Characteristics of soil nitrogen mineralization in the rhizosphere of trees, shrubs, and herbs in subtropical forest plantations
Ming-Yuan HU1,2, Ye YUAN3, Xiao-Qin DAI,1,2,*, Xiao-Li FU1,2, Liang KOU1,2, Hui-Min WANG1,21Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 2College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100190, China 3Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
Abstract Aims The objective was to explore the characteristics of soil nitrogen mineralization in the rhizosphere soils of trees, shrubs, and herbs in plantations and their variations among different species, forest types, and seasons. Methods The rhizosphere soils of trees, shrubs (Loropetalum chinense, Adinandra millettii, and Eurya muricate), and herbs (Woodwardia japonica and Dryopteris atrata) were sampled in the early growth season (April) and the vigorous growth season (July) in Cunninghamia lanceolata, Pinus massoniana, and Pinus elliottii plantations at Qianyanzhou Ecological Research Station, Taihe, Jiangxi. Net mineralization rate (Nmin), net ammonification rate (Namm), net nitrification rate (Nnit), soil chemical properties, and microbial properties were measured. Important findings The results found that, 1) Species, forest types, and sampling seasons significantly affected Nmin, Namm, and Nnit. Understory plants showed a higher seasonal sensitivity of rhizosphere soil Nnit than trees did in P. massoniana plantations and P. elliottii plantations. It means that rhizosphere soil Nmin and Namm of trees were significantly higher than those of most of the understory plants in April, but rhizosphere soil Nmin and Namm of the understory plants significantly increased and showed no difference with those of trees in July. This finding was consistent with the variance analysis of comprehensive scores by principal component analysis. Generally, rhizosphere soil Nmin and Nnit in C. lanceolata plantation were higher than those in P. massoniana and P. elliottii plantations. Rhizosphere soil nitrogen mineralization in July was higher than those in April. 2) Soil ammonium nitrogen, nitrate nitrogen, soil total nitrogen concentration, and soil microbial nitrogen concentration were the main factors affecting net nitrogen mineralization of rhizosphere soil. Soil chemical properties contributed to 29.2% of the variation of rhizosphere soil nitrogen mineralization, which was significantly higher than soil microbial properties. Consideration of the seasonal variations of soil nitrogen mineralization in the rhizosphere of understory plants and their influencing factors will provide an important foundation for accurately evaluating nutrient cycling in the plantation ecosystem. Keywords:rhizosphere soil nitrogen mineralization;understory vegetation;overstory tree;plantation;red soil
PDF (1212KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征. 植物生态学报, 2020, 44(12): 1285-1295. DOI: 10.17521/cjpe.2020.0225 HU Ming-Yuan, YUAN Ye, DAI Xiao-Qin, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil nitrogen mineralization in the rhizosphere of trees, shrubs, and herbs in subtropical forest plantations. Chinese Journal of Plant Ecology, 2020, 44(12): 1285-1295. DOI: 10.17521/cjpe.2020.0225
采样时间为2017年4月中旬, 采用随机区组实验设计。以千烟洲试验站5个独立的山头作为5个区组, 各区组内随机选择杉木、马尾松和湿地松3种人工林, 分别设置1个20 m × 20 m的标准样方。每个样方内分别采集优势乔木(杉木、马尾松和湿地松)、灌木(檵木、杨桐和格药柃)和草本(狗脊蕨和暗鳞鳞毛蕨)的根际土样。同年7月中旬重复采样一次。研究前期发现, 造林前3种林分类型以及重复区组之间的本底环境具有一致性(Fu et al., 2015b; Dai et al., 2018)。
AM, 杨桐; CL, 杉木; DA, 暗鳞鳞毛蕨; EM, 格药柃; LC, 檵木; PE, 湿地松; PM, 马尾松; WJ, 狗脊蕨。不同小写字母代表同一人工林内相同取样季节下不同物种之间差异显著(p < 0.05), 未标注小写字母则表示差异不显著。不同大写字母代表相同取样季节不同人工林类型间差异显著(括号内为4月, 括号外为7月; p < 0.05)。*代表同一人工林内相同物种不同取样季节差异显著(p < 0.05)。 Fig. 1Net mineralization rate (Nmin), net ammonification rate (Namm), and net nitrification rate (Nnit) of the rhizosphere soil of overstory trees, understory shrubs, and herbs in subtropical plantations.
AM, Adinandra millettii; CL, Cunninghamia lanceolata; DA, Dryopteris atrata; EM, Eurya muricate; LC, Loropetalum chinense; PE, Pinus elliottii; PM, Pinus massoniana; WJ, Woodwardia japonica. Different lowercase letters denote significant difference among species of each plantation in the same season (p < 0.05), while unmarked lowercase letters denote inapparent difference. Different uppercase letters denote significant difference among plantations in the same season (April is in the bracket, July is outside the bracket; p < 0.05). *denotes significant difference between the different seasons for the same species in each plantation (p < 0.05).
A, 4月。B, 7月。AM, 杨桐; CL, 杉木; DA, 暗鳞鳞毛蕨; EM, 格药柃; LC, 檵木; PE, 湿地松; PM, 马尾松; WJ, 狗脊蕨。 Fig. 2Principal component analysis (PCA) of net nitrogen mineralization rate, net ammonification rate, and net nitrification rate of the rhizosphere soil of trees, understory shrubs, and herbs within subtropical plantations.
Fig. 3Redundancy analysis (RDA) of the relationship between net nitrogen mineralization rate (Nmin), net ammonification rate (Namm), and net nitrification rate (Nnit) of the rhizosphere soil and soil chemical properties and soil microbial properties in subtropical plantations. MBN, microbial biomass nitrogen concentration; NH4+-N, ammonium nitrogen concentration; NO3--N, nitrate nitrogen concentration; TN, soil total N concentration.
Fig. 4Relative importance of soil chemical and soil microbial properties in determining the variation in net nitrogen mineralization rate, net ammonification rate, and net nitrification rate of the rhizosphere soil in subtropical forest plantations. Each ellipse represents the percentage of the variations explained by soil chemical properties or soil microbial properties. The overlap of two ellipses represents the variation jointly explained by soil chemical and microbial properties. *indicates a significant effect (p < 0.05), ** indicates a highly significant effect (p < 0.01).
York等(2016)认为根际最简明的定义是受植物根系影响的土壤, 其区域在几厘米的范围之内。不同的物种其根系形态及生理特性不同(Fu et al., 2015a; 莫雪丽等, 2018), 导致其根际土壤氮矿化存在差异。本研究发现马尾松和湿地松林内, 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草(杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨)根际土壤Nmin和Namm显著提升, 与乔木不再具有显著差异(图1)。这体现出乔木与林下灌草根际土壤氮矿化季节敏感性的差异, 具体表现为杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨根际土壤氮矿化季节敏感性强于马尾松和湿地松, 与杉木则没有差异。一方面, 不同的物种对铵态氮、硝态氮及小分子有机氮的吸收偏好具有差异(Moreau et al., 2019), 使得物种之间根际土壤NH4+-N含量具有显著差异(表1), 显著影响根际土壤氮矿化(图3)。如李常诚等(2016)发现相对于硝态氮和甘氨酸, 杉木偏好吸收铵态氮。另一方面, 根际土壤TN含量也对其氮矿化具有显著影响(图3), 反映了基质有效性在调节无机氮生产中的重要性(Booth et al., 2005)。其他研究也表明, 土壤NH4+-N和TN含量对土壤净氮矿化具有显著影响(肖好燕等, 2017; Zulkarnaen et al., 2019)。本研究发现, 马尾松、湿地松和檵木的NH4+-N和TN含量显著高于杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨(表1; 图5), 这可能与这些物种的菌根类型有一定的关系。研究证明外生菌根和丛枝菌根树种对土壤氮循环的影响存在差异(Phillips et al., 2013), 其中外生菌根树种具有更封闭的氮循环, 氮周转慢(Lin et al., 2018), 由此造成了根际土壤氮矿化相对较低的季节敏感性。本研究中马尾松、湿地松和檵木为外生菌根物种, 杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨为丛枝菌根或无丛枝菌根物种(苏琍英等, 1992; 高雨秋等, 2019)。此外, 研究发现细根直径越大, 其对环境因子的响应就越不敏感(Hodge, 2004)。乔木较灌木来说细根直径较粗(王新洲等, 2010), 导致乔木对环境的敏感度不及灌木和草本。
Table 1 表1 表1物种、林型和季节对亚热带人工林4个主要土壤化学和微生物性质影响的混合线性模型分析结果(p值) Table 1Mixed linear model analysis of the effects of species, forest types, and seasons on four main soil chemical and microbial properties in subtropical forest plantations (p value)
变异来源 Source of variation
NH4+-N
NO3--N
TN
MBN
物种 Specise (S)
<0.001**
0.082
<0.001**
0.136
林型 Forest type (F)
0.002**
<0.000**
0.303
0.695
季节 Time (T)
<0.001**
<0.001**
0.725
0.002**
S × F
0.773
0.590
0.769
0.901
S × T
0.928
0.626
0.929
0.931
F × T
0.026
0.061
0.516
0.086
S × F × T
0.581
0.854
0.655
0.727
MBN, 微生物生物量氮含量; TN, 土壤全氮含量. **, p < 0.01. MBN, microbial biomass nitrogen concentration; TN, soil total N concentration. **, p < 0.01.
AM, 杨桐; CL, 杉木; DA, 暗鳞鳞毛蕨; EM, 格药柃; LC, 檵木; PE, 湿地松; PM, 马尾松; WJ, 狗脊蕨。不同小写字母表明物种之间差异显著(p < 0.05)。 Fig. 5Multiple comparison of soil ammonium nitrogen (NH4+-N) and total soil nitrogen concentrations (TN) in the rhizosphere soil of different species in subtropical forest plantations (mean ± SE).
AM, Adinandra millettii; CL, Cunninghamia lanceolata; DA, Dryopteris atrata; EM, Eurya muricate; LC, Loropetalum chinense; PE, Pinus elliottii; PM, Pinus massoniana; WJ, Woodwardia japonica. Different lowercase letters showed significant differences among species (p < 0.05).
3.3 林分类型对根际土壤氮矿化的影响
林分类型决定了凋落物层的特征, 影响了土壤化学和微生物性质, 进而影响了氮转化速率(Booth et al., 2005; Urakawa et al., 2016)。肖好燕等(2017)对亚热带天然林、格氏栲(Castanopsis kawakamii)人工林和杉木人工林的研究发现, 林分类型显著影响土壤净氮矿化速率、净硝化速率及净铵化速率。本研究发现杉木林根际土壤Nmin和Nnit显著高于马尾松和湿地松林(图1), 可能与NH4+-N对根际土壤氮矿化和硝化的抑制作用有关(图3)。本研究中杉木林根际土壤NH4+-N含量显著低于马尾松林和湿地松林(p < 0.05)。根系环境中高浓度的NH4+-N会引发根系生物硝化抑制剂的释放, 对氨氧化细菌和氨氧化古菌都产生抑制作用(Subbarao et al., 2007)。在取样和室内培养之前, 马尾松和湿地松林中较高浓度的NH4+-N使硝化抑制剂在根际土壤形成积累, 导致培养时与硝化作用有关的微生物数量及活性的降低, 进而影响了Nmin和Nnit。另一方面, 可能因为杉木是丛枝菌根(AM)树种, 马尾松和湿地松是外生菌根(ECM)树种。ECM真菌可以产生胞外酶, 直接从土壤有机质中获得有机氮, 而AM真菌缺乏胞外酶的分泌能力(Talbot et al., 2008), 这种差异造成ECM真菌和腐生生物强烈的氮竞争, 从而降低了土壤有机质分解速率(Lin et al., 2018), 使得AM森林土壤Nmin和Nnit显著高于ECM森林(Phillips et al., 2013)。同时, ECM树种凋落物质量低于AM树种, 使得ECM树下土壤净氮矿化速率和净硝化速率显著低于AM树(Lin et al., 2018)。
3.4 取样季节对根际土壤氮矿化的影响
在温度、降水、植物等多种因子的共同调控下, 土壤氮循环形成了特殊的季节模式(Parker & Schimel, 2011)。本研究表明, 取样季节显著影响了Nmin、Namm和Nnit (图1), 表现为植被生长旺盛期(7月)根际土壤的净氮矿化能力显著高于植被生长初期(4月)(p < 0.05)。一方面因为不同取样季节平均温度和总降水量的差异显著影响了土壤MBN含量(表1), 进而对根际土壤净氮矿化造成间接影响(图3)。本研究区4月份0-20 cm平均土壤温度为20.9 ℃, 总降水量为86.0 mm; 7月份平均土壤温度为28.6 ℃, 总降水量为219.4 mm, 7月平均土壤温度和总降水量明显高于4月, 使得其根际土壤MBN含量显著较高(p < 0.05)。Chen等(2017)研究也证明, 降水量减少或增加对土壤氮转化的影响是通过土壤微生物丰度和微生物生物量来实现的。另一方面不同季节根际土壤氮矿化差异与NH4+-N和NO3--N含量有关(图3; 表1)。不同物种本身对铵态氮和硝态氮的吸收不同(Moreau et al., 2019), 降水的淋溶作用会加剧根际土壤养分有效性的差异, 改变根际土壤微生物群落, 从而对根际土壤氮转化造成差异性影响(Bell et al., 2015; Chen et al., 2017)。此外, 植物在生长旺盛期(7月)需要更多的养分, 通过植物-微生物-土壤互作体系加快土壤氮循环过程(Hishi et al., 2014), 因此7月根际土壤Nmin、Namm和Nnit远高于4月。
3.5 土壤化学性质和土壤微生物与根际土壤氮矿化的关系
在本研究中, 土壤化学性质对根际土壤氮矿化变异的贡献率为29.2%, 高于土壤微生物的贡献率(图4)。全球氮矿化整合研究发现Nmin主要受土壤理化性质的影响, 可以解释Nmin变异的30% (Liu et al., 2017), 而另一个基于全球和生物群落尺度的研究发现Nmin的变化主要归因于土壤微生物生物量(Li et al., 2019)。实际上, 生物地理学是由特殊的土壤化学性质所驱动的(van der Wal et al., 2006)。在一定的环境条件下, 植物和微生物形成一套稳定的相互作用机制: 微生物利用植物分配到地下的光合产物(根系分泌物等)作为碳源和氮源, 将有机养分转化成无机养分供植物吸收利用(陆雅海和张福锁, 2006); 而植物根系分泌物及植物残体等释放到土壤之后, 通过影响土壤碳氮含量等化学性质作用于土壤微生物。因此, 微生物的特性很大程度上受土壤化学性质的控制。有研究表明, 土壤理化性质可以解释细菌群落变异的79.6% (Li et al., 2015)。另外, 仍存在近50%的根际土壤氮矿化变异难以被解释, 一方面可能与本研究所选的指标有关, 另一方面室内培养试验具有其相对适用性和局限性, 不能对野外的自然环境进行全面的反映。在今后的研究中应重点关注这些问题。
BlagodatskayaE, BlagodatskyS, AndersonTH, KuzyakovY (2014). Microbial growth and carbon use efficiency in the rhizosphere and root-free soil , 9, e93282. DOI: 10.1371/journal.pone.0093282. URLPMID:24722409 [本文引用: 1]
BoothMS, StarkJM, RastetterE (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data , 75, 139-157. DOI:10.1890/04-0988URL [本文引用: 2]
BorcardD, GilletF, LegendreP (2011). Numerical Ecology with R . [本文引用: 1]
BurnsRG, DeForestJL, MarxsenJ, SinsabaughRL, StrombergerME, WallensteinMD, WeintraubMN, ZoppiniA (2013). Soil enzymes in a changing environment: current knowledge and future directions , 58, 216-234. DOI:10.1016/j.soilbio.2012.11.009URL [本文引用: 1]
ChenFS, ZengDH, HeXY (2004). Soil nitrogen transformation and cycling in forest ecosystem Chinese Journal of Ecology, 23(5), 126-133. [本文引用: 1]
ChenJ, XiaoG, KuzyakovY, JeneretteGD, MaY, LiuW, WangZ, ShenW (2017). Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest , 14, 2513-2525. DOI:10.5194/bg-14-2513-2017URL [本文引用: 2]
ChenLY, LiuL, QinSQ, YangGB, FangK, ZhuB, KuzyakovY, ChenPD, XuYP, YangYH (2019). Regulation of priming effect by soil organic matter stability over a broad geographic scale , 10, 5112. DOI: 10.1038/s41467-019-13119-z. [本文引用: 1]
DaiX, FuX, KouL, WangH, ShockCC (2018). C, N, P stoichiometry of rhizosphere soils differed significantly among overstory trees and understory shrubs in plantations in subtropical China , 48, 1398-1405. [本文引用: 2]
FinziAC, AbramoffRZ, SpillerKS, BrzostekER, DarbyBA, KramerMA, PhillipsRP (2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles , 21, 2082-2094. URLPMID:25421798 [本文引用: 1]
FuXL, WangJL, DiYB, WangHM (2015 a). Differences in fine-root biomass of trees and understory vegetation among stand types in subtropical forests , 10, e0128894. DOI: 10.1371/journal.pone.0128894. DOI:10.1371/journal.pone.0128894URLPMID:26047358 [本文引用: 2] Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.
FuXL, YangFT, WangJL, DiYB, DaiXQ, ZhangXY, WangHM (2015b). Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation , 502, 280-286. [本文引用: 1]
GaoYQ, DaiXQ, WangJL, FuXL, KouL, WangHM (2019). Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations Chinese Journal of Plant Ecology, 43, 258-272. DOI:10.17521/cjpe.2018.0299URL [本文引用: 5]
GillRA, JacksonRB (2000). Global patterns of root turnover for terrestrial ecosystems , 147, 13-31. [本文引用: 1]
GilliamFS, YurishBM, AdamsMB (2001). Temporal and spatial variation of nitrogen transformations in nitrogen- saturated soils of a central Appalachian hardwood forest , 31, 1768-1785. DOI:10.1139/x01-106URL [本文引用: 1]
HeJZ, ZhangLM (2013). Key processes and microbial mechanisms of soil nitrogen transformation Microbiology China, 40, 98-108. [本文引用: 1]
HishiT, UrakawaR, TashiroN, MaedaY, ShibataH (2014). Seasonality of factors controlling N mineralization rates among slope positions and aspects in cool-temperate deciduous natural forests and larch plantations , 50, 343-356. [本文引用: 1]
HodgeA (2004). The plastic plant: root responses to heterogeneous supplies of nutrients , 162, 9-24. [本文引用: 1]
JiangPP, WangHM, FuXL, DaiXQ, KouL, WangJL (2018). Elaborate differences between trees and understory plants in the deployment of fine roots , 431, 433-447. DOI:10.1007/s11104-018-3778-3URL [本文引用: 1]
KuzyakovY, BlagodatskayaE (2015). Microbial hotspots and hot moments in soil: concept & review , 83, 184-199. [本文引用: 1]
LiCC, LiQR, XuXL, OuyangH (2016). Nitrogen acquisition strategies of Cunninghamia lanceolata at different ages Acta Ecologica Sinica, 36, 2620-2625. [本文引用: 2]
LiY, XuXH, SunW, ShenY, RenTT, HuangJH, WangCH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China Chinese Journal of Plant Ecology, 43, 174-184. [本文引用: 3]
LiZL, TianDS, WangBX, WangJS, WangS, ChenHYH, XuXF, WangCH, HeNP, NiuSL (2019). Microbes drive global soil nitrogen mineralization and availability , 25, 1078-1088. DOI:10.1111/gcb.14557URLPMID:30589163 Soil net nitrogen mineralization rate (Nmin ), which is critical for soil nitrogen availability and plant growth, is thought to be primarily controlled by climate and soil physical and/or chemical properties. However, the role of microbes on regulating soil Nmin has not been evaluated on the global scale. By compiling 1565 observational data points of potential net Nmin from 198 published studies across terrestrial ecosystems, we found that Nmin significantly increased with soil microbial biomass, total nitrogen, and mean annual precipitation, but decreased with soil pH. The variation of Nmin was ascribed predominantly to soil microbial biomass on global and biome scales. Mean annual precipitation, soil pH, and total soil nitrogen significantly influenced Nmin through soil microbes. The structural equation models (SEM) showed that soil substrates were the main factors controlling Nmin when microbial biomass was excluded. Microbe became the primary driver when it was included in SEM analysis. SEM with soil microbial biomass improved the Nmin prediction by 19% in comparison with that devoid of soil microbial biomass. The changes in Nmin contributed the most to global soil NH4 (+) -N variations in contrast to climate and soil properties. This study reveals the complex interactions of climate, soil properties, and microbes on Nmin and highlights the importance of soil microbial biomass in determining Nmin and nitrogen availability across the globe. The findings necessitate accurate representation of microbes in Earth system models to better predict nitrogen cycle under global change.
LiZW, XiaoHB, TangZH, HuangJQ, NieXD, HuangB, MaWM, LuYM, ZengGM (2015). Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China , 71, 37-44. [本文引用: 1]
LinGG, GuoDL, LiL, MaCG, ZengDH (2018). Contrasting effects of ectomycorrhizal and arbuscular mycorrhizal tropical tree species on soil nitrogen cycling: the potential mechanisms and corresponding adaptive strategies , 127, 518-530. [本文引用: 4]
LiuY, HeNP, WenXF, YuGR, GaoY, JiaYL (2016). Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems , 215, 40-46. [本文引用: 1]
LiuY, WangCH, HeNP, WenXF, GaoY, LiSG, NiuSL, Butterbach-BahlK, LuoYQ, YuGR (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms , 23, 455-464. URLPMID:27234363 [本文引用: 3]
LuYH, ZhangFS (2006). The advances in rhizosphere microorganisms Soils, 38(2), 113-121. [本文引用: 1]
MoXL, DaiXQ, WangHM, FuXL, KouL (2018). Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations—A case study at Qianyanzhou, Taihe, Jiangxi, China Chinese Journal of Plant Ecology, 42, 723-733. [本文引用: 4]
MoreauD, BardgettRD, FinlayRD, JonesDL, PhilippotL (2019). A plant perspective on nitrogen cycling in the rhizosphere , 33, 540-552. [本文引用: 3]
NilssonMC, WardleDA (2005). Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest , 3, 421-428. [本文引用: 1]
ParkerSS, SchimelJP (2011). Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland , 48, 185-192. [本文引用: 1]
PhillipsRP, BrzostekE, MidgleyMG (2013). The mycorrhizal- associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests , 199, 41-51. [本文引用: 2]
PhillipsRP, ErlitzY, BierR, BernhardtES (2008). New approach for capturing soluble root exudates in forest soils , 22, 990-999. [本文引用: 2]
RibbonsRR, Levy-BoothDJ, MasseJ, GraystonSJ, McDonaldMA, VesterdalL, PrescottCE (2016). Linking microbial communities, functional genes and nitrogen-cycling processes in forest floors under four tree species , 103, 181-191. [本文引用: 1]
ShaLQ, MengY, FengZL, ZhengZ, CaoM, LiuHM (2000). Nitrification and net N mineralization rate of soils under different tropical forests in Xishuangbanna, southwest China Acta Phytoecologica Sinica, 24, 152-156. [本文引用: 2]
SinsabaughRL, FollstadShah JJ (2012). Ecoenzymatic stoichiometry and ecological theory , 43, 313-343. [本文引用: 1]
SpohnM, CarminatiA, KuzyakovY (2013). Soil zymography—A novel in situ method for mapping distribution of enzyme activity in soil , 58, 275-280. DOI:10.1016/j.soilbio.2012.12.004URL [本文引用: 1]
SuLY, ChengAX, YuAL, FuWQ, ZhengPY (1992). Investigation on mycorrhizae of forest trees in natural reserve of Mount Tianmu Journal of Zhejiang Forestry College, 9(3), 263-276. [本文引用: 1]
SubbaraoGV, WangHY, ItoO, NakaharaK, BerryWL (2007). NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots , 290, 245-257. DOI:10.1007/s11104-006-9156-6URL [本文引用: 1]
TalbotJM, AllisonSD, TresederKK (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change , 22, 955-963. DOI:10.1111/fec.2008.22.issue-6URL [本文引用: 1]
UrakawaR, OhteN, ShibataH, IsobeK, TatenoR, OdaT, HishiT, FukushimaK, InagakiY, HiraiK, OyanagiN, NakataM, TodaH, KentaT, KuroiwaM, et al. (2016). Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago , 361, 382-396. [本文引用: 2]
vander Wal A, vanVeen JA, SmantW, BoschkerHTS, BloemJ, KardolP, vander Putten WH, deBoer W (2006). Fungal biomass development in a chronosequence of land abandonment , 38, 51-60. [本文引用: 1]
VanceED, BrookesPC, JenkinsonDS (1987). Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils , 19, 697-702. [本文引用: 1]
WangFM, ZouB, LiHF, LiZA (2014). The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations , 19, 238-243. [本文引用: 1]
WangGJ, TianDL, ZhuF, YanWD, LiSZ (2009). Net nitrogen mineralization in soils under four forest communities in Hunan Province Acta Ecologica Sinica, 29, 1607-1615. [本文引用: 1]
WangXZ, HuZL, DuYX, LiuYZ, LiLQ, PanGX (2010). Comparison of microbial biomass and community structure of rhizosphere soil between forest and shrubbery in karst ecosystems Soils, 42, 224-229. [本文引用: 1]
WuLK, LinXM, LinWX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates Chinese Journal of Plant Ecology, 38, 298-310. DOI:10.3724/SP.J.1258.2014.00027URL [本文引用: 1] Root exudates have specialized roles in nutrient cycling and signal transduction between a root system and soil, as well as in plant response to environmental stresses. They are the key regulators in rhizosphere communication, and can modify the biological and physical interactions between roots and soil organisms. Root exudates play important roles in biogeochemical cycle, regulation of rhizospheric ecological processes, and plant growth and development, and so on. Root exudates also serve roles in the plant-plant, plant-microbe, and microbe-microbe interactions. Plant allelopathy, intercropping system, bioremediation, and biological invasion are all the focal subjects in the field of contemporary agricultural ecology. They all involve the complex biological processes in rhizosphere. There are increasing evidences that various positive and negative plant-plant interactions within or among plant populations, such as allelopathy, consecutive monoculture problem, and interspecific facilitation in intercropping system, are all the results of the integrative effect of plant-microbe interactions mediated by root exudates. Recently, with the development of biotechnology, the methods and technologies relating to soil ecological research have achieved a remarkable progress. In particular, the breakthroughs of meta-omics technologies, including environmental metagenomics, metatranscriptomics, metaproteomics, and metabonomics, have largely enriched our knowledge of the soil biological world and the biodiversity and function diversity belowground. Research on plant-soil-microbe interactions mediated by root exudates has important implications for elucidating the functions of rhizosphere microecology and for providing practical guidelines. The concept and components of root exudates as well as the functions are reviewed in this paper. An overview on the root-bacteria, root-fungi, and root-fauna interactions is presented in detail. Methods to study root exudates and microbial communities are reviewed and the aspects needed to be further studied are also suggested. [ 吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望 , 38, 298-310.] [本文引用: 1]
XiaoHY, LiuB, YuZP, WanXH, SangCP, ZhouFW, HuangZQ (2017). Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China Chinese Journal of Applied Ecology, 28, 730-738. DOI:10.13287/j.1001-9332.201703.036URLPMID:29740997 [本文引用: 2] We conducted an in situ incubation experiment to determine soil mineral N (NH4(+)-N and NO3(-)-N) concentrations and soil net N mineralization rates (net ammonification rate and net nitrification rate) using close-top PVC tubes in three adjacent forests (natural forest, Castanopsis kawakamii and Cunninghamia lanceolata plantation) from September 2014 to August 2015 in subtropical China, investigating the effects of forest type and season on soil inorganic N concentrations and soil net N mineralization rates. Results showed that soil NO3(-)-N was the dominant form in mi-neral N pool in all three forests, and the proportion of NO3(-)-N to soil inorganic N content ranged from 55.1% to 87.5% and from 56.1% to 79.1% in natural forest and Cunninghamia lanceolata plantation, respectively. The effects of forest types on soil mineral N pool were only significant on soil NO3(-)-N, and the concentration of NO3(-)-N in Castanopsis kawakamii was significantly lower than in the other two forests. The NO3(-)-N and mineral N pool varied seasonally in all forests, and were higher in dormant season (October to February) than in growing season (March to September). Soil nitrification rate was very low in the whole year in all three forests and soil net ammonification was the major process of soil net mineralization. Tree species significantly affected soil net ammonification rate, and the value under Chinese fir was significantly lower than the other two fore-sts. The seasonal patterns of the soil net ammonification rate were not similar in all the three forests, but with the lowest value occurring in November and February in the following year. Analysis using variance of repeated measures indicated that soil mineral N concentrations and soil N mineralization rates were significantly affected by forest type and season, and correlation analysis showed that soil mineral N and soil N mineralization rate were significantly affected by water moisture and temperature, and the effects of litter on soil N mineralization rate were mainly through quality control, ra-ther than the quantity control. [ 肖好燕, 刘宝, 余再鹏, 万晓华, 桑昌鹏, 周富伟, 黄志群 (2017). 亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态 , 28, 730-738.] PMID:29740997 [本文引用: 2]
YinHJ, XuZF, ChenZ, WeiYY, LiuQ (2012). Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming , 59, 60-67. DOI:10.1016/j.apsoil.2012.03.013URL [本文引用: 1] Tree species can exert a strong influence on rhizosphere nutrient cycling through root and rhizosphere processes and create feedback in the patterns of nutrient cycling in forest ecosystems. In this study, we conducted an experiment to compare the rhizosphere effects of two coniferous species on N transformation as well as their responses to experimental warming using infrared heaters in the Eastern Tibetan Plateau. We examined the potential net N mineralization and nitrification rates. N availability, and microbial biomass C (MBC) and N (MBN) in rhizosphere soils of Picea asperata and Abies faxoniana plots and compared them to bulk soils. The infrared heater increased both the mean air and the soil temperatures by 1.5 degrees C and 2.1 degrees C respectively. Potential net N mineralization and net nitrification rates were generally greater in rhizosphere soils for the two conifers than in bulk soil, especially in the warmed plots. This led to higher NH4+ and NO3- concentrations in the rhizosphere soils. MBC and MBN were markedly higher in the rhizosphere soils relative to bulk soil in the study plots. In the control subplots of P. asperata, MBC, MBN, potential net N mineralization and net nitrification rates in the rhizosphere were 9.6%, 21.7%, 33.3% and 20.1% greater than in the bulk soil, respectively. MBC, MBN, potential net N mineralization and net nitrification rates in the control subplots of A. faxoniana, however, were 2.0%, 7.7%, 22.0% and 11.8% higher, respectively, in the rhizosphere than in the bulk soil; all of the variables were significantly lower than those of P. asperata subplots. Warming significantly promoted N transformation and nutrient availability by enhancing the rhizosphere priming effects for the two conifers, but the magnitudes of the rhizosphere effects on soil N transformation stimulated by warming were generally greater in P. asperata than in A. faxoniana subplots. Differences in the altered morphological and functional characteristics of the roots between the two species under experimental warming could be largely responsible for this variation. Taken together, the results indicated that the two species exhibited similar patterns but with considerably different magnitudes of rhizosphere effects on N transformations in response to experimental warming, implying different capacities of the two conifers to acquire nutrients and thereby altered the competitive and adaptive relationships between the tree species under climate change. (c) 2012 Elsevier B.V.
YorkLM, CarminatiA, MooneySJ, RitzK, BennettMJ (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots , 67, 3629-3643. URLPMID:26980751 [本文引用: 1]
ZhangJB, CaiZC, ZhuTB, YangWY, MüllerC (2013a). Mechanisms for the retention of inorganic N in acidic forest soils of southern China , 3, 2342. DOI: 10.1038/srep02342. DOI:10.1038/srep02342URLPMID:23907561 [本文引用: 1] The mechanisms underlying the retention of inorganic N in acidic forest soils in southern China are not well understood. Here, we simultaneously quantified the gross N transformation rates of various subtropical acidic forest soils located in southern China (southern soil) and those of temperate forest soils located in northern China (northern soil). We found that acidic southern soils had significantly higher gross rates of N mineralization and significantly higher turnover rates but a much greater capacity for retaining inorganic N than northern soils. The rates of autotrophic nitrification and NH3 volatilization in acidic southern soils were significantly lower due to low soil pH. Meanwhile, the relatively higher rates of NO3(-) immobilization into organic N in southern soils can counteract the effects of leaching, runoff, and denitrification. Taken together, these processes are responsible for the N enrichment of the humid subtropical forest soils in southern China.
ZhangJB, ZhuTB, CaiZC, MullerC (2011). Nitrogen cycling in forest soils across climate gradients in Eastern China , 342, 419-432. DOI:10.1007/s11104-010-0706-6URL [本文引用: 1]
ZhangYC, ZhangJB, MengTZ, ZhuTB, MullerC, CaiZC (2013b). Heterotrophic nitrification is the predominant NO3- production pathway in acid coniferous forest soil in subtropical China , 49, 955-957. DOI:10.1007/s00374-012-0772-4URL [本文引用: 1] To date, occurrence and stimulation of different nitrification pathways in acidic soils remains unclear. Laboratory incubation experiments, using the acetylene inhibition and N-15 tracing methods, were conducted to study the relative importance of heterotrophic and autotrophic nitrification in two acid soils (arable (AR) and coniferous forest) in subtropical China, and to verify the reliability of the N-15 tracing model. The gross rate of autotrophic nitrification was 2.28 mg kg(-1) day(-1), while that of the heterotrophic nitrification (0.01 mg kg(-1) day(-1)) was negligible in the AR soil. On the contrary, the gross rate of autotrophic nitrification was very low (0.05 mg kg(-1) day(-1)) and the heterotrophic nitrification (0.98 mg kg(-1) day(-1)) was the predominant NO3 (-) production pathway accounting for more than 95 % of the total nitrification in the coniferous forest soil. Our results showed that the N-15 tracing model was reliable when used to study soil N transformation in acid subtropical soils.
ZhaoQ, ZengDH, FanZP (2010). Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil , 46, 341-346. [本文引用: 1]
ZhaoQG (1995). Degradation of red soil in China Soils, 38, 281-285. [本文引用: 1]
ZulkarnaenN, ChengY, ZhangJB (2019). Effects of land use on soil nitrogen mineralization and nitrification transformation in red soil in subtropical region of China Chinese Journal of Soil Science, 50, 1210-1217. [本文引用: 1]
... 在温度、降水、植物等多种因子的共同调控下, 土壤氮循环形成了特殊的季节模式(Parker & Schimel, 2011).本研究表明, 取样季节显著影响了Nmin、Namm和Nnit (图1), 表现为植被生长旺盛期(7月)根际土壤的净氮矿化能力显著高于植被生长初期(4月)(p < 0.05).一方面因为不同取样季节平均温度和总降水量的差异显著影响了土壤MBN含量(表1), 进而对根际土壤净氮矿化造成间接影响(图3).本研究区4月份0-20 cm平均土壤温度为20.9 ℃, 总降水量为86.0 mm; 7月份平均土壤温度为28.6 ℃, 总降水量为219.4 mm, 7月平均土壤温度和总降水量明显高于4月, 使得其根际土壤MBN含量显著较高(p < 0.05).Chen等(2017)研究也证明, 降水量减少或增加对土壤氮转化的影响是通过土壤微生物丰度和微生物生物量来实现的.另一方面不同季节根际土壤氮矿化差异与NH4+-N和NO3--N含量有关(图3; 表1).不同物种本身对铵态氮和硝态氮的吸收不同(Moreau et al., 2019), 降水的淋溶作用会加剧根际土壤养分有效性的差异, 改变根际土壤微生物群落, 从而对根际土壤氮转化造成差异性影响(Bell et al., 2015; Chen et al., 2017).此外, 植物在生长旺盛期(7月)需要更多的养分, 通过植物-微生物-土壤互作体系加快土壤氮循环过程(Hishi et al., 2014), 因此7月根际土壤Nmin、Namm和Nnit远高于4月. ...
Microbial growth and carbon use efficiency in the rhizosphere and root-free soil 1 2014
... 根际是植物与土壤相互作用的热点区域(Kuzyakov & Blagodatskaya, 2015).植物根系的分泌物和脱落物为森林生态系统土壤微生物活动提供了大量的碳源和氮源, 提高了根际微生物的生物量和活性(Phillips et al., 2008), 显著改变了微生物介导的土壤氮矿化过程.研究发现, 根际活性微生物生物量是全土的2倍(Blagodatskaya et al., 2014), 根际水解酶活性比全土提高了3-5倍(Spohn et al., 2013).Zhu等(2014)研究表明, 植物活根的存在使土壤中β-葡萄糖苷酶(BG)和氧化酶活性分别增加19%-56%和0%-46%, 致使土壤总氮矿化速率提高了36%-62%.据估计, 森林生态系统土壤氮矿化的1/3是由根系分泌物引起的(Finzi et al., 2015).根际土壤氮矿化研究对于准确估计整个森林生态系统土壤氮循环具有非常重要的意义. ...
Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data 2 2005
... York等(2016)认为根际最简明的定义是受植物根系影响的土壤, 其区域在几厘米的范围之内.不同的物种其根系形态及生理特性不同(Fu et al., 2015a; 莫雪丽等, 2018), 导致其根际土壤氮矿化存在差异.本研究发现马尾松和湿地松林内, 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草(杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨)根际土壤Nmin和Namm显著提升, 与乔木不再具有显著差异(图1).这体现出乔木与林下灌草根际土壤氮矿化季节敏感性的差异, 具体表现为杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨根际土壤氮矿化季节敏感性强于马尾松和湿地松, 与杉木则没有差异.一方面, 不同的物种对铵态氮、硝态氮及小分子有机氮的吸收偏好具有差异(Moreau et al., 2019), 使得物种之间根际土壤NH4+-N含量具有显著差异(表1), 显著影响根际土壤氮矿化(图3).如李常诚等(2016)发现相对于硝态氮和甘氨酸, 杉木偏好吸收铵态氮.另一方面, 根际土壤TN含量也对其氮矿化具有显著影响(图3), 反映了基质有效性在调节无机氮生产中的重要性(Booth et al., 2005).其他研究也表明, 土壤NH4+-N和TN含量对土壤净氮矿化具有显著影响(肖好燕等, 2017; Zulkarnaen et al., 2019).本研究发现, 马尾松、湿地松和檵木的NH4+-N和TN含量显著高于杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨(表1; 图5), 这可能与这些物种的菌根类型有一定的关系.研究证明外生菌根和丛枝菌根树种对土壤氮循环的影响存在差异(Phillips et al., 2013), 其中外生菌根树种具有更封闭的氮循环, 氮周转慢(Lin et al., 2018), 由此造成了根际土壤氮矿化相对较低的季节敏感性.本研究中马尾松、湿地松和檵木为外生菌根物种, 杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨为丛枝菌根或无丛枝菌根物种(苏琍英等, 1992; 高雨秋等, 2019).此外, 研究发现细根直径越大, 其对环境因子的响应就越不敏感(Hodge, 2004).乔木较灌木来说细根直径较粗(王新洲等, 2010), 导致乔木对环境的敏感度不及灌木和草本. ...
... 林分类型决定了凋落物层的特征, 影响了土壤化学和微生物性质, 进而影响了氮转化速率(Booth et al., 2005; Urakawa et al., 2016).肖好燕等(2017)对亚热带天然林、格氏栲(Castanopsis kawakamii)人工林和杉木人工林的研究发现, 林分类型显著影响土壤净氮矿化速率、净硝化速率及净铵化速率.本研究发现杉木林根际土壤Nmin和Nnit显著高于马尾松和湿地松林(图1), 可能与NH4+-N对根际土壤氮矿化和硝化的抑制作用有关(图3).本研究中杉木林根际土壤NH4+-N含量显著低于马尾松林和湿地松林(p < 0.05).根系环境中高浓度的NH4+-N会引发根系生物硝化抑制剂的释放, 对氨氧化细菌和氨氧化古菌都产生抑制作用(Subbarao et al., 2007).在取样和室内培养之前, 马尾松和湿地松林中较高浓度的NH4+-N使硝化抑制剂在根际土壤形成积累, 导致培养时与硝化作用有关的微生物数量及活性的降低, 进而影响了Nmin和Nnit.另一方面, 可能因为杉木是丛枝菌根(AM)树种, 马尾松和湿地松是外生菌根(ECM)树种.ECM真菌可以产生胞外酶, 直接从土壤有机质中获得有机氮, 而AM真菌缺乏胞外酶的分泌能力(Talbot et al., 2008), 这种差异造成ECM真菌和腐生生物强烈的氮竞争, 从而降低了土壤有机质分解速率(Lin et al., 2018), 使得AM森林土壤Nmin和Nnit显著高于ECM森林(Phillips et al., 2013).同时, ECM树种凋落物质量低于AM树种, 使得ECM树下土壤净氮矿化速率和净硝化速率显著低于AM树(Lin et al., 2018). ...
Numerical Ecology with R 1 2011
... 运用SPSS 23.0和R语言进行统计分析, SigmaPlot 12.5作图.PCA、RDA、VIF及VPA基于R语言中的vegan程序包(Borcard et al., 2011)完成. ...
Soil enzymes in a changing environment: current knowledge and future directions 1 2013
... 土壤氮有效性影响着森林生态系统生产力(沙丽清等, 2000), 而土壤中85%-95%的氮是植物不能直接利用的有机氮, 需要经过矿化、硝化作用将有机氮转化为无机氮, 才能被植物吸收利用(李阳等, 2019).土壤有机氮的矿化主要是微生物驱动的生物地球化学过程(贺纪正和张丽梅, 2013).在土壤氮有效性较低时, 微生物会增加胞外酶的分泌, 通过解聚合作用将难以利用的有机质分解(Burns et al., 2013).因此, 土壤微生物(Li et al., 2019)和土壤化学性质(Liu et al., 2017)共同作用于森林生态系统土壤氮矿化. ...
森林土壤氮素的转化与循环 1 2004
... 本研究中根际土壤净氮矿化速率以净硝化速率为主, 净铵化速率较小甚至为负值, 与以往大量的研究结果(沙丽清等, 2000; 王光军等, 2009; Urakawa et al., 2016)一致.研究发现不同森林生态系统之间净硝化占净氮矿化的比例差异很大, 变化范围为0-80% (Gilliam et al., 2001).硝化作用在不同的森林生态系统中具有很大的不确定性.一方面, 亚热带和热带森林土壤通常具有快速的氮循环速率, 相对温带森林生态系统, 湿润的亚热带和热带森林可以实现氮富集(Zhang et al., 2013a), 导致硝酸盐主导的氮循环过程变强, 硝化作用也有可能较强(Aber et al., 1989).另一方面, 亚热带酸性土壤微生物的自养硝化速率虽然较低, 但异养硝化速率较高, 可以将有机氮直接转化为硝态氮, 并且部分进行硝化作用的微生物对酸性红壤低pH的环境有很好的适应性(Zhang et al., 2011, 2013b).另外, 较强的微生物固持导致铵化作用产生的铵态氮迅速被微生物固定(陈伏生等, 2004), 使得净铵化速率较小甚至为负值. ...
森林土壤氮素的转化与循环 1 2004
... 本研究中根际土壤净氮矿化速率以净硝化速率为主, 净铵化速率较小甚至为负值, 与以往大量的研究结果(沙丽清等, 2000; 王光军等, 2009; Urakawa et al., 2016)一致.研究发现不同森林生态系统之间净硝化占净氮矿化的比例差异很大, 变化范围为0-80% (Gilliam et al., 2001).硝化作用在不同的森林生态系统中具有很大的不确定性.一方面, 亚热带和热带森林土壤通常具有快速的氮循环速率, 相对温带森林生态系统, 湿润的亚热带和热带森林可以实现氮富集(Zhang et al., 2013a), 导致硝酸盐主导的氮循环过程变强, 硝化作用也有可能较强(Aber et al., 1989).另一方面, 亚热带酸性土壤微生物的自养硝化速率虽然较低, 但异养硝化速率较高, 可以将有机氮直接转化为硝态氮, 并且部分进行硝化作用的微生物对酸性红壤低pH的环境有很好的适应性(Zhang et al., 2011, 2013b).另外, 较强的微生物固持导致铵化作用产生的铵态氮迅速被微生物固定(陈伏生等, 2004), 使得净铵化速率较小甚至为负值. ...
Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest 2 2017
... 在温度、降水、植物等多种因子的共同调控下, 土壤氮循环形成了特殊的季节模式(Parker & Schimel, 2011).本研究表明, 取样季节显著影响了Nmin、Namm和Nnit (图1), 表现为植被生长旺盛期(7月)根际土壤的净氮矿化能力显著高于植被生长初期(4月)(p < 0.05).一方面因为不同取样季节平均温度和总降水量的差异显著影响了土壤MBN含量(表1), 进而对根际土壤净氮矿化造成间接影响(图3).本研究区4月份0-20 cm平均土壤温度为20.9 ℃, 总降水量为86.0 mm; 7月份平均土壤温度为28.6 ℃, 总降水量为219.4 mm, 7月平均土壤温度和总降水量明显高于4月, 使得其根际土壤MBN含量显著较高(p < 0.05).Chen等(2017)研究也证明, 降水量减少或增加对土壤氮转化的影响是通过土壤微生物丰度和微生物生物量来实现的.另一方面不同季节根际土壤氮矿化差异与NH4+-N和NO3--N含量有关(图3; 表1).不同物种本身对铵态氮和硝态氮的吸收不同(Moreau et al., 2019), 降水的淋溶作用会加剧根际土壤养分有效性的差异, 改变根际土壤微生物群落, 从而对根际土壤氮转化造成差异性影响(Bell et al., 2015; Chen et al., 2017).此外, 植物在生长旺盛期(7月)需要更多的养分, 通过植物-微生物-土壤互作体系加快土壤氮循环过程(Hishi et al., 2014), 因此7月根际土壤Nmin、Namm和Nnit远高于4月. ...
... ; Chen et al., 2017).此外, 植物在生长旺盛期(7月)需要更多的养分, 通过植物-微生物-土壤互作体系加快土壤氮循环过程(Hishi et al., 2014), 因此7月根际土壤Nmin、Namm和Nnit远高于4月. ...
Regulation of priming effect by soil organic matter stability over a broad geographic scale 1 2019
C, N, P stoichiometry of rhizosphere soils differed significantly among overstory trees and understory shrubs in plantations in subtropical China 2 2018
... 采样时间为2017年4月中旬, 采用随机区组实验设计.以千烟洲试验站5个独立的山头作为5个区组, 各区组内随机选择杉木、马尾松和湿地松3种人工林, 分别设置1个20 m × 20 m的标准样方.每个样方内分别采集优势乔木(杉木、马尾松和湿地松)、灌木(檵木、杨桐和格药柃)和草本(狗脊蕨和暗鳞鳞毛蕨)的根际土样.同年7月中旬重复采样一次.研究前期发现, 造林前3种林分类型以及重复区组之间的本底环境具有一致性(Fu et al., 2015b; Dai et al., 2018). ...
Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles 1 2015
... 根际是植物与土壤相互作用的热点区域(Kuzyakov & Blagodatskaya, 2015).植物根系的分泌物和脱落物为森林生态系统土壤微生物活动提供了大量的碳源和氮源, 提高了根际微生物的生物量和活性(Phillips et al., 2008), 显著改变了微生物介导的土壤氮矿化过程.研究发现, 根际活性微生物生物量是全土的2倍(Blagodatskaya et al., 2014), 根际水解酶活性比全土提高了3-5倍(Spohn et al., 2013).Zhu等(2014)研究表明, 植物活根的存在使土壤中β-葡萄糖苷酶(BG)和氧化酶活性分别增加19%-56%和0%-46%, 致使土壤总氮矿化速率提高了36%-62%.据估计, 森林生态系统土壤氮矿化的1/3是由根系分泌物引起的(Finzi et al., 2015).根际土壤氮矿化研究对于准确估计整个森林生态系统土壤氮循环具有非常重要的意义. ...
a). Differences in fine-root biomass of trees and understory vegetation among stand types in subtropical forests 2 2015
... 已有研究证明, 不同的物种根系形态及生理特征, 如根系分泌物的质和量(Moreau et al., 2019)、养分吸收偏好(李常诚等, 2016)、根系周转速率(Gill & Jackson, 2000)等都具有显著差异, 从而导致其根际微区土壤微生物群落(Ribbons et al., 2016)、酶活性(Zhu et al., 2014)、酶化学计量比(高雨秋等, 2019)等明显不同, 由此造成根际氮矿化的差异.更好地了解不同物种间根际土壤氮矿化的差异对于精准估计多物种共存的复杂森林生态系统氮循环过程至关重要.不同森林生态系统物种层面根际土壤氮矿化的研究已开展较多(Phillips & Fahey, 2006; Lin et al., 2018).如Zhao等(2010)发现樟子松(Pinus sylvestris)根际土壤净氮矿化和净硝化高于榆树(Ulmus pumlia)和小叶杨(Populus simonii), 不同树种根际获取养分的能力不同.Yin等(2012)认为云杉(Picea asperata)和冷杉(Abies fabri)根际氮转化对气候变暖的响应模式相似.莫雪丽等(2018)发现灌木檵木(Loropetalum chinense)有效氮及其他养分的根际效应强于杨桐(Adinandra millettii)和格药柃(Eurya muricata).然而, 目前研究多集中在不同森林生态系统优势乔木或灌木物种, 关于同一森林生态系统内共生的乔木、灌木和草本之间根际土壤氮矿化的比较研究相对缺乏.林下植被是森林生态系统的重要组成部分, 对于森林生态系统结构和功能维持及其稳定性的提高具有不容忽视的作用(马姜明和李昆, 2004).林下植被生物量周转速率远远高于乔木, 特别是在人工针叶林中, 促进了生态系统的养分吸收(Nilsson & Wardle, 2005).研究发现, 亚热带表层土壤(0-20 cm)中林下植物的根系总细根生物量、吸收根的分枝比均高于乔木(Jiang et al., 2018), 如杉木(Cunninghamia lanceolata)林林下植被细根生物量占林地内细根总产量的16.7%-29.4% (Fu et al., 2015a).林下植被的去除减少了根系分泌物和细根周转, 使土壤中有机质和微生物量降低, 进而减少了潜在净氮矿化(Wang et al., 2014).因此林下植被根际土壤氮矿化对于整个森林生态系统养分循环的影响不容忽视. ...
... York等(2016)认为根际最简明的定义是受植物根系影响的土壤, 其区域在几厘米的范围之内.不同的物种其根系形态及生理特性不同(Fu et al., 2015a; 莫雪丽等, 2018), 导致其根际土壤氮矿化存在差异.本研究发现马尾松和湿地松林内, 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草(杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨)根际土壤Nmin和Namm显著提升, 与乔木不再具有显著差异(图1).这体现出乔木与林下灌草根际土壤氮矿化季节敏感性的差异, 具体表现为杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨根际土壤氮矿化季节敏感性强于马尾松和湿地松, 与杉木则没有差异.一方面, 不同的物种对铵态氮、硝态氮及小分子有机氮的吸收偏好具有差异(Moreau et al., 2019), 使得物种之间根际土壤NH4+-N含量具有显著差异(表1), 显著影响根际土壤氮矿化(图3).如李常诚等(2016)发现相对于硝态氮和甘氨酸, 杉木偏好吸收铵态氮.另一方面, 根际土壤TN含量也对其氮矿化具有显著影响(图3), 反映了基质有效性在调节无机氮生产中的重要性(Booth et al., 2005).其他研究也表明, 土壤NH4+-N和TN含量对土壤净氮矿化具有显著影响(肖好燕等, 2017; Zulkarnaen et al., 2019).本研究发现, 马尾松、湿地松和檵木的NH4+-N和TN含量显著高于杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨(表1; 图5), 这可能与这些物种的菌根类型有一定的关系.研究证明外生菌根和丛枝菌根树种对土壤氮循环的影响存在差异(Phillips et al., 2013), 其中外生菌根树种具有更封闭的氮循环, 氮周转慢(Lin et al., 2018), 由此造成了根际土壤氮矿化相对较低的季节敏感性.本研究中马尾松、湿地松和檵木为外生菌根物种, 杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨为丛枝菌根或无丛枝菌根物种(苏琍英等, 1992; 高雨秋等, 2019).此外, 研究发现细根直径越大, 其对环境因子的响应就越不敏感(Hodge, 2004).乔木较灌木来说细根直径较粗(王新洲等, 2010), 导致乔木对环境的敏感度不及灌木和草本. ...
Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation 1 2015
... 采样时间为2017年4月中旬, 采用随机区组实验设计.以千烟洲试验站5个独立的山头作为5个区组, 各区组内随机选择杉木、马尾松和湿地松3种人工林, 分别设置1个20 m × 20 m的标准样方.每个样方内分别采集优势乔木(杉木、马尾松和湿地松)、灌木(檵木、杨桐和格药柃)和草本(狗脊蕨和暗鳞鳞毛蕨)的根际土样.同年7月中旬重复采样一次.研究前期发现, 造林前3种林分类型以及重复区组之间的本底环境具有一致性(Fu et al., 2015b; Dai et al., 2018). ...
亚热带人工林下植被根际土壤酶化学计量特征 5 2019
... 已有研究证明, 不同的物种根系形态及生理特征, 如根系分泌物的质和量(Moreau et al., 2019)、养分吸收偏好(李常诚等, 2016)、根系周转速率(Gill & Jackson, 2000)等都具有显著差异, 从而导致其根际微区土壤微生物群落(Ribbons et al., 2016)、酶活性(Zhu et al., 2014)、酶化学计量比(高雨秋等, 2019)等明显不同, 由此造成根际氮矿化的差异.更好地了解不同物种间根际土壤氮矿化的差异对于精准估计多物种共存的复杂森林生态系统氮循环过程至关重要.不同森林生态系统物种层面根际土壤氮矿化的研究已开展较多(Phillips & Fahey, 2006; Lin et al., 2018).如Zhao等(2010)发现樟子松(Pinus sylvestris)根际土壤净氮矿化和净硝化高于榆树(Ulmus pumlia)和小叶杨(Populus simonii), 不同树种根际获取养分的能力不同.Yin等(2012)认为云杉(Picea asperata)和冷杉(Abies fabri)根际氮转化对气候变暖的响应模式相似.莫雪丽等(2018)发现灌木檵木(Loropetalum chinense)有效氮及其他养分的根际效应强于杨桐(Adinandra millettii)和格药柃(Eurya muricata).然而, 目前研究多集中在不同森林生态系统优势乔木或灌木物种, 关于同一森林生态系统内共生的乔木、灌木和草本之间根际土壤氮矿化的比较研究相对缺乏.林下植被是森林生态系统的重要组成部分, 对于森林生态系统结构和功能维持及其稳定性的提高具有不容忽视的作用(马姜明和李昆, 2004).林下植被生物量周转速率远远高于乔木, 特别是在人工针叶林中, 促进了生态系统的养分吸收(Nilsson & Wardle, 2005).研究发现, 亚热带表层土壤(0-20 cm)中林下植物的根系总细根生物量、吸收根的分枝比均高于乔木(Jiang et al., 2018), 如杉木(Cunninghamia lanceolata)林林下植被细根生物量占林地内细根总产量的16.7%-29.4% (Fu et al., 2015a).林下植被的去除减少了根系分泌物和细根周转, 使土壤中有机质和微生物量降低, 进而减少了潜在净氮矿化(Wang et al., 2014).因此林下植被根际土壤氮矿化对于整个森林生态系统养分循环的影响不容忽视. ...
... York等(2016)认为根际最简明的定义是受植物根系影响的土壤, 其区域在几厘米的范围之内.不同的物种其根系形态及生理特性不同(Fu et al., 2015a; 莫雪丽等, 2018), 导致其根际土壤氮矿化存在差异.本研究发现马尾松和湿地松林内, 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草(杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨)根际土壤Nmin和Namm显著提升, 与乔木不再具有显著差异(图1).这体现出乔木与林下灌草根际土壤氮矿化季节敏感性的差异, 具体表现为杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨根际土壤氮矿化季节敏感性强于马尾松和湿地松, 与杉木则没有差异.一方面, 不同的物种对铵态氮、硝态氮及小分子有机氮的吸收偏好具有差异(Moreau et al., 2019), 使得物种之间根际土壤NH4+-N含量具有显著差异(表1), 显著影响根际土壤氮矿化(图3).如李常诚等(2016)发现相对于硝态氮和甘氨酸, 杉木偏好吸收铵态氮.另一方面, 根际土壤TN含量也对其氮矿化具有显著影响(图3), 反映了基质有效性在调节无机氮生产中的重要性(Booth et al., 2005).其他研究也表明, 土壤NH4+-N和TN含量对土壤净氮矿化具有显著影响(肖好燕等, 2017; Zulkarnaen et al., 2019).本研究发现, 马尾松、湿地松和檵木的NH4+-N和TN含量显著高于杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨(表1; 图5), 这可能与这些物种的菌根类型有一定的关系.研究证明外生菌根和丛枝菌根树种对土壤氮循环的影响存在差异(Phillips et al., 2013), 其中外生菌根树种具有更封闭的氮循环, 氮周转慢(Lin et al., 2018), 由此造成了根际土壤氮矿化相对较低的季节敏感性.本研究中马尾松、湿地松和檵木为外生菌根物种, 杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨为丛枝菌根或无丛枝菌根物种(苏琍英等, 1992; 高雨秋等, 2019).此外, 研究发现细根直径越大, 其对环境因子的响应就越不敏感(Hodge, 2004).乔木较灌木来说细根直径较粗(王新洲等, 2010), 导致乔木对环境的敏感度不及灌木和草本. ...
Global patterns of root turnover for terrestrial ecosystems 1 2000
... 已有研究证明, 不同的物种根系形态及生理特征, 如根系分泌物的质和量(Moreau et al., 2019)、养分吸收偏好(李常诚等, 2016)、根系周转速率(Gill & Jackson, 2000)等都具有显著差异, 从而导致其根际微区土壤微生物群落(Ribbons et al., 2016)、酶活性(Zhu et al., 2014)、酶化学计量比(高雨秋等, 2019)等明显不同, 由此造成根际氮矿化的差异.更好地了解不同物种间根际土壤氮矿化的差异对于精准估计多物种共存的复杂森林生态系统氮循环过程至关重要.不同森林生态系统物种层面根际土壤氮矿化的研究已开展较多(Phillips & Fahey, 2006; Lin et al., 2018).如Zhao等(2010)发现樟子松(Pinus sylvestris)根际土壤净氮矿化和净硝化高于榆树(Ulmus pumlia)和小叶杨(Populus simonii), 不同树种根际获取养分的能力不同.Yin等(2012)认为云杉(Picea asperata)和冷杉(Abies fabri)根际氮转化对气候变暖的响应模式相似.莫雪丽等(2018)发现灌木檵木(Loropetalum chinense)有效氮及其他养分的根际效应强于杨桐(Adinandra millettii)和格药柃(Eurya muricata).然而, 目前研究多集中在不同森林生态系统优势乔木或灌木物种, 关于同一森林生态系统内共生的乔木、灌木和草本之间根际土壤氮矿化的比较研究相对缺乏.林下植被是森林生态系统的重要组成部分, 对于森林生态系统结构和功能维持及其稳定性的提高具有不容忽视的作用(马姜明和李昆, 2004).林下植被生物量周转速率远远高于乔木, 特别是在人工针叶林中, 促进了生态系统的养分吸收(Nilsson & Wardle, 2005).研究发现, 亚热带表层土壤(0-20 cm)中林下植物的根系总细根生物量、吸收根的分枝比均高于乔木(Jiang et al., 2018), 如杉木(Cunninghamia lanceolata)林林下植被细根生物量占林地内细根总产量的16.7%-29.4% (Fu et al., 2015a).林下植被的去除减少了根系分泌物和细根周转, 使土壤中有机质和微生物量降低, 进而减少了潜在净氮矿化(Wang et al., 2014).因此林下植被根际土壤氮矿化对于整个森林生态系统养分循环的影响不容忽视. ...
Temporal and spatial variation of nitrogen transformations in nitrogen- saturated soils of a central Appalachian hardwood forest 1 2001
... 本研究中根际土壤净氮矿化速率以净硝化速率为主, 净铵化速率较小甚至为负值, 与以往大量的研究结果(沙丽清等, 2000; 王光军等, 2009; Urakawa et al., 2016)一致.研究发现不同森林生态系统之间净硝化占净氮矿化的比例差异很大, 变化范围为0-80% (Gilliam et al., 2001).硝化作用在不同的森林生态系统中具有很大的不确定性.一方面, 亚热带和热带森林土壤通常具有快速的氮循环速率, 相对温带森林生态系统, 湿润的亚热带和热带森林可以实现氮富集(Zhang et al., 2013a), 导致硝酸盐主导的氮循环过程变强, 硝化作用也有可能较强(Aber et al., 1989).另一方面, 亚热带酸性土壤微生物的自养硝化速率虽然较低, 但异养硝化速率较高, 可以将有机氮直接转化为硝态氮, 并且部分进行硝化作用的微生物对酸性红壤低pH的环境有很好的适应性(Zhang et al., 2011, 2013b).另外, 较强的微生物固持导致铵化作用产生的铵态氮迅速被微生物固定(陈伏生等, 2004), 使得净铵化速率较小甚至为负值. ...
土壤氮素转化的关键微生物过程及机制 1 2013
... 土壤氮有效性影响着森林生态系统生产力(沙丽清等, 2000), 而土壤中85%-95%的氮是植物不能直接利用的有机氮, 需要经过矿化、硝化作用将有机氮转化为无机氮, 才能被植物吸收利用(李阳等, 2019).土壤有机氮的矿化主要是微生物驱动的生物地球化学过程(贺纪正和张丽梅, 2013).在土壤氮有效性较低时, 微生物会增加胞外酶的分泌, 通过解聚合作用将难以利用的有机质分解(Burns et al., 2013).因此, 土壤微生物(Li et al., 2019)和土壤化学性质(Liu et al., 2017)共同作用于森林生态系统土壤氮矿化. ...
土壤氮素转化的关键微生物过程及机制 1 2013
... 土壤氮有效性影响着森林生态系统生产力(沙丽清等, 2000), 而土壤中85%-95%的氮是植物不能直接利用的有机氮, 需要经过矿化、硝化作用将有机氮转化为无机氮, 才能被植物吸收利用(李阳等, 2019).土壤有机氮的矿化主要是微生物驱动的生物地球化学过程(贺纪正和张丽梅, 2013).在土壤氮有效性较低时, 微生物会增加胞外酶的分泌, 通过解聚合作用将难以利用的有机质分解(Burns et al., 2013).因此, 土壤微生物(Li et al., 2019)和土壤化学性质(Liu et al., 2017)共同作用于森林生态系统土壤氮矿化. ...
Seasonality of factors controlling N mineralization rates among slope positions and aspects in cool-temperate deciduous natural forests and larch plantations 1 2014
... 在温度、降水、植物等多种因子的共同调控下, 土壤氮循环形成了特殊的季节模式(Parker & Schimel, 2011).本研究表明, 取样季节显著影响了Nmin、Namm和Nnit (图1), 表现为植被生长旺盛期(7月)根际土壤的净氮矿化能力显著高于植被生长初期(4月)(p < 0.05).一方面因为不同取样季节平均温度和总降水量的差异显著影响了土壤MBN含量(表1), 进而对根际土壤净氮矿化造成间接影响(图3).本研究区4月份0-20 cm平均土壤温度为20.9 ℃, 总降水量为86.0 mm; 7月份平均土壤温度为28.6 ℃, 总降水量为219.4 mm, 7月平均土壤温度和总降水量明显高于4月, 使得其根际土壤MBN含量显著较高(p < 0.05).Chen等(2017)研究也证明, 降水量减少或增加对土壤氮转化的影响是通过土壤微生物丰度和微生物生物量来实现的.另一方面不同季节根际土壤氮矿化差异与NH4+-N和NO3--N含量有关(图3; 表1).不同物种本身对铵态氮和硝态氮的吸收不同(Moreau et al., 2019), 降水的淋溶作用会加剧根际土壤养分有效性的差异, 改变根际土壤微生物群落, 从而对根际土壤氮转化造成差异性影响(Bell et al., 2015; Chen et al., 2017).此外, 植物在生长旺盛期(7月)需要更多的养分, 通过植物-微生物-土壤互作体系加快土壤氮循环过程(Hishi et al., 2014), 因此7月根际土壤Nmin、Namm和Nnit远高于4月. ...
The plastic plant: root responses to heterogeneous supplies of nutrients 1 2004
... York等(2016)认为根际最简明的定义是受植物根系影响的土壤, 其区域在几厘米的范围之内.不同的物种其根系形态及生理特性不同(Fu et al., 2015a; 莫雪丽等, 2018), 导致其根际土壤氮矿化存在差异.本研究发现马尾松和湿地松林内, 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草(杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨)根际土壤Nmin和Namm显著提升, 与乔木不再具有显著差异(图1).这体现出乔木与林下灌草根际土壤氮矿化季节敏感性的差异, 具体表现为杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨根际土壤氮矿化季节敏感性强于马尾松和湿地松, 与杉木则没有差异.一方面, 不同的物种对铵态氮、硝态氮及小分子有机氮的吸收偏好具有差异(Moreau et al., 2019), 使得物种之间根际土壤NH4+-N含量具有显著差异(表1), 显著影响根际土壤氮矿化(图3).如李常诚等(2016)发现相对于硝态氮和甘氨酸, 杉木偏好吸收铵态氮.另一方面, 根际土壤TN含量也对其氮矿化具有显著影响(图3), 反映了基质有效性在调节无机氮生产中的重要性(Booth et al., 2005).其他研究也表明, 土壤NH4+-N和TN含量对土壤净氮矿化具有显著影响(肖好燕等, 2017; Zulkarnaen et al., 2019).本研究发现, 马尾松、湿地松和檵木的NH4+-N和TN含量显著高于杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨(表1; 图5), 这可能与这些物种的菌根类型有一定的关系.研究证明外生菌根和丛枝菌根树种对土壤氮循环的影响存在差异(Phillips et al., 2013), 其中外生菌根树种具有更封闭的氮循环, 氮周转慢(Lin et al., 2018), 由此造成了根际土壤氮矿化相对较低的季节敏感性.本研究中马尾松、湿地松和檵木为外生菌根物种, 杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨为丛枝菌根或无丛枝菌根物种(苏琍英等, 1992; 高雨秋等, 2019).此外, 研究发现细根直径越大, 其对环境因子的响应就越不敏感(Hodge, 2004).乔木较灌木来说细根直径较粗(王新洲等, 2010), 导致乔木对环境的敏感度不及灌木和草本. ...
Elaborate differences between trees and understory plants in the deployment of fine roots 1 2018
... 已有研究证明, 不同的物种根系形态及生理特征, 如根系分泌物的质和量(Moreau et al., 2019)、养分吸收偏好(李常诚等, 2016)、根系周转速率(Gill & Jackson, 2000)等都具有显著差异, 从而导致其根际微区土壤微生物群落(Ribbons et al., 2016)、酶活性(Zhu et al., 2014)、酶化学计量比(高雨秋等, 2019)等明显不同, 由此造成根际氮矿化的差异.更好地了解不同物种间根际土壤氮矿化的差异对于精准估计多物种共存的复杂森林生态系统氮循环过程至关重要.不同森林生态系统物种层面根际土壤氮矿化的研究已开展较多(Phillips & Fahey, 2006; Lin et al., 2018).如Zhao等(2010)发现樟子松(Pinus sylvestris)根际土壤净氮矿化和净硝化高于榆树(Ulmus pumlia)和小叶杨(Populus simonii), 不同树种根际获取养分的能力不同.Yin等(2012)认为云杉(Picea asperata)和冷杉(Abies fabri)根际氮转化对气候变暖的响应模式相似.莫雪丽等(2018)发现灌木檵木(Loropetalum chinense)有效氮及其他养分的根际效应强于杨桐(Adinandra millettii)和格药柃(Eurya muricata).然而, 目前研究多集中在不同森林生态系统优势乔木或灌木物种, 关于同一森林生态系统内共生的乔木、灌木和草本之间根际土壤氮矿化的比较研究相对缺乏.林下植被是森林生态系统的重要组成部分, 对于森林生态系统结构和功能维持及其稳定性的提高具有不容忽视的作用(马姜明和李昆, 2004).林下植被生物量周转速率远远高于乔木, 特别是在人工针叶林中, 促进了生态系统的养分吸收(Nilsson & Wardle, 2005).研究发现, 亚热带表层土壤(0-20 cm)中林下植物的根系总细根生物量、吸收根的分枝比均高于乔木(Jiang et al., 2018), 如杉木(Cunninghamia lanceolata)林林下植被细根生物量占林地内细根总产量的16.7%-29.4% (Fu et al., 2015a).林下植被的去除减少了根系分泌物和细根周转, 使土壤中有机质和微生物量降低, 进而减少了潜在净氮矿化(Wang et al., 2014).因此林下植被根际土壤氮矿化对于整个森林生态系统养分循环的影响不容忽视. ...
Microbial hotspots and hot moments in soil: concept & review 1 2015
... 根际是植物与土壤相互作用的热点区域(Kuzyakov & Blagodatskaya, 2015).植物根系的分泌物和脱落物为森林生态系统土壤微生物活动提供了大量的碳源和氮源, 提高了根际微生物的生物量和活性(Phillips et al., 2008), 显著改变了微生物介导的土壤氮矿化过程.研究发现, 根际活性微生物生物量是全土的2倍(Blagodatskaya et al., 2014), 根际水解酶活性比全土提高了3-5倍(Spohn et al., 2013).Zhu等(2014)研究表明, 植物活根的存在使土壤中β-葡萄糖苷酶(BG)和氧化酶活性分别增加19%-56%和0%-46%, 致使土壤总氮矿化速率提高了36%-62%.据估计, 森林生态系统土壤氮矿化的1/3是由根系分泌物引起的(Finzi et al., 2015).根际土壤氮矿化研究对于准确估计整个森林生态系统土壤氮循环具有非常重要的意义. ...
不同林龄杉木氮素的获取策略 2 2016
... 已有研究证明, 不同的物种根系形态及生理特征, 如根系分泌物的质和量(Moreau et al., 2019)、养分吸收偏好(李常诚等, 2016)、根系周转速率(Gill & Jackson, 2000)等都具有显著差异, 从而导致其根际微区土壤微生物群落(Ribbons et al., 2016)、酶活性(Zhu et al., 2014)、酶化学计量比(高雨秋等, 2019)等明显不同, 由此造成根际氮矿化的差异.更好地了解不同物种间根际土壤氮矿化的差异对于精准估计多物种共存的复杂森林生态系统氮循环过程至关重要.不同森林生态系统物种层面根际土壤氮矿化的研究已开展较多(Phillips & Fahey, 2006; Lin et al., 2018).如Zhao等(2010)发现樟子松(Pinus sylvestris)根际土壤净氮矿化和净硝化高于榆树(Ulmus pumlia)和小叶杨(Populus simonii), 不同树种根际获取养分的能力不同.Yin等(2012)认为云杉(Picea asperata)和冷杉(Abies fabri)根际氮转化对气候变暖的响应模式相似.莫雪丽等(2018)发现灌木檵木(Loropetalum chinense)有效氮及其他养分的根际效应强于杨桐(Adinandra millettii)和格药柃(Eurya muricata).然而, 目前研究多集中在不同森林生态系统优势乔木或灌木物种, 关于同一森林生态系统内共生的乔木、灌木和草本之间根际土壤氮矿化的比较研究相对缺乏.林下植被是森林生态系统的重要组成部分, 对于森林生态系统结构和功能维持及其稳定性的提高具有不容忽视的作用(马姜明和李昆, 2004).林下植被生物量周转速率远远高于乔木, 特别是在人工针叶林中, 促进了生态系统的养分吸收(Nilsson & Wardle, 2005).研究发现, 亚热带表层土壤(0-20 cm)中林下植物的根系总细根生物量、吸收根的分枝比均高于乔木(Jiang et al., 2018), 如杉木(Cunninghamia lanceolata)林林下植被细根生物量占林地内细根总产量的16.7%-29.4% (Fu et al., 2015a).林下植被的去除减少了根系分泌物和细根周转, 使土壤中有机质和微生物量降低, 进而减少了潜在净氮矿化(Wang et al., 2014).因此林下植被根际土壤氮矿化对于整个森林生态系统养分循环的影响不容忽视. ...
... York等(2016)认为根际最简明的定义是受植物根系影响的土壤, 其区域在几厘米的范围之内.不同的物种其根系形态及生理特性不同(Fu et al., 2015a; 莫雪丽等, 2018), 导致其根际土壤氮矿化存在差异.本研究发现马尾松和湿地松林内, 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草(杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨)根际土壤Nmin和Namm显著提升, 与乔木不再具有显著差异(图1).这体现出乔木与林下灌草根际土壤氮矿化季节敏感性的差异, 具体表现为杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨根际土壤氮矿化季节敏感性强于马尾松和湿地松, 与杉木则没有差异.一方面, 不同的物种对铵态氮、硝态氮及小分子有机氮的吸收偏好具有差异(Moreau et al., 2019), 使得物种之间根际土壤NH4+-N含量具有显著差异(表1), 显著影响根际土壤氮矿化(图3).如李常诚等(2016)发现相对于硝态氮和甘氨酸, 杉木偏好吸收铵态氮.另一方面, 根际土壤TN含量也对其氮矿化具有显著影响(图3), 反映了基质有效性在调节无机氮生产中的重要性(Booth et al., 2005).其他研究也表明, 土壤NH4+-N和TN含量对土壤净氮矿化具有显著影响(肖好燕等, 2017; Zulkarnaen et al., 2019).本研究发现, 马尾松、湿地松和檵木的NH4+-N和TN含量显著高于杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨(表1; 图5), 这可能与这些物种的菌根类型有一定的关系.研究证明外生菌根和丛枝菌根树种对土壤氮循环的影响存在差异(Phillips et al., 2013), 其中外生菌根树种具有更封闭的氮循环, 氮周转慢(Lin et al., 2018), 由此造成了根际土壤氮矿化相对较低的季节敏感性.本研究中马尾松、湿地松和檵木为外生菌根物种, 杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨为丛枝菌根或无丛枝菌根物种(苏琍英等, 1992; 高雨秋等, 2019).此外, 研究发现细根直径越大, 其对环境因子的响应就越不敏感(Hodge, 2004).乔木较灌木来说细根直径较粗(王新洲等, 2010), 导致乔木对环境的敏感度不及灌木和草本. ...
不同林龄杉木氮素的获取策略 2 2016
... 已有研究证明, 不同的物种根系形态及生理特征, 如根系分泌物的质和量(Moreau et al., 2019)、养分吸收偏好(李常诚等, 2016)、根系周转速率(Gill & Jackson, 2000)等都具有显著差异, 从而导致其根际微区土壤微生物群落(Ribbons et al., 2016)、酶活性(Zhu et al., 2014)、酶化学计量比(高雨秋等, 2019)等明显不同, 由此造成根际氮矿化的差异.更好地了解不同物种间根际土壤氮矿化的差异对于精准估计多物种共存的复杂森林生态系统氮循环过程至关重要.不同森林生态系统物种层面根际土壤氮矿化的研究已开展较多(Phillips & Fahey, 2006; Lin et al., 2018).如Zhao等(2010)发现樟子松(Pinus sylvestris)根际土壤净氮矿化和净硝化高于榆树(Ulmus pumlia)和小叶杨(Populus simonii), 不同树种根际获取养分的能力不同.Yin等(2012)认为云杉(Picea asperata)和冷杉(Abies fabri)根际氮转化对气候变暖的响应模式相似.莫雪丽等(2018)发现灌木檵木(Loropetalum chinense)有效氮及其他养分的根际效应强于杨桐(Adinandra millettii)和格药柃(Eurya muricata).然而, 目前研究多集中在不同森林生态系统优势乔木或灌木物种, 关于同一森林生态系统内共生的乔木、灌木和草本之间根际土壤氮矿化的比较研究相对缺乏.林下植被是森林生态系统的重要组成部分, 对于森林生态系统结构和功能维持及其稳定性的提高具有不容忽视的作用(马姜明和李昆, 2004).林下植被生物量周转速率远远高于乔木, 特别是在人工针叶林中, 促进了生态系统的养分吸收(Nilsson & Wardle, 2005).研究发现, 亚热带表层土壤(0-20 cm)中林下植物的根系总细根生物量、吸收根的分枝比均高于乔木(Jiang et al., 2018), 如杉木(Cunninghamia lanceolata)林林下植被细根生物量占林地内细根总产量的16.7%-29.4% (Fu et al., 2015a).林下植被的去除减少了根系分泌物和细根周转, 使土壤中有机质和微生物量降低, 进而减少了潜在净氮矿化(Wang et al., 2014).因此林下植被根际土壤氮矿化对于整个森林生态系统养分循环的影响不容忽视. ...
... York等(2016)认为根际最简明的定义是受植物根系影响的土壤, 其区域在几厘米的范围之内.不同的物种其根系形态及生理特性不同(Fu et al., 2015a; 莫雪丽等, 2018), 导致其根际土壤氮矿化存在差异.本研究发现马尾松和湿地松林内, 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草(杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨)根际土壤Nmin和Namm显著提升, 与乔木不再具有显著差异(图1).这体现出乔木与林下灌草根际土壤氮矿化季节敏感性的差异, 具体表现为杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨根际土壤氮矿化季节敏感性强于马尾松和湿地松, 与杉木则没有差异.一方面, 不同的物种对铵态氮、硝态氮及小分子有机氮的吸收偏好具有差异(Moreau et al., 2019), 使得物种之间根际土壤NH4+-N含量具有显著差异(表1), 显著影响根际土壤氮矿化(图3).如李常诚等(2016)发现相对于硝态氮和甘氨酸, 杉木偏好吸收铵态氮.另一方面, 根际土壤TN含量也对其氮矿化具有显著影响(图3), 反映了基质有效性在调节无机氮生产中的重要性(Booth et al., 2005).其他研究也表明, 土壤NH4+-N和TN含量对土壤净氮矿化具有显著影响(肖好燕等, 2017; Zulkarnaen et al., 2019).本研究发现, 马尾松、湿地松和檵木的NH4+-N和TN含量显著高于杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨(表1; 图5), 这可能与这些物种的菌根类型有一定的关系.研究证明外生菌根和丛枝菌根树种对土壤氮循环的影响存在差异(Phillips et al., 2013), 其中外生菌根树种具有更封闭的氮循环, 氮周转慢(Lin et al., 2018), 由此造成了根际土壤氮矿化相对较低的季节敏感性.本研究中马尾松、湿地松和檵木为外生菌根物种, 杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨为丛枝菌根或无丛枝菌根物种(苏琍英等, 1992; 高雨秋等, 2019).此外, 研究发现细根直径越大, 其对环境因子的响应就越不敏感(Hodge, 2004).乔木较灌木来说细根直径较粗(王新洲等, 2010), 导致乔木对环境的敏感度不及灌木和草本. ...
... 土壤氮有效性影响着森林生态系统生产力(沙丽清等, 2000), 而土壤中85%-95%的氮是植物不能直接利用的有机氮, 需要经过矿化、硝化作用将有机氮转化为无机氮, 才能被植物吸收利用(李阳等, 2019).土壤有机氮的矿化主要是微生物驱动的生物地球化学过程(贺纪正和张丽梅, 2013).在土壤氮有效性较低时, 微生物会增加胞外酶的分泌, 通过解聚合作用将难以利用的有机质分解(Burns et al., 2013).因此, 土壤微生物(Li et al., 2019)和土壤化学性质(Liu et al., 2017)共同作用于森林生态系统土壤氮矿化. ...
... ).因此, 土壤微生物(Li et al., 2019)和土壤化学性质(Liu et al., 2017)共同作用于森林生态系统土壤氮矿化. ...
... 在本研究中, 土壤化学性质对根际土壤氮矿化变异的贡献率为29.2%, 高于土壤微生物的贡献率(图4).全球氮矿化整合研究发现Nmin主要受土壤理化性质的影响, 可以解释Nmin变异的30% (Liu et al., 2017), 而另一个基于全球和生物群落尺度的研究发现Nmin的变化主要归因于土壤微生物生物量(Li et al., 2019).实际上, 生物地理学是由特殊的土壤化学性质所驱动的(van der Wal et al., 2006).在一定的环境条件下, 植物和微生物形成一套稳定的相互作用机制: 微生物利用植物分配到地下的光合产物(根系分泌物等)作为碳源和氮源, 将有机养分转化成无机养分供植物吸收利用(陆雅海和张福锁, 2006); 而植物根系分泌物及植物残体等释放到土壤之后, 通过影响土壤碳氮含量等化学性质作用于土壤微生物.因此, 微生物的特性很大程度上受土壤化学性质的控制.有研究表明, 土壤理化性质可以解释细菌群落变异的79.6% (Li et al., 2015).另外, 仍存在近50%的根际土壤氮矿化变异难以被解释, 一方面可能与本研究所选的指标有关, 另一方面室内培养试验具有其相对适用性和局限性, 不能对野外的自然环境进行全面的反映.在今后的研究中应重点关注这些问题. ...
不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响 3 2019
... 土壤氮有效性影响着森林生态系统生产力(沙丽清等, 2000), 而土壤中85%-95%的氮是植物不能直接利用的有机氮, 需要经过矿化、硝化作用将有机氮转化为无机氮, 才能被植物吸收利用(李阳等, 2019).土壤有机氮的矿化主要是微生物驱动的生物地球化学过程(贺纪正和张丽梅, 2013).在土壤氮有效性较低时, 微生物会增加胞外酶的分泌, 通过解聚合作用将难以利用的有机质分解(Burns et al., 2013).因此, 土壤微生物(Li et al., 2019)和土壤化学性质(Liu et al., 2017)共同作用于森林生态系统土壤氮矿化. ...
... ).因此, 土壤微生物(Li et al., 2019)和土壤化学性质(Liu et al., 2017)共同作用于森林生态系统土壤氮矿化. ...
... 在本研究中, 土壤化学性质对根际土壤氮矿化变异的贡献率为29.2%, 高于土壤微生物的贡献率(图4).全球氮矿化整合研究发现Nmin主要受土壤理化性质的影响, 可以解释Nmin变异的30% (Liu et al., 2017), 而另一个基于全球和生物群落尺度的研究发现Nmin的变化主要归因于土壤微生物生物量(Li et al., 2019).实际上, 生物地理学是由特殊的土壤化学性质所驱动的(van der Wal et al., 2006).在一定的环境条件下, 植物和微生物形成一套稳定的相互作用机制: 微生物利用植物分配到地下的光合产物(根系分泌物等)作为碳源和氮源, 将有机养分转化成无机养分供植物吸收利用(陆雅海和张福锁, 2006); 而植物根系分泌物及植物残体等释放到土壤之后, 通过影响土壤碳氮含量等化学性质作用于土壤微生物.因此, 微生物的特性很大程度上受土壤化学性质的控制.有研究表明, 土壤理化性质可以解释细菌群落变异的79.6% (Li et al., 2015).另外, 仍存在近50%的根际土壤氮矿化变异难以被解释, 一方面可能与本研究所选的指标有关, 另一方面室内培养试验具有其相对适用性和局限性, 不能对野外的自然环境进行全面的反映.在今后的研究中应重点关注这些问题. ...
Microbes drive global soil nitrogen mineralization and availability 2019
Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China 1 2015
... 在本研究中, 土壤化学性质对根际土壤氮矿化变异的贡献率为29.2%, 高于土壤微生物的贡献率(图4).全球氮矿化整合研究发现Nmin主要受土壤理化性质的影响, 可以解释Nmin变异的30% (Liu et al., 2017), 而另一个基于全球和生物群落尺度的研究发现Nmin的变化主要归因于土壤微生物生物量(Li et al., 2019).实际上, 生物地理学是由特殊的土壤化学性质所驱动的(van der Wal et al., 2006).在一定的环境条件下, 植物和微生物形成一套稳定的相互作用机制: 微生物利用植物分配到地下的光合产物(根系分泌物等)作为碳源和氮源, 将有机养分转化成无机养分供植物吸收利用(陆雅海和张福锁, 2006); 而植物根系分泌物及植物残体等释放到土壤之后, 通过影响土壤碳氮含量等化学性质作用于土壤微生物.因此, 微生物的特性很大程度上受土壤化学性质的控制.有研究表明, 土壤理化性质可以解释细菌群落变异的79.6% (Li et al., 2015).另外, 仍存在近50%的根际土壤氮矿化变异难以被解释, 一方面可能与本研究所选的指标有关, 另一方面室内培养试验具有其相对适用性和局限性, 不能对野外的自然环境进行全面的反映.在今后的研究中应重点关注这些问题. ...
Contrasting effects of ectomycorrhizal and arbuscular mycorrhizal tropical tree species on soil nitrogen cycling: the potential mechanisms and corresponding adaptive strategies 4 2018
... 已有研究证明, 不同的物种根系形态及生理特征, 如根系分泌物的质和量(Moreau et al., 2019)、养分吸收偏好(李常诚等, 2016)、根系周转速率(Gill & Jackson, 2000)等都具有显著差异, 从而导致其根际微区土壤微生物群落(Ribbons et al., 2016)、酶活性(Zhu et al., 2014)、酶化学计量比(高雨秋等, 2019)等明显不同, 由此造成根际氮矿化的差异.更好地了解不同物种间根际土壤氮矿化的差异对于精准估计多物种共存的复杂森林生态系统氮循环过程至关重要.不同森林生态系统物种层面根际土壤氮矿化的研究已开展较多(Phillips & Fahey, 2006; Lin et al., 2018).如Zhao等(2010)发现樟子松(Pinus sylvestris)根际土壤净氮矿化和净硝化高于榆树(Ulmus pumlia)和小叶杨(Populus simonii), 不同树种根际获取养分的能力不同.Yin等(2012)认为云杉(Picea asperata)和冷杉(Abies fabri)根际氮转化对气候变暖的响应模式相似.莫雪丽等(2018)发现灌木檵木(Loropetalum chinense)有效氮及其他养分的根际效应强于杨桐(Adinandra millettii)和格药柃(Eurya muricata).然而, 目前研究多集中在不同森林生态系统优势乔木或灌木物种, 关于同一森林生态系统内共生的乔木、灌木和草本之间根际土壤氮矿化的比较研究相对缺乏.林下植被是森林生态系统的重要组成部分, 对于森林生态系统结构和功能维持及其稳定性的提高具有不容忽视的作用(马姜明和李昆, 2004).林下植被生物量周转速率远远高于乔木, 特别是在人工针叶林中, 促进了生态系统的养分吸收(Nilsson & Wardle, 2005).研究发现, 亚热带表层土壤(0-20 cm)中林下植物的根系总细根生物量、吸收根的分枝比均高于乔木(Jiang et al., 2018), 如杉木(Cunninghamia lanceolata)林林下植被细根生物量占林地内细根总产量的16.7%-29.4% (Fu et al., 2015a).林下植被的去除减少了根系分泌物和细根周转, 使土壤中有机质和微生物量降低, 进而减少了潜在净氮矿化(Wang et al., 2014).因此林下植被根际土壤氮矿化对于整个森林生态系统养分循环的影响不容忽视. ...
... York等(2016)认为根际最简明的定义是受植物根系影响的土壤, 其区域在几厘米的范围之内.不同的物种其根系形态及生理特性不同(Fu et al., 2015a; 莫雪丽等, 2018), 导致其根际土壤氮矿化存在差异.本研究发现马尾松和湿地松林内, 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草(杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨)根际土壤Nmin和Namm显著提升, 与乔木不再具有显著差异(图1).这体现出乔木与林下灌草根际土壤氮矿化季节敏感性的差异, 具体表现为杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨根际土壤氮矿化季节敏感性强于马尾松和湿地松, 与杉木则没有差异.一方面, 不同的物种对铵态氮、硝态氮及小分子有机氮的吸收偏好具有差异(Moreau et al., 2019), 使得物种之间根际土壤NH4+-N含量具有显著差异(表1), 显著影响根际土壤氮矿化(图3).如李常诚等(2016)发现相对于硝态氮和甘氨酸, 杉木偏好吸收铵态氮.另一方面, 根际土壤TN含量也对其氮矿化具有显著影响(图3), 反映了基质有效性在调节无机氮生产中的重要性(Booth et al., 2005).其他研究也表明, 土壤NH4+-N和TN含量对土壤净氮矿化具有显著影响(肖好燕等, 2017; Zulkarnaen et al., 2019).本研究发现, 马尾松、湿地松和檵木的NH4+-N和TN含量显著高于杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨(表1; 图5), 这可能与这些物种的菌根类型有一定的关系.研究证明外生菌根和丛枝菌根树种对土壤氮循环的影响存在差异(Phillips et al., 2013), 其中外生菌根树种具有更封闭的氮循环, 氮周转慢(Lin et al., 2018), 由此造成了根际土壤氮矿化相对较低的季节敏感性.本研究中马尾松、湿地松和檵木为外生菌根物种, 杉木、杨桐、格药柃、狗脊蕨和暗鳞鳞毛蕨为丛枝菌根或无丛枝菌根物种(苏琍英等, 1992; 高雨秋等, 2019).此外, 研究发现细根直径越大, 其对环境因子的响应就越不敏感(Hodge, 2004).乔木较灌木来说细根直径较粗(王新洲等, 2010), 导致乔木对环境的敏感度不及灌木和草本. ...
... 林分类型决定了凋落物层的特征, 影响了土壤化学和微生物性质, 进而影响了氮转化速率(Booth et al., 2005; Urakawa et al., 2016).肖好燕等(2017)对亚热带天然林、格氏栲(Castanopsis kawakamii)人工林和杉木人工林的研究发现, 林分类型显著影响土壤净氮矿化速率、净硝化速率及净铵化速率.本研究发现杉木林根际土壤Nmin和Nnit显著高于马尾松和湿地松林(图1), 可能与NH4+-N对根际土壤氮矿化和硝化的抑制作用有关(图3).本研究中杉木林根际土壤NH4+-N含量显著低于马尾松林和湿地松林(p < 0.05).根系环境中高浓度的NH4+-N会引发根系生物硝化抑制剂的释放, 对氨氧化细菌和氨氧化古菌都产生抑制作用(Subbarao et al., 2007).在取样和室内培养之前, 马尾松和湿地松林中较高浓度的NH4+-N使硝化抑制剂在根际土壤形成积累, 导致培养时与硝化作用有关的微生物数量及活性的降低, 进而影响了Nmin和Nnit.另一方面, 可能因为杉木是丛枝菌根(AM)树种, 马尾松和湿地松是外生菌根(ECM)树种.ECM真菌可以产生胞外酶, 直接从土壤有机质中获得有机氮, 而AM真菌缺乏胞外酶的分泌能力(Talbot et al., 2008), 这种差异造成ECM真菌和腐生生物强烈的氮竞争, 从而降低了土壤有机质分解速率(Lin et al., 2018), 使得AM森林土壤Nmin和Nnit显著高于ECM森林(Phillips et al., 2013).同时, ECM树种凋落物质量低于AM树种, 使得ECM树下土壤净氮矿化速率和净硝化速率显著低于AM树(Lin et al., 2018). ...
... ).同时, ECM树种凋落物质量低于AM树种, 使得ECM树下土壤净氮矿化速率和净硝化速率显著低于AM树(Lin et al., 2018). ...
Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems 1 2016