性的C:N:P被限制在一个相当窄的范围内(1:1:0.8); 在狭义范围内, 6个海拔间土壤酶活性的化学计量关系又表现出明显的差异。这些关系的变化受海拔上生物和非生物因子的制约。而我们对于微海拔尺度同一植被类型的研究发现, 相比于植物养分含量及土壤水热条件, SOC含量对酶活性及化学计量比的影响更为强烈, 这与其他****在较大海拔尺度上的研究有所不同。如, 曹瑞等(2016)对川西海拔1 563- 3 994 m的高山峡谷区的5个不同植被类型的研究表明土壤含水量与其他环境因子是造成土壤酶活性及微生物量空间分异格局的主控因子; 谷晓楠等(2017)在长白山西坡海拔1 500-2 500 m间的4个典型高山-亚高山垂直带的研究同样指出土壤含水量、C:N和土壤温度是调控土壤酶活性在海拔梯度上发生变化的主要因子。这些恰好说明, 在减弱大海拔尺度所引起的多种因素的影响后, 土壤有机质含量将会对微海拔尺度上的土壤酶活性及计量比起到主导作用。与马剑等(2019)对祁连山云杉(Picea crassifolia)林的研究结论一致。众所周知, 土壤酶是一个复合体, 土壤理化性质、水热条件、植被类型的差异都会引起其活性及其化学计量比的变化。海拔跨度越大, 所造成的生物和非生物因子差异越大, 就会导致大尺度与微尺度海拔梯度上研究结果的不同。

4 结论

综上所述, 本研究发现微尺度下不同海拔土壤酶活性及其化学计量比仍存在一定的空间差异性, 且受到植物和土壤C、N、P资源及土壤水热条件等不同程度的调控, 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要影响因子。这说明在消除不同植被类型的影响后, 土壤有机质含量对土壤中微生物活动及养分循环起到主要调控作用。本研究结果可为从微海拔角度研究土壤酶活性及其化学计量比的海拔效应及驱动因素提供科学依据, 也对实现优化森林生态系统的管理及其可持续发展具有重要的意义。



参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Bach LH, Grytnes JA, Halvorsen R, Ohlson M (2010). Tree influence on soil microbial community structure
Soil Biology & Biochemistry, 42, 1934-1943.

DOI:10.1016/j.soilbio.2010.07.002URL [本文引用: 2]

Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH (2016). Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions
Chinese Journal of Applied Ecology, 27, 1257-1264.

URL [本文引用: 2]
In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpinegorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m &gt; alpine meadow at 3994 m &gt; montane forest ecotone at 2158 m &gt; alpine forest at 3593 m &gt; dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpinegorge region.
[ 曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖 (2016). 海拔对高山峡谷区土壤微生物生物量和酶活性的影响
应用生态学报, 27, 1257-1264.]

[本文引用: 2]

Enrique AG, Bruno C, Christopher A, Virgile C, Stéven C (2008). Effects of nitrogen availability on microbial activities, densities and functional diversities involved in the degradation of a Mediterranean evergreen oak litter (Quercus ilex L.)
Soil Biology & Biochemistry, 40, 1654-1661.

DOI:10.1016/j.soilbio.2008.01.020URL [本文引用: 1]

Gu XN, He HS, Tao Y, Jin YH, Zhang XY, Xu ZW, Wang YT, Song XX (2017). Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain
Acta Ecologica Sinica, 37, 8374-8384.

[本文引用: 2]

[ 谷晓楠, 贺红士, 陶岩, 靳英华, 张心昱, 徐志伟, 王钰婷, 宋祥霞 (2017). 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子
生态学报, 37, 8374-8384.]

[本文引用: 2]

Guo ZM, Zhang XY, Li DD, Dong WT, Li ML (2017). Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests
Chinese Journal of Applied Ecology, 28, 2888-2896.

[本文引用: 3]

[ 郭志明, 张心昱, 李丹丹, 董文亭, 李美玲 (2017). 温带森林不同海拔土壤有机碳及相关胞外酶活性特征
应用生态学报, 28, 2888-2896.]

[本文引用: 3]

He WX, Tan XP, Wang XD, Tang M, Hao MD (2010). Study on total enzyme activity index in soils
Acta Pedologica Sinica, 47, 1232-1236.

[本文引用: 1]

[ 和文祥, 谭向平, 王旭东, 唐明, 郝明德 (2010). 土壤总体酶活性指标的初步研究
土壤学报, 47, 1232-1236.]

[本文引用: 1]

Hofmann K, Lamprecht A, Pauli H, Illmer P (2016). Distribution of prokaryotic abundance and microbial nutrient cycling across a high-alpine altitudinal gradient in the Austrian Central Alps is affected by vegetation, temperature, and soil nutrients
Microbial Ecology, 72, 704-716.

DOI:10.1007/s00248-016-0803-zURLPMID:27401822 [本文引用: 1]
Studies of the altitudinal distributions of soil microorganisms are rare or have led to contradictory results. Therefore, we studied archaeal and bacterial abundance and microbial-mediated activities across an altitudinal gradient (2700 to 3500 m) on the southwestern slope of Mt. Schrankogel (Central Alps, Austria). Sampling sites distributed over the alpine (2700 to 2900 m), the alpine-nival (3000 to 3100 m), and the nival altitudinal belts (3200 to 3500 m), which are populated by characteristic plant assemblages. Bacterial and archaeal abundances were measured via quantitative real-time PCR (qPCR). Moreover, microbial biomass C, microbial activity (dehydrogenase), and enzymes involved in carbon (CM-cellulase), nitrogen (protease), phosphorus (alkaline phosphatase), and sulfur (arylsulfatase) cycling were determined. Abundances, microbial biomass C, and activities almost linearly decreased along the gradient. Archaeal abundance experienced a sharper decrease, thus pointing to pronounced sensitivity toward environmental harshness. Additionally, abundance and activities were significantly higher in soils of the alpine belt compared with those of the nival belt, whereas the alpine-nival ecotone represented a transitional area with intermediate values, thus highlighting the importance of vegetation. Archaeal abundance along the gradient was significantly related to soil temperature only, whereas bacterial abundance was significantly related to temperature and dissolved organic carbon (DOC). Soil carbon and nitrogen concentrations explained most of the variance in enzyme activities involved in the cycling of C, N, P, and S. Increasing temperature could therefore increase the abundances and activities of microorganisms either directly or indirectly via expansion of alpine vegetation to higher altitudes and increased plant cover.

Huang HL, Zong N, He NP, Tian J (2019). Characteristics of soil enzyme stoichiometry along an altitude gradient on Qinghai-Tibet Plateau alpine meadow, China
Chinese Journal of Applied Ecology, 30, 3689-3696.

DOI:10.13287/j.1001-9332.201911.013URLPMID:31833681 [本文引用: 2]
Soil enzymes play critical roles in material cycle and energy flow of ecosystems. Understanding soil enzyme activities is of great significance for exploring ecosystem functions. In this study, we investigated soil enzyme activities, stoichiometry and their driving factors at six different altitudes (4300-5100 m) on Qinghai-Tibet Plateau alpine meadow using Biolog microplate analysis. The results showed that beta-1,4-glucosidase (betaG) closely related to C cycle, beta-1,4-N-acetylglucosaminidase (NAG) and L-leucine aminopeptidase (LAP) closely related to N cycle and the activity of acid phosphatase (AP), which was closely related to P cycle, all exhibited unimodal trends with increasing altitude, with the order of 4800 m4950 m4400 m4650 m5100 m4300 m. Soil N:P enzyme activity ratio showed the same trend as soil enzyme activity, and reached the highest value at 4950 m, however, soil C:N and C:P enzyme activities ratios increased along the altitude. Pearson correlation analysis showed that SOC, TN and soil water content were significantly positively correlated with the activities of four types of enzymes. Mean annual precipitation was significantly negatively associated with the activities of NAG and AP. Mean annual precipitation, mean annual temperature, Shannon diversity, vegetation richness, vegetation coverage and TN affected ratios of soil C:P and N:P enzymes. Soil C:N activity ratio correlated with mean annual temperature, mean annual precipitation, vegetation richness, vegetation coverage, SOC and TN. In summary, soil enzyme activities and stoichiometry had remarkable difference along the altitude gradient on Qinghai-Tibet Plateau alpine meadow, with certain N limitation in high altitude areas. Soil water content, TN, SOC, mean annual precipitation and mean annual temperature were key factors driving such differences.
[ 黄海莉, 宗宁, 何念鹏, 田静 (2019). 青藏高原高寒草甸不同海拔土壤酶化学计量特征
应用生态学报, 30, 3689-3696.]

PMID:31833681 [本文引用: 2]

Jiang PP, Cao Y, Chen YM, Zhao YP (2017). N and P stoichiometric characteristics of leaves, litter, and soil for three dominant tree species in the Shaanxi Province
Acta Ecologica Sinica, 37, 443-454.

[本文引用: 1]

[ 姜沛沛, 曹扬, 陈云明, 赵一娉 (2017). 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征
生态学报, 37, 443-454.]

[本文引用: 1]

Kardol P, Cregger MA, Campany CE, Classen AT (2010). Soil ecosystem functioning under climate change: plant species and community effects
Ecology, 91, 767-781.

DOI:10.1890/09-0135.1URLPMID:20426335 [本文引用: 1]
Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.

Koch O, Tscherko D, Kandeler E (2007). Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils
Global Biogeochemical Cycles, 21, GB4017. DOI: 10.1029/ 2007GB002983.

[本文引用: 1]

Lei TZ, Si GC, Wang J, Zhang GX (2017). Microbial communities and associated enzyme activities in alpine wetlands with increasing altitude on the Tibetan Plateau
Wetlands, 37, 401-412.

DOI:10.1007/s13157-017-0876-6URL [本文引用: 1]

Liu S, Luo D, Liu QL, Zhang L, Yang HG, Shi ZM (2017). Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan
Acta Ecologica Sinica, 37, 1074-1083.

[本文引用: 1]

[ 刘顺, 罗达, 刘千里, 张利, 杨洪国, 史作民 (2017). 川西亚高山不同森林生态系统碳氮储量及其分配格局
生态学报, 37, 1074-1083.]

[本文引用: 1]

Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993). The relation between biological activity of the rain forest and mineral composition of soils
Science, 260, 521-523.

DOI:10.1126/science.260.5107.521URLPMID:17830432 [本文引用: 1]
In most soils of the humid tropics, kaolinitic topsoil horizons overlie more gibbsitic horizons. This arrangement cannot be produced simply by leaching. Quantitative measurement of the turnover of chemical elements in the litterfall in an Amazonian ecosystem indicates that the forest cycles a significant amount of elements, particularly silicon. As a result, fluids that percolate through topsoil horizons already contain dissolved silicon. This effect keeps silicon from being leached down and may account for the stability of kaolinite in the soil upper horizons. The soil mineral composition is thus maintained by biological activity.

Lucas-Borja ME, Candel Pérez D, López-Serrano FR, Andrés M, Bastida F (2012). Altitude-related factors but not Pinus community exert a dominant role over chemical and microbiological properties of a Mediterranean humid soil
European Journal of Soil Science, 63, 541-549.

DOI:10.1111/j.1365-2389.2012.01438.xURL [本文引用: 2]
The aim of this work was to examine the effect of pine forests on the soil microbial community along an altitudinal gradient in the Cuenca Mountains, Spain. Six experimental forest areas and two tree diversity levels (monospecific and mixed pine forest) were selected according to the following types: (i) at lower altitudes (up to 960 m above sea level), a monospecific Spanish black pine (Pinus nigra Arn. ssp salzmannii) forest stand and a mixed forest stand (maritime pine (Pinus pinaster Ait.) and Spanish black pine); (ii) at medium altitudes (up to 1350 m), a monospecific Spanish black pine forest stand and a mixed forest stand (Scots pine (Pinus sylvestris L.) and Spanish black pine); and (iii) above 1670 m, a monospecific Spanish black pine forest stand and a mixed forest stand (Scots pine and Spanish black pine). Soil moisture and temperature and different forest stand variables such as tree species composition, tree height, basal area and shrub cover were measured. Physicochemical soil properties including texture, pH, carbonates, total organic carbon, organic matter, electrical conductivity, N, P, soil enzyme activities, soil respiration and soil microbial biomass carbon were analysed at the selected forest areas and tree diversity levels. Results showed that soil moisture and temperature differed significantly across the altitudinal gradient. Carbon:nitrogen ratio, total carbonates, total organic carbon, phosphorus and total N values also differed at each experimental area but tree diversity level was not an influential factor. Soil respiration, microbial biomass carbon and enzyme activities tended to be less at low altitudes whereas no differences were found between monospecific and mixed pine forests across the altitudinal gradient. This work suggests that the soils of the Cuenca Mountains may be more sensitive to some physical and chemical site-specific aspects such as soil temperature and moisture than changes in tree stand composition (when considering only pine species). In addition, differences in soil physicochemical properties found at each experimental area may also act as additional factors for regulating enzymatic activities.

Ma J, Liu XD, Jin M, Zhao WJ, Cheng CX, Meng HJ, Wu XR (2019). Soil physicochemical properties and enzyme activities along the altitudinal gradients in Picea crassifolia of Qilian Mountains
Journal of Soil and Water Conservation, 33, 207-213.

[本文引用: 1]

[ 马剑, 刘贤德, 金铭, 赵维俊, 成彩霞, 孟好军, 武秀荣 (2019). 祁连山青海云杉林土壤理化性质和酶活性海拔分布特征
水土保持学报, 33, 207-213.]

[本文引用: 1]

Nie YY, Wang HH, Li XJ, Ren YB, Jin CS, Xu ZK, Lv MK, Xie JS (2018). Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China
Chinese Journal of Applied Ecology, 29, 748-756.

DOI:10.13287/j.1001-9332.201803.015URLPMID:29722215 [本文引用: 1]
Examining the variations of soil organic carbon mineralization at different altitudes is crucial for better understanding of soil organic carbon (SOC) dynamics. We selected the low altitude and high altitude broad-leaved forest soils in Wuyi Mountains as the research object, and incubated them under particular annual average temperature (17 and 9 , respectively) in laboratory to investigate the difference of SOC mineralization characteristics. The results showed that the cumulative SOC mineralization had no significant difference between forest soils at low and high altitude in a 126-day incubation period under ambient temperature. Soil organic carbon content of high altitude soil was significantly higher than that from low altitude. The dynamics of SOC mineralization could fitted by the first-order kinetics. Both mineralization potential (CP) and mineralization rate constant (K) values of two soils had no significant difference, but CP/SOC value and mineralization ratio were significantly higher at low altitude, indicating that the carbon sequestration capacity of low altitude soil was relatively lower than that of high altitude under ambient temperature. Soil microbial biomass carbon and microbial quotients were significantly higher than that of low altitude with the increase of incubation time, indicating that the ability of microbial carbon assimilation was greater at high altitude. On the other hand, the activities of beta-1,4-glucosidase and cellobiohydrolase in high altitude soil were higher, suggesting that more labile carbon would be decomposed by soil microbes. The carbon sequestration capacity and microbial carbon utilization efficiency in high altitude soil would be reduced and thus result in a decline of soil organic carbon storage under the scenarios of climate warming.
[ 聂阳意, 王海华, 李晓杰, 任寅榜, 金昌善, 徐自坤, 吕茂奎, 谢锦升 (2018). 武夷山低海拔和高海拔森林土壤有机碳的矿化特征
应用生态学报, 29, 748-756.]

PMID:29722215 [本文引用: 1]

Olander LP, Vitousek PM (2000). Regulation of soil phosphatase and chitinase activity by N and P availability
Biogeochemistry, 49, 175-191.

DOI:10.1023/A:1006316117817URL [本文引用: 1]
Soil microorganisms and plants produce enzymes thatmineralize organically bound nutrients. When nutrientavailability is low, the biota may be able to increase production ofthese enzymes to enhance the supply of inorganicnitrogen (N) and phosphorus (P). Regulation of enzyme productionmay be a point where N and P cyclesinteract. We measured acid phosphatase and chitinase(N-acetyl ß-D-glucosaminide) activity in soilacross a chronosequence in Hawaii where N and Pavailability varies substantially among sites and longterm fertilizer plots had been maintained for over 4years.Phosphatase activity was high at all sites. Chitinaseactivity decreased significantly as age and Navailability increased across the chronosequence.Phosphorus addition suppressed phosphatase activity atall sites, while N addition increased phosphataseactivity at the young, N-limited site. In contrast,N addition repressed chitinase activity only at the Nlimited young site, and P additions had no effect onchitinase activity. These results suggest that theregulatory relationship between nutrient supply andnutrient mineralization are asymmetric for N and P,and that the differences could help to explaindifferences observed in patterns of N and Pavailability.]]>

Qi RM, Li J, Lin ZA, Li ZJ, Li YT, Yang XD, Zhang JJ, Zhao BQ (2016). Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes
Applied Soil Ecology, 102, 36-45.

DOI:10.1016/j.apsoil.2016.02.004URL [本文引用: 1]

Si GC, Yuan YL, Wang J, Xia YQ, Lei TZ, Zhang GX (2014). Microbial community and soil enzyme activities along an altitudinal gradient in Sejila Mountains
Microbiology China, 41, 2001-2011.

[本文引用: 1]

[ 斯贵才, 袁艳丽, 王建, 夏燕青, 雷天柱, 张更新 (2014). 藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化
微生物学通报, 41, 2001-2011.]

[本文引用: 1]

Sinsabaugh RL, Follstad Shah JJ (2010). Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production
Ecology, 91, 1455-1465.

DOI:10.1890/08-2192.1URLPMID:20503877 [本文引用: 1]
The study of metabolic scaling in stream ecosystems is complicated by their openness to external resource inputs. For heterotrophic bacteria, which are a large component of stream metabolism, it may be possible to integrate the effects of resource availability and temperature on production using metabolic scaling theory and the kinetics of extracellular enzyme activity (EEA) associated with the degradation of major nutrient pools. With this goal, we analyzed previously published data on EEA and bacterial production for two rivers in northwestern Ohio, USA. The EEA data included estimates of apparent Vmax, a measure of catalytic capacity, and apparent Km, a measure of available substrate concentration, for six extracellular enzymes (alpha-glucosidase, beta-glucosidase, aminopeptidase, protease, phosphatase, and acetyl esterase). Sampling was done over an annual cycle with a temperature range of 4 31 degrees C, while EEA assays were conducted at 20 degrees C. The EEA kinetic measures were scaled to ambient stream temperature using an activation energy (Ea) of 0.5 eV (8.01 x 10(-20) J) and converted to estimates of the turnover rate (St) of their associated substrate pools. The St values associated with protein utilization, the largest substrate pool, had the strongest relationship to bacterial production (r2 = 0.49-0.52); those for carbohydrate utilization, the smallest substrate pool, had the weakest (r2= 0.09-0.15). Comparisons of apparent Ea over the annual cycle showed that the trophic basis of bacterial production switched from relatively high carbohydrate consumption in autumn and winter to relatively high protein consumption in spring and summer, corresponding to seasonal dynamics in plant litter inputs and algal production, respectively. Over the annual cycle, the summed substrate generation rate of the six enzymes was similar in magnitude and strongly correlated with bacterial production (r2 = 0.56). This approach combines effects of substrate pool size, catalytic capacity, and temperature on bacterial production and could be used to compare ecosystems along latitudinal gradients where resource, rather than temperature, effects on metabolic scaling are of greater magnitude.

Tang ZY, Fang JY, Zhang L (2004). Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains
Biodiversity Science, 12, 115-122.

URL [本文引用: 1]
2 along two altitudinal transects between 1200 m and 3750 m a.s.l. on southern and northern slopes of Mt. Taibai, Qinling Mountains, Central China, we applied multivariate and traditional approaches to analyze the altitudinal patterns of woody plant diversity. The data matrix composed of 192 woody plants from 83 plots was subjected to TWINSPAN and DCA. The classification and ordination of the samples indicated that altitude and mean annual temperature (MAT) were the primary determinants of the floristic composition, followed by exposure and relative humidity (RH). In contrast, slope played a minor role in the determination of community distribution. Species richness and diversity of tree and shrub layers declined monotonically with elevation, which reflected decreasing temperature, while the evenness of each community changed little along the altitudinal gradient. With regards to environmental variables, species richness and diversity were primarily controlled by MAT and secondarily by RH. Species diversity was higher on the southern slope than on the northern slope of Mt. Taibai, and also higher in the shrub layer than in the canopy layer. β diversity decreased with the increasing of elevation on the southern slope, while it exhibited different patterns at higher and lower elevations on the northern slope: when lower than 2800 m, no significant relationship between altitude and diversity was detected, while at higher elevations, community dissimilarity decreased with the increasing elevation, indicating that communities at lower elevations had a higher rate of floristic turnover than those at higher elevations.]]>
[ 唐志尧, 方精云, 张玲 (2004). 秦岭太白山木本植物物种多样性的梯度格局及环境解释
生物多样性, 12, 115-122.]

[本文引用: 1]

Tao BX, Zhang JC, Yu YC, Cong RL (2010). Season variations of forest soil enzyme activities in the hilly region of southern Jiangsu Province
Ecology and Environmental Sciences, 19, 2349-2354.

[本文引用: 1]

[ 陶宝先, 张金池, 愈元春, 丛日亮 (2010). 苏南丘陵地区森林土壤酶活性季节变化
生态环境学报, 19, 2349-2354.]

[本文引用: 1]

Ushio M, Balser TC, Kitayama K (2013). Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest
Plant and Soil, 365, 157-170.

DOI:10.1007/s11104-012-1365-6URL [本文引用: 1]
Condensed tannins were extracted from the leaves of a dominant conifer (Dacrydium gracilis) in a tropical montane forest on Mt. Kinabalu, Borneo. The extracted tannins were added to soils beneath the conifer and a dominant broadleaf (Lithocarpus clementianus) to evaluate the dependence of the response to tannin addition on the initial composition of the soil microbial community.Enzyme activities in the field tannin-addition treatment were lower than in the deionized-water treatment. Carbon and nitrogen mineralization were also inhibited by tannin-addition. The fungi-to-bacteria ratio after tannin-addition was higher compared with the distilled-water treatment in the laboratory experiment.Based on our results, we suggest that the higher concentration of condensed tannins in the leaf tissues of Dacrydium than in those of Lithocarpus is a factor influencing the microbial community and activity. This may have influences on subsequent plant performance, which induces plant-soil feedback processes that can control dynamics of the tropical montane forest ecosystem.]]>

Wallenius K, Rita H, Mikkonen A, Lappi K, Lindstr?m K, Hartikainen H, Raateland A, Niemi RM (2011). Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities
Soil Biology & Biochemistry, 43, 1464-1473.

DOI:10.1016/j.soilbio.2011.03.018URL [本文引用: 1]

Wang Y, Wang YM, Chen LC (2010). Effects of forest vegetation change on soil microbial biomass carbon and enzyme activities in Huitong, Hunan Province
Chinese Journal of Ecology, 29, 905-909.

URL [本文引用: 1]
Cunninghamia lanceolata) plantation and then to Chinese fir and Michelia macclurei mixed plantation in Huitong, Hunan Province. During the vegetation change, the soil microbial biomass carbon decreased significantly. The soil microbial biomass carbon in Chinese fir plantation and in Chinese fir and M. macclurei mixed plantation was deceased by 76.8% and 71.5%, respectively, compared with that in natural evergreen broadleaved forest. After the vegetation change from natural evergreen broadleaved forest to Chinese fir plantation, the activities of soil invertase, urease, and phosphatase decreased by 35.8%, 22.1%, and 45.1%, respectively, while the activity of soil polyphenoloxidase increased by 40.0%. On the contrary, after the vegetation change from Chinese fir plantation to Chinese fir and M. macclurei mixed plantation, the activities of soil invertase, urease, and phosphatase increased by 20.3%, 12.6%, and 67.8%, respectively, while the activity of soil polyphenoloxidase decreased by 41.0%. The results showed that forest vegetation change greatly affected soil microbial biomass carbon and enzyme activities, and the effects varied obviously with tree species.]]>
[ 王莹, 王彦梅, 陈龙池 (2010). 湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响
生态学杂志, 29, 905-909.]

[本文引用: 1]

Xu ZW, Yu GR, Zhang XY, Ge JP, He NP, Wang QF, Wang D (2015). The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain
Applied Soil Ecology, 86, 19-29.

DOI:10.1016/j.apsoil.2014.09.015URL [本文引用: 2]

Xu ZW, Yu GR, Zhang XY, He NP, Wang QF, Wang SZ, Wang RL, Zhao N, Jia YL, Wang CY (2017). Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)
Soil Biology & Biochemistry, 104, 152-163.

DOI:10.1016/j.soilbio.2016.10.020URL [本文引用: 4]

Yang R, Liu S, Wang ZQ, Cao YC, Zhao YM, He WX, Geng ZC (2016). Relationships between the soil enzyme activity and soil nutrients in forest soils typical of the Qinling Mountain
Acta Pedologica Sinica, 53, 1037-1046.

[本文引用: 4]

[ 杨瑞, 刘帅, 王紫泉, 曹永昌, 赵翊明, 和文祥, 耿增超 (2016). 秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨
土壤学报, 53, 1037-1046.]

[本文引用: 4]

Yin S, Wang CK, Jin Y, Zhou ZH (2019). Changes in soil- microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China
Chinese Journal of Plant Ecology, 43, 999-1009.

DOI:10.17521/cjpe.2019.0141URL [本文引用: 1]
Aims Altitude-induced changes in temperature, moisture, vegetation types and other conditions would significantly affect soil carbon (Csoil), nitrogen (Nsoil), phosphorus (Psoil) concentrations and their stoichiometry. How soil microorganisms adapt to the variability of soil resource stoichiometry by regulating their biomass and extracellular enzymatic stoichiometry remains uncertain. The objective of this study was to quantify the altitudinal trends of soil-microbe-exoenzyme C:N:P stoichiometry and to explore the correlations among soil-microbe- exoenzyme stoichiometry.Methods In the present study, we investigated the Csoil, Nsoil, Psoil concentrations, microbial biomass C (Cmic), N (Nmic), P (Pmic) concentrations, and the activities of C (β-1,4-glucosidase, BG), N (N-acetyl-β-glucosaminidase, NAG), and P (acid phosphatase) acquiring extracellular enzymes for microorganisms in four ecosystems along an altitudinal gradient on Mt. Datudingzi, Northeast China. These four ecosystems are a mixed broadleaf-coniferous forest at 800 m, a coniferous forest at 1 100 m, a Betula ermanii forest at 1 600 m and a grassland at 1 700 m.Important findings The results showed that: (1) altitude had no significant effect on Csoil and Cmic concentrations but had significant effects on soil and microbial biomass N and P concentrations. (2) The activities of BG and NAG decreased significantly with increasing altitude, likely due to the high elevation induced low temperature that inhibits microbial activities. (3) Altitude had significant effects on soil C:N, microbe C:N:P, and exoenzyme C:N:P; exoenzyme C:N:P decreased with the increasing stoichiometric imbalances between microorganisms and soils (ratios of soil C:N:P to microbe C:N:P, respectively). Overall, these results suggested that microorganisms can adapt to the variability of soil C:N:P by regulating their biomass C:N:P and exoenzyme C:N:P, and supported the microbial resource allocation theory.]]>
[ 殷爽, 王传宽, 金鹰, 周正虎 (2019). 东北地区大秃顶子山土壤-微生物-胞外酶C:N:P化学计量特征沿海拔梯度的变化
植物生态学报, 43, 999-1009.]

[本文引用: 1]

Zhao YH, Lei RD, Jia X, He XY, Chen W (2003). Quantitative analysis on sharp-tooth oak stands in Qinling Mountains
Chinese Journal of Applied Ecology, 14, 2123-2128.

URLPMID:15031900 [本文引用: 1]
The arbor stratum of Quercus aliena var. acuteserrata stands included two substratums. Phanerophyta synusium was in first position, and hemicryptophyta was inferior to it. The DBH structures of Quercus aliena var. acuteserrata and Pinus armandii were sinister normal school, which could finish self-regeneration under the natural conditions. The small DBH class individuals of Pinus tabulaeformis were dominant, their DBH classes being distributed irregularly and absent very much. The large DBH classes of Toxicodendron vernicifluum took biggish proportion, belonging to declining population. Young trees were the principal individuals of Castanea mollissima, and in transitional age stage from the young to the middle. Populus davidiana was in the transitional stage from progressive to stable and young-middle age stands. The stands DBH structure was mainly influenced by the DBH variety of Quercus aliena var. acuteserrata population. Quantitative classification (ward's method ward) and ordination (PCA) were used to study the community types of sharp-tooth oak. The results showed that the community could be divided into 6 types: 1. Ass. Smilax stans + Rosa multiflora-Quercus variabilis + Ulmus glaucescens-Quercus aliena var. acuteserrata; 2. Ass. Smilax stans + Lespedeza bicolor-Castanea mollissima-Q. aliena var. acuteserrata; 3. Ass. Corylus mandshurica-Populus davidiana + Dendrobenthamia angustata-Q. aliena var. acuteserrata; 4. Ass. Prunus pseudoccrasus + Corylus mandshurica-Toxicodendron vernicifluum-Q. aliena var. acuteserrata; 5. Ass. Corylus mandshurica + Rosa multiflora-Pinus armandii-Q. aliena var. acuteserrata; and 6. Ass. Sinarundinaria nitida-Pinus armandii + Pinus tabulaeformis-Q. aliena var. acuteserrata. Ward's method ward was better for classifying community types than the other clustering analyses in Qinling Mountains. The PCA results were consistent with the clustering, and demonstrated that the sharp-tooth oak stands were influenced by the altitude, site gradient and soil mainly.
[ 赵永华, 雷瑞德, 贾夏, 何兴元, 陈玮 (2003). 秦岭锐齿栎群落数量特征的研究
应用生态学报, 14, 2123-2128.]

PMID:15031900 [本文引用: 1]

Tree influence on soil microbial community structure
2
2010

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

... 随海拔升高, ln(βG):ln(NAG)和ln(βG):ln(AKP)具有先增后减趋势, 且低海拔处显著低于中高海拔.而殷爽等(2019)在海拔800-1 700 m的4种植被类型的研究发现随海拔升高, 胞外酶C:N和C:P表现出不同的变化趋势, 本研究结果与其不同.究其原因一方面是因为在不同植被类型中植物凋落物与根系分泌物差异较大(Bach et al., 2010), 且多种影响因素之间紧密联系存在一个复杂的影响机制(Xu et al., 2017), 综合起来会对土壤酶化学计量比产生不同的影响; 另一方面是由于在微海拔尺度上, 土壤理化性质相比于海拔因子或气候会对土壤酶活性有着更强烈的影响(斯贵才等, 2014).本研究中SOC含量与土壤酶活性及其化学计量比有着较大的相关性也证实了这一点.总的来说, 土壤酶活性及其化学计量比会因为植物-土壤理化特性的影响在微尺度海拔梯度内表现出明显的变化特征. ...

海拔对高山峡谷区土壤微生物生物量和酶活性的影响
2
2016

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

... 同时, 我们研究发现, 在6个土壤、植物养分组成差异较大的不同海拔同一植被类型中, 土壤酶活性的C:N:P被限制在一个相当窄的范围内(1:1:0.8); 在狭义范围内, 6个海拔间土壤酶活性的化学计量关系又表现出明显的差异.这些关系的变化受海拔上生物和非生物因子的制约.而我们对于微海拔尺度同一植被类型的研究发现, 相比于植物养分含量及土壤水热条件, SOC含量对酶活性及化学计量比的影响更为强烈, 这与其他****在较大海拔尺度上的研究有所不同.如, 曹瑞等(2016)对川西海拔1 563- 3 994 m的高山峡谷区的5个不同植被类型的研究表明土壤含水量与其他环境因子是造成土壤酶活性及微生物量空间分异格局的主控因子; 谷晓楠等(2017)在长白山西坡海拔1 500-2 500 m间的4个典型高山-亚高山垂直带的研究同样指出土壤含水量、C:N和土壤温度是调控土壤酶活性在海拔梯度上发生变化的主要因子.这些恰好说明, 在减弱大海拔尺度所引起的多种因素的影响后, 土壤有机质含量将会对微海拔尺度上的土壤酶活性及计量比起到主导作用.与马剑等(2019)对祁连山云杉(Picea crassifolia)林的研究结论一致.众所周知, 土壤酶是一个复合体, 土壤理化性质、水热条件、植被类型的差异都会引起其活性及其化学计量比的变化.海拔跨度越大, 所造成的生物和非生物因子差异越大, 就会导致大尺度与微尺度海拔梯度上研究结果的不同. ...

海拔对高山峡谷区土壤微生物生物量和酶活性的影响
2
2016

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

... 同时, 我们研究发现, 在6个土壤、植物养分组成差异较大的不同海拔同一植被类型中, 土壤酶活性的C:N:P被限制在一个相当窄的范围内(1:1:0.8); 在狭义范围内, 6个海拔间土壤酶活性的化学计量关系又表现出明显的差异.这些关系的变化受海拔上生物和非生物因子的制约.而我们对于微海拔尺度同一植被类型的研究发现, 相比于植物养分含量及土壤水热条件, SOC含量对酶活性及化学计量比的影响更为强烈, 这与其他****在较大海拔尺度上的研究有所不同.如, 曹瑞等(2016)对川西海拔1 563- 3 994 m的高山峡谷区的5个不同植被类型的研究表明土壤含水量与其他环境因子是造成土壤酶活性及微生物量空间分异格局的主控因子; 谷晓楠等(2017)在长白山西坡海拔1 500-2 500 m间的4个典型高山-亚高山垂直带的研究同样指出土壤含水量、C:N和土壤温度是调控土壤酶活性在海拔梯度上发生变化的主要因子.这些恰好说明, 在减弱大海拔尺度所引起的多种因素的影响后, 土壤有机质含量将会对微海拔尺度上的土壤酶活性及计量比起到主导作用.与马剑等(2019)对祁连山云杉(Picea crassifolia)林的研究结论一致.众所周知, 土壤酶是一个复合体, 土壤理化性质、水热条件、植被类型的差异都会引起其活性及其化学计量比的变化.海拔跨度越大, 所造成的生物和非生物因子差异越大, 就会导致大尺度与微尺度海拔梯度上研究结果的不同. ...

Effects of nitrogen availability on microbial activities, densities and functional diversities involved in the degradation of a Mediterranean evergreen oak litter (Quercus ilex L.)
1
2008

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子
2
2017

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

... 同时, 我们研究发现, 在6个土壤、植物养分组成差异较大的不同海拔同一植被类型中, 土壤酶活性的C:N:P被限制在一个相当窄的范围内(1:1:0.8); 在狭义范围内, 6个海拔间土壤酶活性的化学计量关系又表现出明显的差异.这些关系的变化受海拔上生物和非生物因子的制约.而我们对于微海拔尺度同一植被类型的研究发现, 相比于植物养分含量及土壤水热条件, SOC含量对酶活性及化学计量比的影响更为强烈, 这与其他****在较大海拔尺度上的研究有所不同.如, 曹瑞等(2016)对川西海拔1 563- 3 994 m的高山峡谷区的5个不同植被类型的研究表明土壤含水量与其他环境因子是造成土壤酶活性及微生物量空间分异格局的主控因子; 谷晓楠等(2017)在长白山西坡海拔1 500-2 500 m间的4个典型高山-亚高山垂直带的研究同样指出土壤含水量、C:N和土壤温度是调控土壤酶活性在海拔梯度上发生变化的主要因子.这些恰好说明, 在减弱大海拔尺度所引起的多种因素的影响后, 土壤有机质含量将会对微海拔尺度上的土壤酶活性及计量比起到主导作用.与马剑等(2019)对祁连山云杉(Picea crassifolia)林的研究结论一致.众所周知, 土壤酶是一个复合体, 土壤理化性质、水热条件、植被类型的差异都会引起其活性及其化学计量比的变化.海拔跨度越大, 所造成的生物和非生物因子差异越大, 就会导致大尺度与微尺度海拔梯度上研究结果的不同. ...

长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子
2
2017

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

... 同时, 我们研究发现, 在6个土壤、植物养分组成差异较大的不同海拔同一植被类型中, 土壤酶活性的C:N:P被限制在一个相当窄的范围内(1:1:0.8); 在狭义范围内, 6个海拔间土壤酶活性的化学计量关系又表现出明显的差异.这些关系的变化受海拔上生物和非生物因子的制约.而我们对于微海拔尺度同一植被类型的研究发现, 相比于植物养分含量及土壤水热条件, SOC含量对酶活性及化学计量比的影响更为强烈, 这与其他****在较大海拔尺度上的研究有所不同.如, 曹瑞等(2016)对川西海拔1 563- 3 994 m的高山峡谷区的5个不同植被类型的研究表明土壤含水量与其他环境因子是造成土壤酶活性及微生物量空间分异格局的主控因子; 谷晓楠等(2017)在长白山西坡海拔1 500-2 500 m间的4个典型高山-亚高山垂直带的研究同样指出土壤含水量、C:N和土壤温度是调控土壤酶活性在海拔梯度上发生变化的主要因子.这些恰好说明, 在减弱大海拔尺度所引起的多种因素的影响后, 土壤有机质含量将会对微海拔尺度上的土壤酶活性及计量比起到主导作用.与马剑等(2019)对祁连山云杉(Picea crassifolia)林的研究结论一致.众所周知, 土壤酶是一个复合体, 土壤理化性质、水热条件、植被类型的差异都会引起其活性及其化学计量比的变化.海拔跨度越大, 所造成的生物和非生物因子差异越大, 就会导致大尺度与微尺度海拔梯度上研究结果的不同. ...

温带森林不同海拔土壤有机碳及相关胞外酶活性特征
3
2017

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

温带森林不同海拔土壤有机碳及相关胞外酶活性特征
3
2017

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

土壤总体酶活性指标的初步研究
1
2010

... 由于单个土壤酶只能反映一部分的酶活性信息, 不能包括海拔上整体酶信息.因此我们借助土壤总体酶活性(TEI)(和文祥等, 2010)这个指标来评价不同海拔上土壤肥力水平的高低. ...

土壤总体酶活性指标的初步研究
1
2010

... 由于单个土壤酶只能反映一部分的酶活性信息, 不能包括海拔上整体酶信息.因此我们借助土壤总体酶活性(TEI)(和文祥等, 2010)这个指标来评价不同海拔上土壤肥力水平的高低. ...

Distribution of prokaryotic abundance and microbial nutrient cycling across a high-alpine altitudinal gradient in the Austrian Central Alps is affected by vegetation, temperature, and soil nutrients
1
2016

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

青藏高原高寒草甸不同海拔土壤酶化学计量特征
2
2019

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

... ).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

青藏高原高寒草甸不同海拔土壤酶化学计量特征
2
2019

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

... ).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征
1
2017

... 2018年7月在太白山锐齿栎林带中(海拔1 308-1 803 m)选择地形、地貌、坡向、坡度等基本一致的标准样地(100 m海拔为间隔), 采集锐齿栎林带土壤、叶片、凋落物和细根样品.锐齿栎林作为该林带优势物种, 其相对优势度和土壤特性如表1所示.每个林带中设置3个20 m × 20 m样方(3个重复), 共18个, 各样方间距离均大于20 m.在每个样方内随机选择5株锐齿栎(姜沛沛等, 2017), 根据不同高度(低、中、高)、不同方位(东、南、西、北)采集完全成熟的叶片, 用于后续叶片C、N、P含量的测定.同时, 在每个样方内按照对角线法设置3个1 m × 1 m小样方, 收集锐齿栎树木的凋落物, 将每个样方中3个小样方的凋落物样品混合均匀作为一个样品, 用于后续凋落物C、N、P含量的测定.细根及土壤样品的采集: 按照“S”形5点取样, 在每个样方内分别采集0-10 cm土壤及直径约为2 mm的新鲜细根, 将其分别混合为一个样品.土壤样品过2 mm筛, 剔除残留细根、石块等杂物.接着, 将混合后的土壤样品一分为二, 一部分用自封袋装好常温带回实验室并自然风干, 用于后续土壤理化性质的测定; 另一部分土壤冷藏带回并尽快放入冰箱保存, 用于后续土壤酶活性的测定.采样的同时使用环刀测定土壤容重. ...

陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征
1
2017

... 2018年7月在太白山锐齿栎林带中(海拔1 308-1 803 m)选择地形、地貌、坡向、坡度等基本一致的标准样地(100 m海拔为间隔), 采集锐齿栎林带土壤、叶片、凋落物和细根样品.锐齿栎林作为该林带优势物种, 其相对优势度和土壤特性如表1所示.每个林带中设置3个20 m × 20 m样方(3个重复), 共18个, 各样方间距离均大于20 m.在每个样方内随机选择5株锐齿栎(姜沛沛等, 2017), 根据不同高度(低、中、高)、不同方位(东、南、西、北)采集完全成熟的叶片, 用于后续叶片C、N、P含量的测定.同时, 在每个样方内按照对角线法设置3个1 m × 1 m小样方, 收集锐齿栎树木的凋落物, 将每个样方中3个小样方的凋落物样品混合均匀作为一个样品, 用于后续凋落物C、N、P含量的测定.细根及土壤样品的采集: 按照“S”形5点取样, 在每个样方内分别采集0-10 cm土壤及直径约为2 mm的新鲜细根, 将其分别混合为一个样品.土壤样品过2 mm筛, 剔除残留细根、石块等杂物.接着, 将混合后的土壤样品一分为二, 一部分用自封袋装好常温带回实验室并自然风干, 用于后续土壤理化性质的测定; 另一部分土壤冷藏带回并尽快放入冰箱保存, 用于后续土壤酶活性的测定.采样的同时使用环刀测定土壤容重. ...

Soil ecosystem functioning under climate change: plant species and community effects
1
2010

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils
1
2007

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

Microbial communities and associated enzyme activities in alpine wetlands with increasing altitude on the Tibetan Plateau
1
2017

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

川西亚高山不同森林生态系统碳氮储量及其分配格局
1
2017

... 森林作为陆地生态系统的主体, 有着丰富的碳氮储量及复杂的物质循环过程, 因此在全球生物地球化学循环过程中扮演着关键角色(刘顺等, 2017).微生物是森林土壤碳(C)、氮(N)、磷(P)库转化的根本动力, 其对有机碳的分解需要经过胞外酶的解聚作用, 微生物胞外酶对大分子有机质的解聚是土壤有机碳库分解的限制性环节(Xu et al., 2017).因此, 森林生态系统中土壤胞外酶活性及其化学计量比是近年来的研究热点(Xu et al., 2015; 杨瑞等, 2016). ...

川西亚高山不同森林生态系统碳氮储量及其分配格局
1
2017

... 森林作为陆地生态系统的主体, 有着丰富的碳氮储量及复杂的物质循环过程, 因此在全球生物地球化学循环过程中扮演着关键角色(刘顺等, 2017).微生物是森林土壤碳(C)、氮(N)、磷(P)库转化的根本动力, 其对有机碳的分解需要经过胞外酶的解聚作用, 微生物胞外酶对大分子有机质的解聚是土壤有机碳库分解的限制性环节(Xu et al., 2017).因此, 森林生态系统中土壤胞外酶活性及其化学计量比是近年来的研究热点(Xu et al., 2015; 杨瑞等, 2016). ...

The relation between biological activity of the rain forest and mineral composition of soils
1
1993

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

Altitude-related factors but not Pinus community exert a dominant role over chemical and microbiological properties of a Mediterranean humid soil
2
2012

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

... ), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

祁连山青海云杉林土壤理化性质和酶活性海拔分布特征
1
2019

... 同时, 我们研究发现, 在6个土壤、植物养分组成差异较大的不同海拔同一植被类型中, 土壤酶活性的C:N:P被限制在一个相当窄的范围内(1:1:0.8); 在狭义范围内, 6个海拔间土壤酶活性的化学计量关系又表现出明显的差异.这些关系的变化受海拔上生物和非生物因子的制约.而我们对于微海拔尺度同一植被类型的研究发现, 相比于植物养分含量及土壤水热条件, SOC含量对酶活性及化学计量比的影响更为强烈, 这与其他****在较大海拔尺度上的研究有所不同.如, 曹瑞等(2016)对川西海拔1 563- 3 994 m的高山峡谷区的5个不同植被类型的研究表明土壤含水量与其他环境因子是造成土壤酶活性及微生物量空间分异格局的主控因子; 谷晓楠等(2017)在长白山西坡海拔1 500-2 500 m间的4个典型高山-亚高山垂直带的研究同样指出土壤含水量、C:N和土壤温度是调控土壤酶活性在海拔梯度上发生变化的主要因子.这些恰好说明, 在减弱大海拔尺度所引起的多种因素的影响后, 土壤有机质含量将会对微海拔尺度上的土壤酶活性及计量比起到主导作用.与马剑等(2019)对祁连山云杉(Picea crassifolia)林的研究结论一致.众所周知, 土壤酶是一个复合体, 土壤理化性质、水热条件、植被类型的差异都会引起其活性及其化学计量比的变化.海拔跨度越大, 所造成的生物和非生物因子差异越大, 就会导致大尺度与微尺度海拔梯度上研究结果的不同. ...

祁连山青海云杉林土壤理化性质和酶活性海拔分布特征
1
2019

... 同时, 我们研究发现, 在6个土壤、植物养分组成差异较大的不同海拔同一植被类型中, 土壤酶活性的C:N:P被限制在一个相当窄的范围内(1:1:0.8); 在狭义范围内, 6个海拔间土壤酶活性的化学计量关系又表现出明显的差异.这些关系的变化受海拔上生物和非生物因子的制约.而我们对于微海拔尺度同一植被类型的研究发现, 相比于植物养分含量及土壤水热条件, SOC含量对酶活性及化学计量比的影响更为强烈, 这与其他****在较大海拔尺度上的研究有所不同.如, 曹瑞等(2016)对川西海拔1 563- 3 994 m的高山峡谷区的5个不同植被类型的研究表明土壤含水量与其他环境因子是造成土壤酶活性及微生物量空间分异格局的主控因子; 谷晓楠等(2017)在长白山西坡海拔1 500-2 500 m间的4个典型高山-亚高山垂直带的研究同样指出土壤含水量、C:N和土壤温度是调控土壤酶活性在海拔梯度上发生变化的主要因子.这些恰好说明, 在减弱大海拔尺度所引起的多种因素的影响后, 土壤有机质含量将会对微海拔尺度上的土壤酶活性及计量比起到主导作用.与马剑等(2019)对祁连山云杉(Picea crassifolia)林的研究结论一致.众所周知, 土壤酶是一个复合体, 土壤理化性质、水热条件、植被类型的差异都会引起其活性及其化学计量比的变化.海拔跨度越大, 所造成的生物和非生物因子差异越大, 就会导致大尺度与微尺度海拔梯度上研究结果的不同. ...

武夷山低海拔和高海拔森林土壤有机碳的矿化特征
1
2018

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

武夷山低海拔和高海拔森林土壤有机碳的矿化特征
1
2018

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

Regulation of soil phosphatase and chitinase activity by N and P availability
1
2000

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes
1
2016

... 土壤酶活性参照Qi等(2016)的方法, 测定水解酶类: 碱性磷酸酶(AKP)、β-1,4-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、木糖苷酶(βX)以及β-N-乙酰氨基葡萄糖苷酶(NAG).取1 g鲜土加入到125 mL去离子水中振荡2 h (25 ℃, 180 r·min-1)制成悬浊液, 取200 μL悬浊液加入到96孔微孔板中, 每个样品有6个重复(200 μL样品悬浊液+ 50 μL 200 μmol·L-1底物), 6个阴性对照(200 μL去离子水+ 50 μL 200 μmol·L-1底物)和6个空白(200 μL样品悬浊液+ 50 μL去离子水)作为对照, 再加以6个淬火标准(200 μL样品悬浊液+ 50 μL 10 μmol·L-1标准液)及参考标准(200 μL去离子水+ 50 μL 10 μmol·L-1标准液)进行校正.微孔板在25 ℃黑暗条件下培育4 h后向每个微孔中加入10 μL 0.5 mol·L-1的NaOH溶液使其停止反应.用Synergy H4多功能酶标仪(Molecular Devices, SanJose, USA)测定荧光值, 荧光激发光和检测光波长分别在365和450 nm处, 酶活性以每小时每克干物质产生底物的摩尔数(nmol·g-1·h-1)来表示. ...

藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化
1
2014

... 随海拔升高, ln(βG):ln(NAG)和ln(βG):ln(AKP)具有先增后减趋势, 且低海拔处显著低于中高海拔.而殷爽等(2019)在海拔800-1 700 m的4种植被类型的研究发现随海拔升高, 胞外酶C:N和C:P表现出不同的变化趋势, 本研究结果与其不同.究其原因一方面是因为在不同植被类型中植物凋落物与根系分泌物差异较大(Bach et al., 2010), 且多种影响因素之间紧密联系存在一个复杂的影响机制(Xu et al., 2017), 综合起来会对土壤酶化学计量比产生不同的影响; 另一方面是由于在微海拔尺度上, 土壤理化性质相比于海拔因子或气候会对土壤酶活性有着更强烈的影响(斯贵才等, 2014).本研究中SOC含量与土壤酶活性及其化学计量比有着较大的相关性也证实了这一点.总的来说, 土壤酶活性及其化学计量比会因为植物-土壤理化特性的影响在微尺度海拔梯度内表现出明显的变化特征. ...

藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化
1
2014

... 随海拔升高, ln(βG):ln(NAG)和ln(βG):ln(AKP)具有先增后减趋势, 且低海拔处显著低于中高海拔.而殷爽等(2019)在海拔800-1 700 m的4种植被类型的研究发现随海拔升高, 胞外酶C:N和C:P表现出不同的变化趋势, 本研究结果与其不同.究其原因一方面是因为在不同植被类型中植物凋落物与根系分泌物差异较大(Bach et al., 2010), 且多种影响因素之间紧密联系存在一个复杂的影响机制(Xu et al., 2017), 综合起来会对土壤酶化学计量比产生不同的影响; 另一方面是由于在微海拔尺度上, 土壤理化性质相比于海拔因子或气候会对土壤酶活性有着更强烈的影响(斯贵才等, 2014).本研究中SOC含量与土壤酶活性及其化学计量比有着较大的相关性也证实了这一点.总的来说, 土壤酶活性及其化学计量比会因为植物-土壤理化特性的影响在微尺度海拔梯度内表现出明显的变化特征. ...

Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production
1
2010

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

秦岭太白山木本植物物种多样性的梯度格局及环境解释
1
2004

... 研究地点位于秦岭北麓太白山(107.37°- 107.85° E, 33.82°-34.08° N), 该地区属于温带季风气候, 气候垂直变化明显, 光照不足, 年平均气温13 ℃, 年无霜期140天左右, 降水年际变化较小, 但年内分配不均, 平均年降水量为694.2 mm (主要集中在7-9月), 植被类型丰富, 垂直地带性明显.我们选取海拔梯度上锐齿栎林带(海拔1 308-1 803 m)作为研究对象, 研究区内土壤类型均为灰棕壤(唐志尧等, 2004). ...

秦岭太白山木本植物物种多样性的梯度格局及环境解释
1
2004

... 研究地点位于秦岭北麓太白山(107.37°- 107.85° E, 33.82°-34.08° N), 该地区属于温带季风气候, 气候垂直变化明显, 光照不足, 年平均气温13 ℃, 年无霜期140天左右, 降水年际变化较小, 但年内分配不均, 平均年降水量为694.2 mm (主要集中在7-9月), 植被类型丰富, 垂直地带性明显.我们选取海拔梯度上锐齿栎林带(海拔1 308-1 803 m)作为研究对象, 研究区内土壤类型均为灰棕壤(唐志尧等, 2004). ...

苏南丘陵地区森林土壤酶活性季节变化
1
2010

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

苏南丘陵地区森林土壤酶活性季节变化
1
2010

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest
1
2013

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities
1
2011

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响
1
2010

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响
1
2010

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain
2
2015

... 森林作为陆地生态系统的主体, 有着丰富的碳氮储量及复杂的物质循环过程, 因此在全球生物地球化学循环过程中扮演着关键角色(刘顺等, 2017).微生物是森林土壤碳(C)、氮(N)、磷(P)库转化的根本动力, 其对有机碳的分解需要经过胞外酶的解聚作用, 微生物胞外酶对大分子有机质的解聚是土壤有机碳库分解的限制性环节(Xu et al., 2017).因此, 森林生态系统中土壤胞外酶活性及其化学计量比是近年来的研究热点(Xu et al., 2015; 杨瑞等, 2016). ...

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)
4
2017

... 森林作为陆地生态系统的主体, 有着丰富的碳氮储量及复杂的物质循环过程, 因此在全球生物地球化学循环过程中扮演着关键角色(刘顺等, 2017).微生物是森林土壤碳(C)、氮(N)、磷(P)库转化的根本动力, 其对有机碳的分解需要经过胞外酶的解聚作用, 微生物胞外酶对大分子有机质的解聚是土壤有机碳库分解的限制性环节(Xu et al., 2017).因此, 森林生态系统中土壤胞外酶活性及其化学计量比是近年来的研究热点(Xu et al., 2015; 杨瑞等, 2016). ...

... 随海拔升高, ln(βG):ln(NAG)和ln(βG):ln(AKP)具有先增后减趋势, 且低海拔处显著低于中高海拔.而殷爽等(2019)在海拔800-1 700 m的4种植被类型的研究发现随海拔升高, 胞外酶C:N和C:P表现出不同的变化趋势, 本研究结果与其不同.究其原因一方面是因为在不同植被类型中植物凋落物与根系分泌物差异较大(Bach et al., 2010), 且多种影响因素之间紧密联系存在一个复杂的影响机制(Xu et al., 2017), 综合起来会对土壤酶化学计量比产生不同的影响; 另一方面是由于在微海拔尺度上, 土壤理化性质相比于海拔因子或气候会对土壤酶活性有着更强烈的影响(斯贵才等, 2014).本研究中SOC含量与土壤酶活性及其化学计量比有着较大的相关性也证实了这一点.总的来说, 土壤酶活性及其化学计量比会因为植物-土壤理化特性的影响在微尺度海拔梯度内表现出明显的变化特征. ...

... 已有研究指出, 生物和非生物因子可通过调节微生物代谢作用对土壤酶活性及其化学计量比产生影响(Kardol et al., 2010; Xu et al., 2017).相关分析结果表明土壤酶活性及其化学计量比受到植物和土壤理化特性的调控(表3), 其中SOC含量可被认为是土壤酶活性及其化学计量比的主要驱动因子.这与黄海莉等(2019)在青藏高原高寒草甸6个海拔上的研究结果一致.土壤养分可通过影响微生物和植物生长而间接作用于土壤酶, 使得不同的土壤养分和土壤酶活性间存在着不同程度的相关性(Koch et al., 2007).SOC作为土壤重要组成部分, 对土壤中物质循环以及微生物的生长繁殖起着重要作用, 可为酶发挥作用提供场所与适宜的条件, 因此较高的SOC含量可促进土壤酶的合成(谷晓楠等, 2017).然而在本研究中, βX、NAG和AKP均与SOC含量显著负相关, 与黄海莉等(2019)郭志明等(2017)的研究结果相反, 我们认为导致这样结果的主要原因是锐齿栎林带土壤有机质丰富, 有机碳含量较高, 分解有机质的酶可能会产生负反馈效应, 减少用于合成酶的能量, 使养分更高效地用于微生物生长, 这就会限制养分的释放(Enrique et al., 2008), 从而抑制土壤酶活性.此外, 在我们的研究中还发现植物和土壤C:N:P也对土壤酶活性及化学计量比有着不同程度的影响(表3).鉴于土壤酶主要来源于植物根系、土壤微生物分泌及凋落物降解的产物, 微生物对C、N、P资源的分配会随着植物和土壤养分化学计量比的改变而改变, 这就导致了土壤酶化学计量比也能够受到植物和土壤化学计量比的影响(陶宝先等, 2010).例如, βX、NAG和AKP与叶片N含量呈显著负相关关系, 与叶片C:N呈显著正相关关系, ln(NAG):ln(AKP)与两者的关系刚好相反(表3).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

... ).这与Xu等(2017)报道的结果不同.可能是由于土壤温度、水分、pH及一些未测量的因子如团聚体、活性有机碳氮等对土壤酶化学计量比起到间接的调控作用(Sinsabaugh & Follstad Shah, 2010; Ushio et al., 2013). ...

秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨
4
2016

... 森林作为陆地生态系统的主体, 有着丰富的碳氮储量及复杂的物质循环过程, 因此在全球生物地球化学循环过程中扮演着关键角色(刘顺等, 2017).微生物是森林土壤碳(C)、氮(N)、磷(P)库转化的根本动力, 其对有机碳的分解需要经过胞外酶的解聚作用, 微生物胞外酶对大分子有机质的解聚是土壤有机碳库分解的限制性环节(Xu et al., 2017).因此, 森林生态系统中土壤胞外酶活性及其化学计量比是近年来的研究热点(Xu et al., 2015; 杨瑞等, 2016). ...

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

... 秦岭是中国南北气候天然的分界线, 是重要的森林生态区, 其主峰太白山位居秦岭北坡中段, 自上而下有着复杂且完整的植被垂直带谱, 现已成为了解森林生态系统物质循环的热点研究区域(杨瑞等, 2016).锐齿栎林(Quercus aliena var. acuteserrata forest)作为秦岭地区落叶乔木的代表类型, 广泛分布于太白山1 000-2 000 m海拔间, 多形成单优群落, 可为我们在微海拔尺度同一植被类型研究土壤胞外酶活性及化学计量比提供天然的试验平台(赵永华等, 2003).因此, 本研究选取太白山6个海拔高度(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎林作为研究对象, 探究微尺度不同海拔土壤酶活性及其化学计量比的动态变化与关键驱动因子, 我们假设: (1)微尺度海拔梯度土壤酶活性及其化学计量存在显著差异, 且酶的C:N和N:P变化趋势基本一致; (2)微海拔尺度土壤酶活性的变化受植物-土壤理化特性影响显著, 尤其是土壤有机碳(SOC)含量.本研究可为认识森林生态系统养分循环及资源限制状况提供新的视角, 有助于完善森林生态系统土壤酶化学计量特征的理论研究体系, 以期为太白山不同海拔高度上锐齿栎林长期发展和管理提供科学依据. ...

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨
4
2016

... 森林作为陆地生态系统的主体, 有着丰富的碳氮储量及复杂的物质循环过程, 因此在全球生物地球化学循环过程中扮演着关键角色(刘顺等, 2017).微生物是森林土壤碳(C)、氮(N)、磷(P)库转化的根本动力, 其对有机碳的分解需要经过胞外酶的解聚作用, 微生物胞外酶对大分子有机质的解聚是土壤有机碳库分解的限制性环节(Xu et al., 2017).因此, 森林生态系统中土壤胞外酶活性及其化学计量比是近年来的研究热点(Xu et al., 2015; 杨瑞等, 2016). ...

... 目前, 国内外****对森林土壤胞外酶活性的研究已经积累了一定基础(Lucas-Borja et al., 2012; 郭志明等, 2017), 但有关森林海拔梯度上土壤胞外酶的研究结果并无统一定论.如在西班牙昆卡山的温带森林(海拔960-1 670 m)(Lucas-Borja et al., 2012)和中国武夷山的亚热带森林(海拔650和1 850 m)(聂阳意等, 2018)的研究发现, 土壤酶活性随海拔升高而增加.但是, Hofmann等(2016)在奥地利阿尔卑斯山3种植被类型和曹瑞等(2016)在高山峡谷区5种植被类型中发现土壤酶活性随海拔升高而下降.究其原因, 可能是海拔尺度的不同造成了研究结果的差异.以往研究中, 研究的是不同海拔高度上的多种植被类型海拔范围, 本研究相对于以往研究的海拔范围, 海拔梯度变化中植被类型相同, 因此将其称为微尺度海拔梯度, 而将涉及多个植被类型的海拔尺度定义为长尺度海拔梯度.因为海拔梯度的变化不仅会引起温度、降水的变化, 更重要的是会造成植被类型的差异, 而植被类型可通过凋落物及根系分泌物对土壤微生物群落产生影响(Bach et al., 2010; 王莹等, 2010), 进而直接影响胞外酶的活性.此外长尺度海拔不同植被类型也会间接影响森林土壤的理化性质, 如pH、有机质含量和土壤结构等, 这也是引起土壤酶活性发生改变的重要因素(杨瑞等, 2016).因此通过控制植被类型变量, 在微海拔尺度上探究土壤酶活性与化学计量比的变化及其影响因素, 对于我们深入理解和认识森林生态系统生物地球化学循环过程具有重要意义. ...

... 秦岭是中国南北气候天然的分界线, 是重要的森林生态区, 其主峰太白山位居秦岭北坡中段, 自上而下有着复杂且完整的植被垂直带谱, 现已成为了解森林生态系统物质循环的热点研究区域(杨瑞等, 2016).锐齿栎林(Quercus aliena var. acuteserrata forest)作为秦岭地区落叶乔木的代表类型, 广泛分布于太白山1 000-2 000 m海拔间, 多形成单优群落, 可为我们在微海拔尺度同一植被类型研究土壤胞外酶活性及化学计量比提供天然的试验平台(赵永华等, 2003).因此, 本研究选取太白山6个海拔高度(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎林作为研究对象, 探究微尺度不同海拔土壤酶活性及其化学计量比的动态变化与关键驱动因子, 我们假设: (1)微尺度海拔梯度土壤酶活性及其化学计量存在显著差异, 且酶的C:N和N:P变化趋势基本一致; (2)微海拔尺度土壤酶活性的变化受植物-土壤理化特性影响显著, 尤其是土壤有机碳(SOC)含量.本研究可为认识森林生态系统养分循环及资源限制状况提供新的视角, 有助于完善森林生态系统土壤酶化学计量特征的理论研究体系, 以期为太白山不同海拔高度上锐齿栎林长期发展和管理提供科学依据. ...

... 本研究结果表明随着锐齿栎林带海拔高度的增加, 除βG外, 与C、N相关的水解酶(βX、CBH、NAG)均有显著下降趋势, 其中βX在海拔1 603-1 803 m间有所上升.这与郭志明等(2017)在温带森林生态系统中的研究结果相反, 主要是由研究的海拔尺度不同造成植被类型的差异导致(本研究海拔为1 300-1 800 m, 该研究为675-1 306 m).这是因为植被类型可通过植物根系的机械作用对土壤物理特性产生影响, 同时借助根系分泌物和凋落物等变化对土壤微生物活性产生直接或间接的影响, 进而导致土壤酶活性的变化(Lucas et al., 1993).杨瑞等(2016)在秦岭不同典型林分的研究也认为不同植被类型可引起土壤酶活性变化的差异.此外, 与P相关的AKP酶活性随海拔升高呈下降趋势, 这与Xu等(2015)Lei等(2017)的研究结果相似.有研究表明, 微生物会为了满足资源相对贫瘠地区P的正常供应, 而分泌更多的酶以满足其对P的需求(Olander & Vitousek, 2000; Wallenius et al., 2011), 本研究中AKP酶活性与土壤TP含量呈显著负相关关系(表3), 与上述观点一致.在本研究中土壤AKP酶活性显著高于βG和NAG酶活性, 且在1 603 m的活性显著低于1 308 m, 而1 603 m的ln(βG):ln(AKP)则显著高于1 308 m, 说明相对于1 603 m土壤, 1 308 m处土壤微生物对P的需求更大. ...

东北地区大秃顶子山土壤-微生物-胞外酶C:N:P化学计量特征沿海拔梯度的变化
1
2019

... 随海拔升高, ln(βG):ln(NAG)和ln(βG):ln(AKP)具有先增后减趋势, 且低海拔处显著低于中高海拔.而殷爽等(2019)在海拔800-1 700 m的4种植被类型的研究发现随海拔升高, 胞外酶C:N和C:P表现出不同的变化趋势, 本研究结果与其不同.究其原因一方面是因为在不同植被类型中植物凋落物与根系分泌物差异较大(Bach et al., 2010), 且多种影响因素之间紧密联系存在一个复杂的影响机制(Xu et al., 2017), 综合起来会对土壤酶化学计量比产生不同的影响; 另一方面是由于在微海拔尺度上, 土壤理化性质相比于海拔因子或气候会对土壤酶活性有着更强烈的影响(斯贵才等, 2014).本研究中SOC含量与土壤酶活性及其化学计量比有着较大的相关性也证实了这一点.总的来说, 土壤酶活性及其化学计量比会因为植物-土壤理化特性的影响在微尺度海拔梯度内表现出明显的变化特征. ...

东北地区大秃顶子山土壤-微生物-胞外酶C:N:P化学计量特征沿海拔梯度的变化
1
2019

... 随海拔升高, ln(βG):ln(NAG)和ln(βG):ln(AKP)具有先增后减趋势, 且低海拔处显著低于中高海拔.而殷爽等(2019)在海拔800-1 700 m的4种植被类型的研究发现随海拔升高, 胞外酶C:N和C:P表现出不同的变化趋势, 本研究结果与其不同.究其原因一方面是因为在不同植被类型中植物凋落物与根系分泌物差异较大(Bach et al., 2010), 且多种影响因素之间紧密联系存在一个复杂的影响机制(Xu et al., 2017), 综合起来会对土壤酶化学计量比产生不同的影响; 另一方面是由于在微海拔尺度上, 土壤理化性质相比于海拔因子或气候会对土壤酶活性有着更强烈的影响(斯贵才等, 2014).本研究中SOC含量与土壤酶活性及其化学计量比有着较大的相关性也证实了这一点.总的来说, 土壤酶活性及其化学计量比会因为植物-土壤理化特性的影响在微尺度海拔梯度内表现出明显的变化特征. ...

秦岭锐齿栎群落数量特征的研究
1
2003

... 秦岭是中国南北气候天然的分界线, 是重要的森林生态区, 其主峰太白山位居秦岭北坡中段, 自上而下有着复杂且完整的植被垂直带谱, 现已成为了解森林生态系统物质循环的热点研究区域(杨瑞等, 2016).锐齿栎林(Quercus aliena var. acuteserrata forest)作为秦岭地区落叶乔木的代表类型, 广泛分布于太白山1 000-2 000 m海拔间, 多形成单优群落, 可为我们在微海拔尺度同一植被类型研究土壤胞外酶活性及化学计量比提供天然的试验平台(赵永华等, 2003).因此, 本研究选取太白山6个海拔高度(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎林作为研究对象, 探究微尺度不同海拔土壤酶活性及其化学计量比的动态变化与关键驱动因子, 我们假设: (1)微尺度海拔梯度土壤酶活性及其化学计量存在显著差异, 且酶的C:N和N:P变化趋势基本一致; (2)微海拔尺度土壤酶活性的变化受植物-土壤理化特性影响显著, 尤其是土壤有机碳(SOC)含量.本研究可为认识森林生态系统养分循环及资源限制状况提供新的视角, 有助于完善森林生态系统土壤酶化学计量特征的理论研究体系, 以期为太白山不同海拔高度上锐齿栎林长期发展和管理提供科学依据. ...

秦岭锐齿栎群落数量特征的研究
1
2003

... 秦岭是中国南北气候天然的分界线, 是重要的森林生态区, 其主峰太白山位居秦岭北坡中段, 自上而下有着复杂且完整的植被垂直带谱, 现已成为了解森林生态系统物质循环的热点研究区域(杨瑞等, 2016).锐齿栎林(Quercus aliena var. acuteserrata forest)作为秦岭地区落叶乔木的代表类型, 广泛分布于太白山1 000-2 000 m海拔间, 多形成单优群落, 可为我们在微海拔尺度同一植被类型研究土壤胞外酶活性及化学计量比提供天然的试验平台(赵永华等, 2003).因此, 本研究选取太白山6个海拔高度(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎林作为研究对象, 探究微尺度不同海拔土壤酶活性及其化学计量比的动态变化与关键驱动因子, 我们假设: (1)微尺度海拔梯度土壤酶活性及其化学计量存在显著差异, 且酶的C:N和N:P变化趋势基本一致; (2)微海拔尺度土壤酶活性的变化受植物-土壤理化特性影响显著, 尤其是土壤有机碳(SOC)含量.本研究可为认识森林生态系统养分循环及资源限制状况提供新的视角, 有助于完善森林生态系统土壤酶化学计量特征的理论研究体系, 以期为太白山不同海拔高度上锐齿栎林长期发展和管理提供科学依据. ...




相关话题/土壤 化学 微生物 植物 生物

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应
    朱林,,1,2,*,王甜甜1,2,赵学琳1,2,祁亚淑3,许兴1,21宁夏大学西北土地退化与生态恢复国家重点实验室培育基地,银川7500212宁夏大学西北退化生态系统恢复与重建教育部重点实验室,银川7500213宁夏中卫市农业技术推广与培训中心,宁夏中卫755099HydraulicliftofMe ...
    本站小编 Free考研考试 2022-01-01
  • 气候变暖背景下青藏高原草本植物物候变化空间换时间预测
    李雪莹,朱文泉,*,李培先,谢志英,赵涔良北京师范大学地表过程与资源生态国家重点实验室,北京100875;北京师范大学地理科学学部,遥感科学与工程研究院,北京市陆表遥感数据产品工程技术研究中心,北京100875Predictingphenologyshiftsofherbaceousplantson ...
    本站小编 Free考研考试 2022-01-01
  • 白刺不同物候期的生物量分配规律
    邢磊1,2,段娜3,李清河,,1,2,*,刘成功1,2,李慧卿1,2,孙高洁1,21中国林业科学研究院林业研究所,北京1000912国家林业和草原局林木培育重点实验室,北京1000913中国林业科学研究院沙漠林业实验中心,内蒙古磴口015200Variationinbiomassallocation ...
    本站小编 Free考研考试 2022-01-01
  • 不同放牧强度下内蒙古温带典型草原优势种植物防御策略
    李颖1,龚吉蕊,,1,*,刘敏1,侯向阳2,丁勇2,杨波1,张子荷1,王彪1,朱趁趁11北京师范大学地表过程与资源生态国家重点实验室,中药资源保护与利用北京市重点实验室,北京师范大学地理科学学部自然资源学院,北京1008752中国农业科学院草地研究所,呼和浩特010021Defensestrateg ...
    本站小编 Free考研考试 2022-01-01
  • 极端干旱对草甸草原优势植物非结构性碳水化合物的影响
    宋琳1,2,雒文涛,1,*,马望1,2,何鹏3,梁潇洒1,王正文11中国科学院沈阳应用生态研究所,额尔古纳森林草原过渡带生态系统研究站,沈阳1100162中国科学院大学资源与环境学院,北京1000493天津师范大学生命科学学院,天津300387Extremedroughteffectsonnonst ...
    本站小编 Free考研考试 2022-01-01
  • 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素
    郑甲佳1,2,黄松宇1,2,贾昕,1,2,3,*,田赟1,3,牟钰1,2,刘鹏1,2,查天山1,2,31北京林业大学水土保持学院,北京1000832宁夏盐池毛乌素沙地生态系统国家定位观测研究站,北京1000833北京林业大学水土保持国家林业和草原局重点实验室,北京100083Spatialvaria ...
    本站小编 Free考研考试 2022-01-01
  • 生物标志物及其在生态系统研究中的应用
    冯晓娟,,1,2,*,王依云1,2,刘婷1,贾娟1,戴国华1,马田1,2,刘宗广11中国科学院植物研究所植被与环境变化国家重点实验室,北京1000932中国科学院大学资源与环境学院,北京100049BiomarkersandtheirapplicationsinecosystemresearchXi ...
    本站小编 Free考研考试 2022-01-01
  • 微生物组学的技术和方法及其应用
    高贵锋1,褚海燕,,1,2,*1中国科学院南京土壤研究所,南京2100082中国科学院大学,北京100049TechniquesandmethodsofmicrobiomicsandtheirapplicationsGui-FengGAO1,Hai-YanCHU,,1,2,*1Instituteof ...
    本站小编 Free考研考试 2022-01-01
  • 陆地生物圈模型的发展与应用
    彭书时,,1,*,岳超2,常锦峰31北京大学城市与环境学院,北京大学地表过程分析与模拟教育部重点实验室,北京1008712西北农林科技大学水土保持研究所,陕西杨凌,7121003InternationalInstituteforAppliedSystemsAnalysis(IIASA),A-2361 ...
    本站小编 Free考研考试 2022-01-01
  • 种植密度对苜蓿生长及生物量的影响
    冯银平1,2,沈海花1,2,罗永开1,2,徐龙超1,2,刘上石1,2,朱言坤1,2,赵梦颖1,2,邢爱军1,2,方精云,1,2,3,*1中国科学院植物研究所植被与环境变化国家重点实验室,北京1000932中国科学院大学,北京1000493北京大学城市与环境学院地表过程分析与模拟教育部重点实验室,北京 ...
    本站小编 Free考研考试 2022-01-01