删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

典型阔叶红松林主要树种叶性状的垂直变异及经济策略

本站小编 Free考研考试/2022-01-01

荀彦涵1, 邸雪颖1, 金光泽,,2,3,*1东北林业大学林学院, 哈尔滨 150040
2东北林业大学生态研究中心, 哈尔滨 150040
3东北林业大学森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040

Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved-Korean pine forest

Yan-Han XUN1, Xue-Ying DI1, Guang-Ze JIN,,2,3,* 1School of Forestry, Northeast Forestry University, Harbin 150040, China
2Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
3Key Laboratory of Sustainable Forest Ecosystem Management Ministry of Education, Northeast Forestry University, Harbin 150040, China

通讯作者: *金光泽: ORCID:0000-0002-9852-0965,taxus@126.com

编委: 代力民
责任编辑: 赵航
收稿日期:2019-11-14接受日期:2020-04-30网络出版日期:2020-07-20
基金资助:国家自然科学基金(31870399)


Corresponding authors: *ORCID:0000-0002-9852-0965,taxus@126.com
Received:2019-11-14Accepted:2020-04-30Online:2020-07-20
Fund supported: National Natural Science Foundation of China(31870399)


摘要
分析不同树种叶片性状的变化有助于了解植物群落结构。该文通过对典型阔叶红松(Pinus koraiensis)林15种阔叶树种的比叶质量、叶片厚度、叶干物质含量、叶绿素含量指数、叶片碳、氮、磷含量的测定, 分析了冠层高度对叶性状及叶性状间相关关系的影响。结果表明, 水曲柳(Fraxinus mandshurica)和大青杨(Populus ussuriensis)上层的比叶质量显著大于下层, 而其他树种冠层间的比叶质量无显著变化; 叶绿素含量指数在白桦(Betula platyphylla)和春榆(Ulmus japonica)冠层间的分布分别为上层显著大于下层和上层显著大于中层; 单位质量氮含量在水曲柳的中层显著大于上层。叶片性状间存在着广泛的相关性, 比叶质量与叶片厚度、干物质含量在三层间均呈显著正相关关系, 而有些性状, 只在一或二个冠层中存在一定的相关性。山杨(Populus davidiana)和大青杨的叶片倾向于选择光合能力较低、营养浓度较低、呼吸速率较慢的一端, 而黄檗(Phellodendron amurense)和山槐(Maackia amurensis)叶片更倾向于光合能力强、营养物质浓度高的一端。不同树种对光照响应的差异可能会改变不同冠层中叶片的形态和化学性状, 从而有助于群落构建和物种共存。
关键词: 比叶质量;叶绿素含量;养分含量;冠层;叶经济型谱

Abstract
Aims An analysis of the variations in leaf traits of different tree species contributes to the understanding of plant community structures.
Methods This study explored the effect of the light environment on leaf traits at different canopy heights in a typical mixed broadleaved-Korean pine forest. We measured the leaf mass per area (LMA), leaf thickness (LT), leaf dry matter content (LDMC), chlorophyll content (CCI), leaf carbon content (C), mass-based and area-based nitrogen content (Nmass and Narea), and mass-based and area-based phosphorus content (Pmass and Parea) for 15 broad-leaved tree species in this forest.
Important findings We found that the LMA of Fraxinus mandschurica and Populus ussuriensis in the upper canopy were significantly higher than that in the lower canopy, but no significant vertical changes were detected in other species within the canopy. The CCI of Betula platyphylla increased from the lower to upper canopy. In contrast, the CCI of Ulmus japonica in the upper canopy was significantly higher than that in the middle canopy. The Nmass of Fraxinus mandschurica in the middle canopy was significantly higher than that in the upper canopy. These results indicated that the variations in leaf traits within the canopy were different among species. The LMA was positively correlated with the LT and LDMC in all three canopies, but the correlations of other trait combinations were only significant in one or two canopies. The results suggest that the leaves of Populus davidiana and Populus ussuriensis tend to adopt survival strategies involving lower photosynthetic ability, nutrient concentrations, and respiratory rates, while the leaves of Phellodendron amurense and Maackia amurensis tend to be located at the other end of the economics spectrum with contrasting trait values. Differences in species response to light may alter leaf morphological and chemical traits in canopy layers, and hence contribute to community assembly and species coexistence.
Keywords:leaf mass per area;chlorophyll content;nutrient content;canopy;leaf economics spectrum


PDF (6513KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
荀彦涵, 邸雪颖, 金光泽. 典型阔叶红松林主要树种叶性状的垂直变异及经济策略. 植物生态学报, 2020, 44(7): 730-741. DOI: 10.17521/cjpe.2019.0307
XUN Yan-Han, DI Xue-Ying, JIN Guang-Ze. Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 2020, 44(7): 730-741. DOI: 10.17521/cjpe.2019.0307


光是影响植物生长发育、森林组成和分布的重要环境因素(Aleric & Kirkman, 2005)。冠层是植物最活跃的部分(Ozanne et al., 2003), 其结构和几何特征能够改变光照强度和降水梯度, 从而导致能量运输和分布的空间异质性(Vierling & Wessman, 2000)。在密集冠层中, 冠层上部和下部的光能利用率可相差50倍以上(Niinemets & Anten, 2009), 在开阔冠层中, 冠层上部和下部的光能利用率也可相差10-20倍(Joffre et al., 2007)。此外, 冠层上部的叶片长期生长在高温、高辐射以及高风速的环境中, 而冠层下部的叶片则生长在较温和的环境中, 如恒温、低辐射以及高湿度(Sanches et al., 2010)。可见, 不同冠层中的叶片所处的生境存在明显差异, 而叶片是直接将光转化为能量的主要器官, 通常会通过调整叶片的形态和化学性状来适应环境的变化(Green & Kruger, 2001)。

本研究以小兴安岭典型阔叶红松(Pinus koraiensis)林15种主要阔叶树种(表1)为研究对象, 测定不同冠层高度的叶结构性状(LMA, 叶片厚度, LDMC)、叶绿素含量指数及化学性状(碳、氮、磷含量)共9个叶片性状(表2), 旨在: (1)解析叶性状在不同冠层高度的变异规律, 并检验这种变异规律在不同物种间的差异性; (2)检验性状间是否存在相关性, 并检验冠层高度对叶片性状间相关性是否存在显著影响; (3)检验LES理论在局域尺度上的适用性。

Table 1
表1
表1典型阔叶红松(Pinus koraiensis)林主要阔叶树种胸径和树高的统计学信息
Table 1Statistical information of DBH and height for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest
树种
Species
缩写
Abbreviation
胸径
DBH (cm)
树高
Tree height (m)
重要值
Important value (%)
白桦 Betula platyphyllaBP21.2 ± 3.716.6 ± 1.10.09
风桦 Betula costataBC25.0 ± 3.917.7 ± 0.93.73
春榆 Ulmus japonicaUJ48.0 ± 26.720.9 ± 4.21.42
水曲柳 Fraxinus mandschuricaFM45.3 ± 14.221.2 ± 2.62.61
蒙古栎 Quercus mongolicaQM38.3 ± 8.020.3 ± 1.50.33
山杨 Populus davidianaPD27.5 ± 3.818.3 ± 0.90.19
大青杨 Populus ussuriensisPU28.6 ± 7.418.4 ± 1.60.97
糠椴 Tilia mandshuricaTM29.3 ± 4.518.7 ± 1.10.85
紫椴 Tilia amurensisTA43.3 ± 22.220.6 ± 3.05.13
胡桃楸 Juglans mandshuricaJM30.2 ± 5.318.9 ± 2.20.03
山槐 Maackia amurensisMA12.2 ± 3.013.0 ± 1.70.26
黄檗 Phellodendron amurensePA25.6 ± 6.517.7 ± 1.70.21
裂叶榆 Ulmus laciniataUL52.1 ± 12.222.3 ± 1.44.65
花楸 Sorbus pohuashanensisSP22.6 ± 8.616.5 ± 3.30.50
五角槭 Acer pictum subsp. monoAM22.2 ± 7.516.7 ± 2.28.25
DBH, diameter at breast height.

新窗口打开|下载CSV

Table 2
表2
表2典型阔叶红松(Pinus koraiensis)林主要阔叶树种的叶片性状特征
Table 2Leaf traits for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest
叶性状
Leaf trait
缩写
Abbreviation
单位
Unit
平均值
Mean
标准误差
SE
最大值
Max
最小值
Min
比叶质量 Leaf mass per areaLMAkg·m-20.0490.0140.1400.016
叶片厚度 Leaf thicknessLTmm0.1260.0380.2980.034
叶干物质含量 Leaf dry mass contentLDMCg·g-10.2860.0560.5090.109
叶绿素含量指数 Chlorophyll content indexCCI16.834.36434.423.14
叶碳含量 Leaf carbon contentCmg·g-2475.632.15554.9384.3
单位质量的叶氮含量 Leaf nitrogen content per leaf massNmassmg·g-228.166.40548.4315.00
单位面积的叶氮含量 Leaf nitrogen content per leaf areaNareamg·cm-20.1340.0430.3850.042
单位质量的叶磷含量 Leaf phosphorus content per leaf massPmassmg·g-21.9860.6996.3140.391
单位面积的叶磷含量 Leaf phosphorus content per leaf areaPareamg·cm-20.0090.0040.0320.001

新窗口打开|下载CSV

1 材料和方法

1.1 研究地概况

本研究在黑龙江凉水国家级自然保护区(47.18° N、128.89° E)进行。保护区地形比较复杂, 海拔280-707 m, 坡度10°-15°。由于纬度较高, 太阳辐射较少, 年平均气温为-0.3 ℃, 日平均气温-6.6- 7.5 ℃。该地区年降水量676 mm, 降水主要集中在 7月; 年平均相对湿度约为78%。本地区内地带性植被群落为阔叶红松林, 地带性土壤为暗棕壤(Liu et al., 2015)。

1.2 样本采集

依托保护区内9 hm2典型阔叶红松林监测样地, 于2014和2015年8月, 针对15种阔叶树种(表1), 每种树种选择5株优势木。将每株样树的冠层分为上、中、下3层, 为减弱因阴生叶和阳生叶间的差异对研究结果产生的影响, 在每个冠层高度的南、北2个方向各采集20片健康、无损的样叶, 即每株样树共采集120片样叶, 每个树种共采集600片样叶。将采集后的样叶及时装入封口袋并贴好标签带回实验室, 用于测定叶片性状。

1.3 叶片性状的测定

1.3.1 叶结构性状

针对每片样叶, 利用游标卡尺(精度为0.02 mm)测定叶片靠近主脉但避开主脉和较大次级叶脉的叶片前、中、末端的厚度值, 取其均值为叶片厚度(LT)。将每个冠层高度的样叶混合后, 利用BenQ5560彩色扫描仪(BenQ Corporation, Shanghai, China, 300-dpi resolution)测量叶面积(cm2)。将叶浸泡在去离子水中, 放置在5 ℃的黑暗环境中储存12 h, 取出后迅速用吸水纸吸去叶表面的水分, 测定叶饱和鲜质量(g)。然后将样叶放入65 ℃烘箱内烘干至恒质量(72 h), 测定叶干质量。最后, 根据叶干质量和叶面积的比值获得比叶质量(LMA, kg·m-2), 根据叶干质量和叶饱和鲜质量的比值获得叶干物质含量(LDMC, g·g-1)。

1.3.2 叶绿素含量

以往研究表明叶绿素含量指数(chlorophyll content index, CCI)与叶片的叶绿素含量呈显著正相关关系(Cate & Perkins, 2003), 因此本研究利用CCI来表征叶片的叶绿素含量。针对每片样叶, 采用CCM-200叶绿素仪(Opti-Sciences, Hudson, USA)通过叶片在940和660 nm不同的吸收率计算CCI

1.3.3 叶片碳、氮、磷含量

将测定完叶面积和CCI后的样叶置入烘箱, 先在105 ℃下杀青5 min, 后将温度调至70 ℃烘干至恒质量, 称质量后随机取部分样品进行研磨, 过60目筛。采用multi N/C 2100S碳氮分析仪(Analytik Jena AG, Jena, Germany)测定叶片碳含量(C), 采用全自动凯式定氮仪(Kjeltec 8400, FOSS, Hillerod, Danmark)测定全氮含量, 钼锑抗比色法测定全磷含量(Evolution 300紫外分光光度计(Thermo Fisher Scientific, Waltham, USA)。NmassPmass分别代表单位质量的叶氮含量、叶磷含量, 然后根据其LMA值计算得到单位面积的氮、磷含量, 即NareaParea

1.4 数据分析

利用单因素方差分析检验不同树种冠层高度间叶片性状差异; 利用回归分析检验不同冠层高度各性状之间的相关关系; 利用主成分分析(PCA)对主要树种9个叶片性状进行分析。数据分析前对不符合正态分布的数据进行对数转换后再进行分析, 以上统计分析采用SPSS 20.0统计软件完成。

2 结果和分析

2.1 叶片性状的垂直变异

LMA在水曲柳(Fraxinus mandschurica)和大青杨(Populus ussuriensis)中的变化范围分别为0.049- 0.059和0.057-0.064 kg·m-2, 且水曲柳和大青杨上层的LMA显著大于下层(p < 0.05)。水曲柳上层和中层的LDMC显著大于下层(p < 0.05), 而大青杨的LDMC在上层值最大((0.302 ± 0.016) g·g-1), 且显著大于中层和下层(p < 0.05)。黄檗(Phellodendron amurense)上层的LT显著大于中层和下层(p < 0.05), 而花楸(Sorbus pohuashanensis)和五角槭(Acer pictum subsp. mono)中层的LT显著大于下层(p < 0.05)。CCI在白桦(Betula platyphylla)、春榆(Ulmus japonica)和胡桃楸(Juglans mandshurica)冠层间的分布分别为上层显著大于下层、上层显著大于中层以及中层显著大于下层(p < 0.05)。C在山槐(Maackia amurensis)中的变化范围为480.40-516.46 mg·g-1, 且中层显著大于上层和下层(p < 0.05)。Nmass在水曲柳的中层显著大于上层(p < 0.05), 而在其他树种冠层间无显著变化(p > 0.05)。Pmass在花楸中的变化范围为1.05-2.14 mg·g-1, 且上层和中层的Pmass显著大于下层(p < 0.05)。大青杨和花楸上层的Parea均显著大于下层(p < 0.05)。Narea在15种树种不同冠层间无显著差异(p > 0.05)(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1典型阔叶红松(Pinus koraiensis)林不同树种冠层内的叶性状值(平均值+标准误差)。小写字母代表同一树种不同冠层之间叶性状的差异显著性(α = 0.05)。

C, 叶碳含量; CCI, 叶绿素含量指数; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Narea, 单位面积的叶氮含量; Nmass, 单位质量的叶氮含量; Parea, 单位面积的叶磷含量; Pmass, 单位质量的叶磷含量。横坐标物种名称缩写见表1。
Fig. 1Difference of leaf traits (mean + SE) across the canopy layers for different tree species in a typical mixed broadleaved- Korean pine forest. The lowercase letters indicate whether the trait differences were significant across the canopy layers (α = 0.05).

C, leaf carbon content; CCI, chlorophyll content index; LDMC, leaf dry mass content; LMA, leaf mass per area; LT, leaf thickness; Narea, leaf nitrogen content per leaf area; Nmass, leaf nitrogen content per leaf mass; Parea, leaf phosphorus content per leaf area; Pmass, leaf phosphorus content per leaf mass. The full names and abbreviations of species on the horizontal axis are shown in Table 1.


2.2 叶片性状间的相关性

LMALTLDMC在三层间均存在显著正相关关系(p < 0.001), 但LTLDMC无显著相关关系(p > 0.05); CCILDMC仅在上层呈显著负相关关系(p < 0.05), 而与LMALT无显著相关关系(p > 0.05)(图2)。LMANareaParea在三层间均显著正相关(p < 0.001), 与NmassPmass在三层间均存在显著负相关关系(p < 0.05); LDMCCNarea在三层间均呈显著正相关关系(p < 0.05), 与Parea仅在上层存在显著正相关关系(p < 0.05), 而与Pmass在三层间均存在显著负相关关系(p < 0.05); LTNmass在上层和中层显著负相关(p < 0.05), 而与Parea在三层间均显著正相关(p < 0.05), LTNarea仅在下层呈显著正相关关系(p = 0.001); CCINmass在三层间均显著正相关(p < 0.05), 与NareaPmass仅在上层存在显著正相关关系(p < 0.05); 而与Parea在上层和中层显著正相关(p < 0.05)(图3)。NmassPmass在中层和下层存在显著正相关关系(p < 0.05), NareaParea在三层间均显著正相关(p < 0.001)(图4)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2典型阔叶红松(Pinus koraiensis)林主要阔叶树种叶片结构性状与叶绿素含量指数的关系。

CCI, 叶绿素含量指数; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度。
Fig. 2Relationships among leaf structural traits and chlorophyll content index (CCI) for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest.

CCI, chlorophyll content index; LDMC, leaf dry mass content; LMA, leaf mass per area; LT, leaf thickness.


图3

新窗口打开|下载原图ZIP|生成PPT
图3典型阔叶红松(Pinus koraiensis)林主要阔叶树种叶片结构性状、叶绿素含量指数与化学性状的关系。

C, 叶碳含量; CCI, 叶绿素含量指数; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Narea, 单位面积的叶氮含量; Nmass, 单位质量的叶氮含量; Parea, 单位面积的叶磷含量; Pmass, 单位质量的叶磷含量。
Fig. 3Relationships among leaf structural traits, chlorophyll content index (CCI) and nutrient contents for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest.

C, leaf carbon content; CCI, chlorophyll content index; LDMC, leaf dry mass content; LMA, leaf mass per area; LT, leaf thickness; Narea, leaf nitrogen content per leaf area; Nmass, leaf nitrogen content per leaf mass; Parea, leaf phosphorus content per leaf area; Pmass, leaf phosphorus content per leaf mass.


图4

新窗口打开|下载原图ZIP|生成PPT
图4典型阔叶红松(Pinus koraiensis)林主要阔叶树种叶片化学性状的关系。

C, 叶碳含量; Narea, 单位面积的叶氮含量; Nmass, 单位质量的叶氮含量; Parea, 单位面积的叶磷含量; Pmass, 单位质量的叶磷含量。
Fig. 4Relationships among leaf chemical traits for major broad-leaved tree species in a typical mixed broadleaved-Korean pine forest.

C, leaf carbon content; Narea, leaf nitrogen content per leaf area; Nmass, leaf nitrogen content per leaf mass; Parea, leaf phosphorus content per leaf area; Pmass, leaf phosphorus content per leaf mass.


2.3 主要树种在叶经济学谱上的位置

用主成分分析对15种树种的叶性状间的相关性进行分析(图5), 结果表明主成分1、2轴的特征值之和占总方差的55.5%, 即主成分1和2轴可解释原始9个变量的55.5%的变异。性状变异第一主成分与LMALDMCCCINmassPmass有较强的相关性, 而第二主成分与LTNareaPareaC有较强的相关性。黄檗和山杨分布在第一主成分的左右两端, 山杨和大青杨有较高的LMALDMC和较低的CCINmassPmass, 而黄檗和山槐则呈现出相反的趋势(图5)。花楸和五角槭主要分布在第二主成分的下端, 有着较低的LTNareaParea和较高的C (图5)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5典型阔叶红松(Pinus koraiensis)林主要阔叶树种叶片性状的主成分分析。

C, 叶碳含量; CCI, 叶绿素含量指数; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Narea, 单位面积的叶氮含量; Nmass, 单位质量的叶氮含量; Parea, 单位面积的叶磷含量; Pmass, 单位质量的叶磷含量。B中物种名称缩写见表1。
Fig. 5Principal component analysis of leaf traits for major broadleaf tree species in a typical mixed broadleaved-Korean pine forest.

C, leaf carbon content; CCI, chlorophyll content index; LDMC, leaf dry mass content; LMA, leaf mass per area; LT, leaf thickness; Narea, leaf nitrogen content per leaf area; Nmass, leaf nitrogen content per leaf mass; Parea, leaf phosphorus content per leaf area; Pmass, leaf phosphorus content per leaf mass. The full names and abbreviations of species in panel B are shown in Table 1.


3 讨论和结论

3.1 不同树种叶片性状的垂直变异

本研究发现只有少数树种的叶片性状在不同冠层高度间存在显著差异, 而且叶片性状的垂直变异存在明显的种间差异。本研究中, 水曲柳和大青杨上层的LMALDMC显著高于下层(p < 0.05), 表明水曲柳和大青杨主要是通过改变LMALDMC反映其对光环境变化的响应。Coble和Cavaleri (2015)研究光照对糖槭(Acer saccharum)林叶片性状的影响时, 也发现随着光照强度减弱, 叶片的LMANarea和C:N减少, 而Nmass增加, 这与本研究结果相符, 例如水曲柳的Nmass在上层具有最小值(p < 0.05)。Wyka等(2012)研究叶片结构和光合性状对冠层内光环境变化的响应时也发现, 在阔叶树种中, 阳生叶的LMA显著大于阴生叶。冠层上部光照条件过强, 使得上层叶片处于高光强和缺水的环境下(Sanches et al., 2010)。因此, 上层叶片有较高LMALDMC, 使其具有更好的资源获取能力和碳氮固持效率, 有利于抵御强光等不利环境因子的胁迫(Wilson et al., 1999)。

随着冠层高度的降低, 光照条件减弱(Niinemets, 2007), 叶片通过增加基于质量的叶绿素含量来适应较少的光照条件(Evans, 1989; Koike et al., 2001)。与此同时, 叶片光合速率的增加是由于叶片用于光合作用的矿物质养分的增加(Cheng et al., 2012)。Green和Kruger (2001)对12种树种叶性状随光照变化的结果显示叶绿素含量随光照强度增大而减小。本研究中, 白桦和春榆的CCI在上层有最大值, 核桃楸中层的CCI显著大于下层(p < 0.05)。这可能是因为CCI为单位面积的叶绿素含量, CCI会随着LMA的增加而增大。这一结果表明, 不同树种对光的敏感度不同。白桦和春榆上层的叶片通过增加CCI来增强光合能力, 从而提高了叶片的光能转换能力。因此, 白桦和春榆适合生长在强光条件下。

综合本研究结果, 上层叶片性状倾向资源保守型策略(如LMALDMC较大), 而下层叶片性状倾向资源获取型策略。当光照增强, 植物吸收的养分大部分用于构建保卫组织, 增加叶肉细胞的厚度或细胞壁的韧性, 防止叶片因强光受损或失水过多(Al Afas et al., 2007)。相似地, 随冠层高度的增加, 花楸、五角槭和黄檗LT的变化不一致, 但下层的LT最小, 表明生长在冠层下部的叶片, 需要通过增大叶片面积来获取较多的光照。

3.2 叶片性状的权衡关系

研究结果表明叶片的结构性状和化学性状间存在相关性。15种树种的LMALTLDMC均呈正相关关系(p < 0.001), 而LDMCLT无显著相关性(图2)。虽然LMALDMC都反映对环境的适应策略, 但LMA主要受叶片厚度和叶干质量的影响(Sims & Pearcy, 1992)。研究表明, 养分含量与LMA之间的相关性大于其与LDMC之间的相关性(图3; p < 0.05)。光对树种的LMA起着很重要的作用(Niinemets et al., 1998; Wyka et al., 2012), 而LDMC更易受降水的影响, 与叶片含水量密切相关(Saura-Mas et al., 2009)。因此, 本地区的主导气象因子可能是光照而非降水, 从而在一定程度上限制了LDMC的指示作用。

叶绿素能够指示植物叶片的光合能力(Evans, 1989)。LMA与单位质量的叶绿素含量呈显著负相关关系(Niinemets, 2007)。然而, 本研究中LMA与叶绿素含量指数无显著相关性(图2), 可能主要源于叶绿素含量是基于单位面积的, 这与Hallik等(2012)的结果一致。本研究中, 叶绿素含量指数与基于质量的养分含量呈显著正相关关系(图3H、3P; p < 0.05), 与以往研究一致(Gábor?ík, 2003); 这主要是因为叶氮在光合器官中分布较多, 而磷在光合作用的物质转化中起重要作用, 所以N、P缺乏易导致叶绿素含量和蛋白含量降低(Chen et al., 2003)。

一般来说, 养分含量较高的植物, 其光合能力和呼吸消耗均较强, 通过快速的养分循环适应环境(Cornelissen et al., 2003; Wright et al., 2004)。本研究中, NareaPareaLMA的增加而增大, 同时, NmassPmassNareaParea均显著正相关(图3, 图4; p < 0.05), 即随着植物LMA增加, 叶片增厚, 使得单位面积的干物质增加, 进而导致单位面积的N、P含量增加(Legner et al., 2014)。本研究也发现, 随着LMA增加, NmassPmass降低, 表明叶片N、P含量会随叶单位干物质所分配的叶面积的减少而降低, 与Keenan和Niinemets (2017)在全球尺度上的研究结果相符。但也有许多研究表明, LMA与基于质量的养分含量无关(Hallik et al., 2012; Wyka et al., 2012), 这可能与所研究的树种不同有关。

本研究还发现在不同的冠层高度下, 叶片性状的权衡关系存在差异。研究结果表明, 三个冠层间性状相关关系的斜率相似(图2-4), 这与Keenan和Niinemets (2017)在全球尺度上的结果不一致。一些性状仅在一层或二层中存在相关关系(图2E, 图3G、3K、3L、3P、3R、3T, 图4C), 表明在不同的冠层中叶片性状间存在不同的权衡关系。在叶片生长发育过程中叶片性状对光环境的变化较为敏感(Pons & Anten, 2004; Niinemets et al., 2015)。Rajsnerová等(2015)对不同海拔高度植物上层和下层性状的研究发现叶片CO2同化速率和气孔导度的相关性在冠层上部和下部是不同的。由于随着叶面积的增加, 光可利用指数降低, 大部分植物生长在遮阴的环境下(Keenan & Niinemets, 2017)。因此, 光驱动性状可塑性能够改变叶片性状相关性的强度(Keenan & Niinemets, 2017)。

3.3 不同树种在叶经济学谱上的位置

本研究发现, 性状变异第一主成分指示叶经济谱轴, 与LMALDMCCCINmassPmass有着较强的相关性, 主要反映物种生态策略从资源获取型到资源保守型(图5A)。物种在叶经济谱轴的分布存在差异, 暗示本研究样地内物种生态策略的分化。杨属(Popolus, 山杨和大青杨)和桦木属(Betula, 白桦和风桦)物种属于资源保守型, 并且同属物种在性状空间内的相似分布指示性状进化的保守型。然而这些物种是本地区的先锋物种, 这些先锋树种(如山杨和白桦)竞争能力较弱, 趋向于LES的缓慢投资-收益端(Kazakou et al., 2006)。黄檗、山槐和椴树属(Tilia, 紫椴(Tilia amurensis)和糠椴(Tilia mandshurica))物种则呈现资源获取型策略。例如, 紫椴和糠椴叶片密度较低, 同时这两种植物木质密度也较低, 指示快速的生长策略。因此, 这些物种的叶片倾向于光合能力强、营养物质浓度高的生存策略。

性状第二主成分与LTNareaParea正相关, 主要反映了LT和单位面积养分含量对植物的影响。黄檗、五角槭和花楸沿第二主成分与其他物种产生分化。黄檗的Parea较大, 而五角槭和花楸的LT则较小, 反映了不同树种在相同环境条件下的适应性策略。此外, 与最近的研究类似, 研究发现表征叶片大小的性状(第二主成分)与叶经济谱性状(第一主成分)关系较弱(Díaz et al., 2016)。然而, 本研究仅分析了叶片性状之间的权衡关系, 植物经济谱性状之间的权衡关系还需进一步研究(Pierce et al., 2012; Reich, 2014)。

不同树种的功能性状反映了植物在生长过程中对资源的利用和分布(Wright et al., 2004)。研究表明, 只有少数树种通过改变叶片性状来适应冠层内的光照强度, 而冠层内叶片性状的变化在不同树种间存在差异。在所有树种中, 叶片性状有着较高的相关性。有些性状在三个冠层中均有相关性, 而其他性状仅在一个或两个冠层中存在相关关系。不同树种采用不同的适应策略来适应环境的变化, 其中包括改变叶片的形态性状和化学性状, 且叶经济谱理论在局域尺度上同样适用, 这有助于群落构建和物种共存。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Ackerly D (1999). Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models
Oecologia, 119, 300-310.

DOI:10.1007/s004420050790URLPMID:28307752
A simple model of shoot-level carbon gain is presented addressing the optimal number and life span of leaves in relation to alternative optimality criteria: (1) maximizing carbon export from the shoot, or (2) maximizing the rate of leaf production at the shoot tip. Additionally, the processes that cause declining assimilation with leaf age are considered in relation to (1) leaf position on the shoot (e.g., self-shading) versus (2) leaf age per se. Using these alternative scenarios, only a model based on position-dependent assimilation and maximization of leaf production rates resulted in quantitative predictions for all aspects of leaf dynamics on the shoot (i.e., leaf number, life span, and birth rate), while other approaches predicted that one or more parameters would be infinite. This formulation of the model also predicted that leaves should be maintained on the shoot until the diurnal carbon balance declines to zero, in contrast with other scenarios which predict that leaves should be shed while maintaining a positive carbon balance. Predictions of the model were supported by the results of a field study of carbon gain and leaf dynamics in saplings of three species of tropical pioneer trees (Carica papaya, Cecropia obtusifolia, and Hampea nutricia) which differ in the number of leaves per shoot. The results illustrate that in these fast-growing plants, leaf production and height growth may be more appropriate measures of performance than net carbon export from the shoot, and suggest that leaf senescence is primarily a function of the position of a leaf within the canopy, rather than its chronological age.

Al Afas N, Marron N, Ceulemans R (2007). Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon
Annals of Forest Science, 64, 521-532.

[本文引用: 1]

Aleric KM, Kirkman LK (2005). Growth and photosynthetic responses of the federally endangered shrub,Lindera melissifolia(Lauraceae), to varied light environments
American Journal of Botany, 92, 682-689.

URLPMID:21652446 [本文引用: 1]

Asner GP, Knapp DE, Anderson CB, Martin RE, Vaughn N (2016). Large-scale climatic and geophysical controls on the leaf economics spectrum
Proceedings of the National Academy of Sciences of the United States of America, 113, 4043-4051.



Cate TM, Perkins TD (2003). Chlorophyll content monitoring in sugar maple (Acer saccharum)
Tree Physiology, 23, 1077-1079.

DOI:10.1093/treephys/23.15.1077URLPMID:12975132 [本文引用: 1]

Chen YZ, Murchie EH, Hubbart S, Horton P, Peng SB (2003). Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa)
Physiologia Plantarum, 117, 343-351.

DOI:10.1034/j.1399-3054.2003.00048.xURLPMID:12654034 [本文引用: 1]
Photoinhibition and acclimation of photosynthesis in rice plants grown under N-sufficient (NS) and N-deficient (ND) field conditions were investigated during the tropical wet (WS) and dry (DS) seasons in the Philippines. Diurnal patterns of CO2 assimilation were examined. There was a transient peak in CO2 assimilation in the leaves of the NS plants in the early morning during the DS and the WS, which was not seen in the ND plants in either season. ND leaves had lower Ribulose bisphosphate carboxylase/oxygenase (Rubisco) contents and lower chlorophyll contents. A lowered quantum yield of photosystem II (phiPSII) was observed in the ND plants at an intermediate irradiance though no differences between N treatments were seen at high irradiance. Analysis of carotenoids indicated a small increase in the de-epoxidation state of the xanthophyll cycle (DES) at mid-day in the ND leaves compared to NS. Photoinhibition was greater in ND leaves when incident mid-day irradiance was increased by altering the leaf angle. Although Rubisco contents were lower in ND plants, photosynthesis in situ did not decline proportionally. For NS plants, Chlorophyll content, but not Rubisco content, was season-dependent and results are discussed in terms of the interaction between irradiance use and N content of rice leaves.

Cheng XB, Wu J, Han SJ, Zhou YM, Wang XX, Wang CG, Zhao J, Hu QH (2012). Photosynthesis, leaf morphology and chemistry of Pinus koraiensis and Quercus mongolica in broadleaved Korean pine mixed forest
Photosynthetica, 50, 56-66.

[本文引用: 1]

Cianciaruso MV, Silva IA, Manica LT, Souza JP (2013). Leaf habit does not predict leaf functional traits in cerrado woody species
Basic and Applied Ecology, 14, 404-412.



Coble AP, Cavaleri MA (2015). Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment
Oecologia, 177, 1131-1143.

URLPMID:25596955 [本文引用: 1]

Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
Australian Journal of Botany, 51, 335-380.

[本文引用: 1]

Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, B?nisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet?ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function
Nature, 529, 167-171.

DOI:10.1038/nature16489URLPMID:26700811 [本文引用: 1]
Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.

Duursma RA, Marshall JD (2006). Vertical canopy gradients in δ 13C correspond with leaf nitrogen content in a mixed- species conifer forest
Trees, 20, 496-506.



Ellsworth DS, Reich PB (1993). Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest
Oecologia, 96, 169-178.



Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants
Oecologia, 78, 9-19.

URLPMID:28311896 [本文引用: 2]

Flores O, Garnier E, Wright IJ, Reich PB, Pierce S, Dìaz S, Pakeman RJ, Rusch GM, Bernard-Verdier M, Testi B, Bakker JP, Bekker RM, Cerabolini BEL, Ceriani RM, Cornu G, Cruz P, Delcamp M, Dolezal J, Eriksson O, Fayolle A, Freitas H, Golodets C, Gourlet-Fleury S, Hodgson JG, Brusa G, Kleyer M, Kunzmann D, Lavorel S, Papanastasis VP, Pérez-Harguindeguy N, Vendramini F, Weiher E (2014). An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants
Ecology and Evolution, 4, 2799-2811.

DOI:10.1002/ece3.1087URLPMID:25165520
In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This

Gábor?ík N (2003). Relationship between contents of chlorophyll (a+b)(SPAD values) and nitrogen of some temperate grasses
Photosynthetica, 41, 285-287.

[本文引用: 1]

Garnier E, Shipley B, Roumet C, Laurent G (2001). A standardized protocol for the determination of specific leaf area and leaf dry matter content
Functional Ecology, 15, 688-695.



Green DS, Kruger EL (2001). Light-mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species
Tree Physiology, 21, 1341-1346.

URLPMID:11731345 [本文引用: 2]

Hallik L, Niinemets ü, Kull O (2012). Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field
Plant Biology, 14, 88-99.

URLPMID:21972867 [本文引用: 2]

Hikosaka K, Shigeno A (2009). The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity
Oecologia, 160, 443-451.

URLPMID:19288136

Joffre R, Rambal S, Damesin C (2007). Functional attributes in Mediterranean-type ecosystems//Pugnaire F, Valladares F
Functional Plant Ecology. CRC Press, New York. 285-312.

[本文引用: 1]

Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006). Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession
Functional Ecology, 20, 21-30.

[本文引用: 1]

Keenan TF, Niinemets ü (2017). Global leaf trait estimates biased due to plasticity in the shade
Nature Plants, 3, 16201. DOI: 10.1038/nplants.2016.201.

DOI:10.1038/nplants.2016.201URLPMID:27991884 [本文引用: 4]
The study of leaf functional trait relationships, the so-called leaf economics spectrum(1,2), is based on the assumption of high-light conditions (as experienced by sunlit leaves). Owing to the exponential decrease of light availability through canopies, however, the vast majority of the world's vegetation exists in at least partial shade. Plant functional traits vary in direct dependence of light availability(3), with different traits varying to different degrees, sometimes in conflict with expectations from the economic spectrum(3). This means that the derived trait relationships of the global leaf economic spectrum are probably dependent on the extent to which observed data in existing large-scale plant databases represent high-light conditions. Here, using an extensive worldwide database of within-canopy gradients of key physiological, structural and chemical traits(3), along with three different global trait databases(4,5), we show that: (1) accounting for light-driven trait plasticity can reveal novel trait relationships, particularly for highly plastic traits (for example, the relationship between net assimilation rate per area (Aa) and leaf mass per area (LMA)); and (2) a large proportion of leaf traits in current global plant databases reported as measured in full sun were probably measured in the shade. The results show that even though the majority of leaves exist in the shade, along with a large proportion of observations, our current understanding is too focused on conditions in the sun.

Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2000). Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes
Plant, Cell & Environment, 23, 81-89.



Koike T, Kitao M, Maruyama Y, Mori S, Lei TT (2001). Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile
Tree Physiology, 21, 951-958.

DOI:10.1093/treephys/21.12-13.951URLPMID:11498342 [本文引用: 1]
Photosynthetic acclimation of deciduous broad-leaved tree species was studied along a vertical gradient within the canopy of a multi-species deciduous forest in northern Japan. We investigated variations in (1) local light regime and CO2 concentration ([CO2]), and (2) morphological (area, thickness and area per mass), biochemical (nitrogen and chlorophyll concentrations) and physiological (light-saturated photosynthetic rate) attributes of leaves of seven major species on three occasions (June, August and October). We studied early successional species, alder (Alnus hirsuta (Spach) Rupr.) and birch (Betula platyphylla var. japonica (Miq.) Hara); gap phase species, walnut (Juglans ailanthifolia Carriere) and ash (Fraxinus mandshurica var. japonica Rupr.); mid-successional species, basswood (Tilia japonica (Miq.) Simonk.) and elm (Ulmus davidiana var. japonica (Rehd.) Nakai); and the late-successional species, maple (Acer mono Bunge). All but maple initiated leaf unfolding from the lower part of the crown. The [CO2] within the vertical profile ranged from 320-350 ppm in the upper canopy to 405-560 ppm near the ground. The lowest and highest ambient [CO2] occurred during the day and during the night, respectively. This trend was observed consistently during the summer, but not when trees were leafless. Chlorophyll concentration was positively related to maximum photosynthetic rate within, but not among, species. Leaf senescence started from the inner part of the crown in alder and birch, but started either in the outer or top portion of the canopy of ash, basswood and maple. Chlorophyll (Chl) to nitrogen ratio in leaves increased with decreasing photon flux density. However, Chl b concentration in all species remained stable until the beginning of leaf senescence. Maximum photosynthetic rates observed in sun leaves of early successional species, gap phase or mid-successional species, and late successional species were 12.5-14.8 micromol m(-2) s(-1), 4.1-7.8 micromol m(-2) s(-1) and 3.1 micromol m(-2) s(-1), respectively.

Legner N, Fleck S, Leuschner C (2014). Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance
Trees, 28, 263-280.

[本文引用: 1]

Lemoine NP, Burkepile DE, Parker JD (2016). Quantifying differences between native and introduced species
Trends in Ecology & Evolution, 31, 372-381.

URLPMID:26965001

Liu Z, Wang C, Chen JM, Wang X, Jin G (2015). Empirical models for tracing seasonal changes in leaf area index in deciduous broadleaf forests by digital hemispherical photography
Forest Ecology & Management, 351, 67-77.

[本文引用: 1]

Messier J, McGill BJ, Enquist BJ, Lechowicz MJ (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales?
Ecography, 40, 685-697.



Niinemets ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs
Ecology, 82, 453-469.



Niinemets ü (2007). Photosynthesis and resource distribution through plant canopies
Plant, Cell & Environment, 30, 1052-1071.

URLPMID:17661747 [本文引用: 2]

Niinemets ü, Anten NPR (2009). Packing the photosynthesis machinery: from leaf to canopy//Laisk A, Nedbal L, Govindjee
Photosynthesis in Silico. Springer, Berlin. 363-399.

[本文引用: 1]

Niinemets ü, Bilger W, Kull O, Tenhunen JD (1998). Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient
Plant, Cell & Environment, 21, 1205-1218.

[本文引用: 1]

Niinemets ü, Keenan TF, Hallik L (2015). A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types
New Phytologist, 205, 973-993.

DOI:10.1111/nph.13096URLPMID:25318596 [本文引用: 1]
Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation.

Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum
Science, 340, 741-744.

DOI:10.1126/science.1231574URLPMID:23539179
The leaf economics spectrum (LES) describes multivariate correlations that constrain leaf traits of plant species primarily to a single axis of variation if data are normalized by leaf mass. We show that these traits are approximately distributed proportional to leaf area instead of mass, as expected for a light- and carbon dioxide-collecting organ. Much of the structure in the mass-normalized LES results from normalizing area-proportional traits by mass. Mass normalization induces strong correlations among area-proportional traits because of large variation among species in leaf mass per area (LMA). The high LMA variance likely reflects its functional relationship with leaf life span. A LES that is independent of mass- or area-normalization and LMA reveals physiological relationships that are inconsistent with those in global vegetation models designed to address climate change.

Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, K?rner C, Meinzer FC, Mitchell AW, Nakashizuka T, Silva Dias PL, Stork NE, Wright SJ, Yoshimura M (2003). Biodiversity meets the atmosphere: a global view of forest canopies
Science, 301, 183-186.

DOI:10.1126/science.1084507URLPMID:12855799 [本文引用: 1]
The forest canopy is the functional interface between 90% of Earth's terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change threatens plant-animal interactions in the canopy and will likely alter the production of biogenic aerosols that affect cloud formation and atmospheric chemistry.

Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies
Annals of Botany, 109, 1047-1053.

URLPMID:22337079 [本文引用: 1]

Pons TL, Anten NPR (2004). Is plasticity in partitioning of photosynthetic resources between and within leaves important for whole-plant carbon gain in canopies?
Functional Ecology, 18, 802-811.

[本文引用: 1]

Poorter H, Niinemets ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis
New Phytologist, 182, 565-588.

URLPMID:19434804

Rajsnerová P, Klem K, Holub P, Novotná K, Ve?e?ová K, Kozá?iková M, Rivas-Ubach A, Sardans J, Marek MV, Pe?uelas J, Urban O (2015). Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude
Tree Physiology, 35, 47-60.

URLPMID:25576757 [本文引用: 1]

Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014). Convergent effects of elevation on functional leaf traits within and among species
Functional Ecology, 28, 37-45.



Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto
Journal of Ecology, 102, 275-301.

[本文引用: 1]

Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning
Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.



Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies
International Journal of Plant Sciences, 164, S143-S164.



Sanches MC, Ribeiro SP, Dalvi VC, da Silva Junior MB, de Sousa HC, de Lemos-Filho JP (2010). Differential leaf traits of a neotropical tree Cariniana legalis(Mart.) Kuntze (Lecythidaceae): comparing saplings and emergent trees
Trees, 24, 79-88.

[本文引用: 2]

Saura-Mas S, Shipley B, Lloret F (2009). Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody species
Functional Ecology, 23, 103-110.

[本文引用: 1]

Sims DA, Pearcy RW (1992). Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza(Araceae) to a transfer from low to high light
American Journal of Botany, 79, 449-455.

[本文引用: 1]

Vierling LA, Wessman CA (2000). Photosynthetically active radiation heterogeneity within a monodominant Congolese rain forest canopy
Agricultural and Forest Meteorology, 103, 265-278.

[本文引用: 1]

Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!
Oikos, 116, 882-892.



Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies
New Phytologist, 143, 155-162.

[本文引用: 1]

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum
Nature, 428, 821-827.

URLPMID:15103368 [本文引用: 2]

Wyka TP, Oleksyn J, ?ytkowiak R, Karolewski P, Jagodziński AM, Reich PB (2012). Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species
Oecologia, 170, 11-24.

URLPMID:22349756 [本文引用: 3]

Zirbel CR, Bassett T, Grman E, Brudvig LA (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration
Journal of Applied Ecology, 54, 1070-1079.



Zukswert JM, Prescott CE (2017). Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species
Oecologia, 185, 305-316.

DOI:10.1007/s00442-017-3951-zURLPMID:28887691
Litter 'quality' or decomposability has historically been estimated through measuring chemical attributes, such as concentrations of nitrogen or 'lignin'. More recently, foliar functional traits, which may incorporate indications of the physical structures of tissues, have been found to correlate with litter mass loss rates. However, these traits may not be adequate to predict early rates of mass loss, in which two factors are crucial: the amount of material quickly lost through leaching, and the ease of access of decomposer organisms to the more labile tissues in the interior of the litter. We investigated relationships among physical and chemical traits in foliage and litter of 12 species native to British Columbia and then observed how these traits related to mass loss during the first 3 months (Phase I) and between 3 and 12 months (Phase II). Novel traits measured in this study include cuticle thickness, litter leaching loss, and litter water uptake. Foliar and litter traits both co-varied along spectra, but several chemical traits, such as nitrogen concentration, changed from foliage to litter, i.e., during senescence. Phase I mass loss was best predicted by leaching loss and traits relating to leaching, such as cuticle thickness and specific leaf area. Phase II mass loss was predicted by traits that may relate to decomposer access and activity, such as leaf dry matter content and foliar nitrogen. Physical traits predicted mass loss as well or better than chemical traits, suggesting that physical characteristics of litter are important in determining early rates of decomposition.
Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models
1999

Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon
1
2007

... 综合本研究结果, 上层叶片性状倾向资源保守型策略(如LMALDMC较大), 而下层叶片性状倾向资源获取型策略.当光照增强, 植物吸收的养分大部分用于构建保卫组织, 增加叶肉细胞的厚度或细胞壁的韧性, 防止叶片因强光受损或失水过多(Al Afas et al., 2007).相似地, 随冠层高度的增加, 花楸、五角槭和黄檗LT的变化不一致, 但下层的LT最小, 表明生长在冠层下部的叶片, 需要通过增大叶片面积来获取较多的光照. ...

Growth and photosynthetic responses of the federally endangered shrub,Lindera melissifolia(Lauraceae), to varied light environments
1
2005

... 光是影响植物生长发育、森林组成和分布的重要环境因素(Aleric & Kirkman, 2005).冠层是植物最活跃的部分(Ozanne et al., 2003), 其结构和几何特征能够改变光照强度和降水梯度, 从而导致能量运输和分布的空间异质性(Vierling & Wessman, 2000).在密集冠层中, 冠层上部和下部的光能利用率可相差50倍以上(Niinemets & Anten, 2009), 在开阔冠层中, 冠层上部和下部的光能利用率也可相差10-20倍(Joffre et al., 2007).此外, 冠层上部的叶片长期生长在高温、高辐射以及高风速的环境中, 而冠层下部的叶片则生长在较温和的环境中, 如恒温、低辐射以及高湿度(Sanches et al., 2010).可见, 不同冠层中的叶片所处的生境存在明显差异, 而叶片是直接将光转化为能量的主要器官, 通常会通过调整叶片的形态和化学性状来适应环境的变化(Green & Kruger, 2001). ...

Large-scale climatic and geophysical controls on the leaf economics spectrum
2016

Chlorophyll content monitoring in sugar maple (Acer saccharum)
1
2003

... 以往研究表明叶绿素含量指数(chlorophyll content index, CCI)与叶片的叶绿素含量呈显著正相关关系(Cate & Perkins, 2003), 因此本研究利用CCI来表征叶片的叶绿素含量.针对每片样叶, 采用CCM-200叶绿素仪(Opti-Sciences, Hudson, USA)通过叶片在940和660 nm不同的吸收率计算CCI. ...

Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa)
1
2003

... 叶绿素能够指示植物叶片的光合能力(Evans, 1989).LMA与单位质量的叶绿素含量呈显著负相关关系(Niinemets, 2007).然而, 本研究中LMA与叶绿素含量指数无显著相关性(图2), 可能主要源于叶绿素含量是基于单位面积的, 这与Hallik等(2012)的结果一致.本研究中, 叶绿素含量指数与基于质量的养分含量呈显著正相关关系(图3H、3P; p < 0.05), 与以往研究一致(Gábor?ík, 2003); 这主要是因为叶氮在光合器官中分布较多, 而磷在光合作用的物质转化中起重要作用, 所以N、P缺乏易导致叶绿素含量和蛋白含量降低(Chen et al., 2003). ...

Photosynthesis, leaf morphology and chemistry of Pinus koraiensis and Quercus mongolica in broadleaved Korean pine mixed forest
1
2012

... 随着冠层高度的降低, 光照条件减弱(Niinemets, 2007), 叶片通过增加基于质量的叶绿素含量来适应较少的光照条件(Evans, 1989; Koike et al., 2001).与此同时, 叶片光合速率的增加是由于叶片用于光合作用的矿物质养分的增加(Cheng et al., 2012).Green和Kruger (2001)对12种树种叶性状随光照变化的结果显示叶绿素含量随光照强度增大而减小.本研究中, 白桦和春榆的CCI在上层有最大值, 核桃楸中层的CCI显著大于下层(p < 0.05).这可能是因为CCI为单位面积的叶绿素含量, CCI会随着LMA的增加而增大.这一结果表明, 不同树种对光的敏感度不同.白桦和春榆上层的叶片通过增加CCI来增强光合能力, 从而提高了叶片的光能转换能力.因此, 白桦和春榆适合生长在强光条件下. ...

Leaf habit does not predict leaf functional traits in cerrado woody species
2013

Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment
1
2015

... 本研究发现只有少数树种的叶片性状在不同冠层高度间存在显著差异, 而且叶片性状的垂直变异存在明显的种间差异.本研究中, 水曲柳和大青杨上层的LMALDMC显著高于下层(p < 0.05), 表明水曲柳和大青杨主要是通过改变LMALDMC反映其对光环境变化的响应.Coble和Cavaleri (2015)研究光照对糖槭(Acer saccharum)林叶片性状的影响时, 也发现随着光照强度减弱, 叶片的LMANarea和C:N减少, 而Nmass增加, 这与本研究结果相符, 例如水曲柳的Nmass在上层具有最小值(p < 0.05).Wyka等(2012)研究叶片结构和光合性状对冠层内光环境变化的响应时也发现, 在阔叶树种中, 阳生叶的LMA显著大于阴生叶.冠层上部光照条件过强, 使得上层叶片处于高光强和缺水的环境下(Sanches et al., 2010).因此, 上层叶片有较高LMALDMC, 使其具有更好的资源获取能力和碳氮固持效率, 有利于抵御强光等不利环境因子的胁迫(Wilson et al., 1999). ...

A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
1
2003

... 一般来说, 养分含量较高的植物, 其光合能力和呼吸消耗均较强, 通过快速的养分循环适应环境(Cornelissen et al., 2003; Wright et al., 2004).本研究中, NareaPareaLMA的增加而增大, 同时, NmassPmassNareaParea均显著正相关(图3, 图4; p < 0.05), 即随着植物LMA增加, 叶片增厚, 使得单位面积的干物质增加, 进而导致单位面积的N、P含量增加(Legner et al., 2014).本研究也发现, 随着LMA增加, NmassPmass降低, 表明叶片N、P含量会随叶单位干物质所分配的叶面积的减少而降低, 与Keenan和Niinemets (2017)在全球尺度上的研究结果相符.但也有许多研究表明, LMA与基于质量的养分含量无关(Hallik et al., 2012; Wyka et al., 2012), 这可能与所研究的树种不同有关. ...

The global spectrum of plant form and function
1
2016

... 性状第二主成分与LTNareaParea正相关, 主要反映了LT和单位面积养分含量对植物的影响.黄檗、五角槭和花楸沿第二主成分与其他物种产生分化.黄檗的Parea较大, 而五角槭和花楸的LT则较小, 反映了不同树种在相同环境条件下的适应性策略.此外, 与最近的研究类似, 研究发现表征叶片大小的性状(第二主成分)与叶经济谱性状(第一主成分)关系较弱(Díaz et al., 2016).然而, 本研究仅分析了叶片性状之间的权衡关系, 植物经济谱性状之间的权衡关系还需进一步研究(Pierce et al., 2012; Reich, 2014). ...

Vertical canopy gradients in δ 13C correspond with leaf nitrogen content in a mixed- species conifer forest
2006

Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest
1993

Photosynthesis and nitrogen relationships in leaves of C3 plants
2
1989

... 随着冠层高度的降低, 光照条件减弱(Niinemets, 2007), 叶片通过增加基于质量的叶绿素含量来适应较少的光照条件(Evans, 1989; Koike et al., 2001).与此同时, 叶片光合速率的增加是由于叶片用于光合作用的矿物质养分的增加(Cheng et al., 2012).Green和Kruger (2001)对12种树种叶性状随光照变化的结果显示叶绿素含量随光照强度增大而减小.本研究中, 白桦和春榆的CCI在上层有最大值, 核桃楸中层的CCI显著大于下层(p < 0.05).这可能是因为CCI为单位面积的叶绿素含量, CCI会随着LMA的增加而增大.这一结果表明, 不同树种对光的敏感度不同.白桦和春榆上层的叶片通过增加CCI来增强光合能力, 从而提高了叶片的光能转换能力.因此, 白桦和春榆适合生长在强光条件下. ...

... 叶绿素能够指示植物叶片的光合能力(Evans, 1989).LMA与单位质量的叶绿素含量呈显著负相关关系(Niinemets, 2007).然而, 本研究中LMA与叶绿素含量指数无显著相关性(图2), 可能主要源于叶绿素含量是基于单位面积的, 这与Hallik等(2012)的结果一致.本研究中, 叶绿素含量指数与基于质量的养分含量呈显著正相关关系(图3H、3P; p < 0.05), 与以往研究一致(Gábor?ík, 2003); 这主要是因为叶氮在光合器官中分布较多, 而磷在光合作用的物质转化中起重要作用, 所以N、P缺乏易导致叶绿素含量和蛋白含量降低(Chen et al., 2003). ...

An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants
2014

Relationship between contents of chlorophyll (a+b)(SPAD values) and nitrogen of some temperate grasses
1
2003

... 叶绿素能够指示植物叶片的光合能力(Evans, 1989).LMA与单位质量的叶绿素含量呈显著负相关关系(Niinemets, 2007).然而, 本研究中LMA与叶绿素含量指数无显著相关性(图2), 可能主要源于叶绿素含量是基于单位面积的, 这与Hallik等(2012)的结果一致.本研究中, 叶绿素含量指数与基于质量的养分含量呈显著正相关关系(图3H、3P; p < 0.05), 与以往研究一致(Gábor?ík, 2003); 这主要是因为叶氮在光合器官中分布较多, 而磷在光合作用的物质转化中起重要作用, 所以N、P缺乏易导致叶绿素含量和蛋白含量降低(Chen et al., 2003). ...

A standardized protocol for the determination of specific leaf area and leaf dry matter content
2001

Light-mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species
2
2001

... 光是影响植物生长发育、森林组成和分布的重要环境因素(Aleric & Kirkman, 2005).冠层是植物最活跃的部分(Ozanne et al., 2003), 其结构和几何特征能够改变光照强度和降水梯度, 从而导致能量运输和分布的空间异质性(Vierling & Wessman, 2000).在密集冠层中, 冠层上部和下部的光能利用率可相差50倍以上(Niinemets & Anten, 2009), 在开阔冠层中, 冠层上部和下部的光能利用率也可相差10-20倍(Joffre et al., 2007).此外, 冠层上部的叶片长期生长在高温、高辐射以及高风速的环境中, 而冠层下部的叶片则生长在较温和的环境中, 如恒温、低辐射以及高湿度(Sanches et al., 2010).可见, 不同冠层中的叶片所处的生境存在明显差异, 而叶片是直接将光转化为能量的主要器官, 通常会通过调整叶片的形态和化学性状来适应环境的变化(Green & Kruger, 2001). ...

... 随着冠层高度的降低, 光照条件减弱(Niinemets, 2007), 叶片通过增加基于质量的叶绿素含量来适应较少的光照条件(Evans, 1989; Koike et al., 2001).与此同时, 叶片光合速率的增加是由于叶片用于光合作用的矿物质养分的增加(Cheng et al., 2012).Green和Kruger (2001)对12种树种叶性状随光照变化的结果显示叶绿素含量随光照强度增大而减小.本研究中, 白桦和春榆的CCI在上层有最大值, 核桃楸中层的CCI显著大于下层(p < 0.05).这可能是因为CCI为单位面积的叶绿素含量, CCI会随着LMA的增加而增大.这一结果表明, 不同树种对光的敏感度不同.白桦和春榆上层的叶片通过增加CCI来增强光合能力, 从而提高了叶片的光能转换能力.因此, 白桦和春榆适合生长在强光条件下. ...

Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field
2
2012

... 叶绿素能够指示植物叶片的光合能力(Evans, 1989).LMA与单位质量的叶绿素含量呈显著负相关关系(Niinemets, 2007).然而, 本研究中LMA与叶绿素含量指数无显著相关性(图2), 可能主要源于叶绿素含量是基于单位面积的, 这与Hallik等(2012)的结果一致.本研究中, 叶绿素含量指数与基于质量的养分含量呈显著正相关关系(图3H、3P; p < 0.05), 与以往研究一致(Gábor?ík, 2003); 这主要是因为叶氮在光合器官中分布较多, 而磷在光合作用的物质转化中起重要作用, 所以N、P缺乏易导致叶绿素含量和蛋白含量降低(Chen et al., 2003). ...

... 一般来说, 养分含量较高的植物, 其光合能力和呼吸消耗均较强, 通过快速的养分循环适应环境(Cornelissen et al., 2003; Wright et al., 2004).本研究中, NareaPareaLMA的增加而增大, 同时, NmassPmassNareaParea均显著正相关(图3, 图4; p < 0.05), 即随着植物LMA增加, 叶片增厚, 使得单位面积的干物质增加, 进而导致单位面积的N、P含量增加(Legner et al., 2014).本研究也发现, 随着LMA增加, NmassPmass降低, 表明叶片N、P含量会随叶单位干物质所分配的叶面积的减少而降低, 与Keenan和Niinemets (2017)在全球尺度上的研究结果相符.但也有许多研究表明, LMA与基于质量的养分含量无关(Hallik et al., 2012; Wyka et al., 2012), 这可能与所研究的树种不同有关. ...

The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity
2009

Functional attributes in Mediterranean-type ecosystems//Pugnaire F, Valladares F
1
2007

... 光是影响植物生长发育、森林组成和分布的重要环境因素(Aleric & Kirkman, 2005).冠层是植物最活跃的部分(Ozanne et al., 2003), 其结构和几何特征能够改变光照强度和降水梯度, 从而导致能量运输和分布的空间异质性(Vierling & Wessman, 2000).在密集冠层中, 冠层上部和下部的光能利用率可相差50倍以上(Niinemets & Anten, 2009), 在开阔冠层中, 冠层上部和下部的光能利用率也可相差10-20倍(Joffre et al., 2007).此外, 冠层上部的叶片长期生长在高温、高辐射以及高风速的环境中, 而冠层下部的叶片则生长在较温和的环境中, 如恒温、低辐射以及高湿度(Sanches et al., 2010).可见, 不同冠层中的叶片所处的生境存在明显差异, 而叶片是直接将光转化为能量的主要器官, 通常会通过调整叶片的形态和化学性状来适应环境的变化(Green & Kruger, 2001). ...

Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession
1
2006

... 本研究发现, 性状变异第一主成分指示叶经济谱轴, 与LMALDMCCCINmassPmass有着较强的相关性, 主要反映物种生态策略从资源获取型到资源保守型(图5A).物种在叶经济谱轴的分布存在差异, 暗示本研究样地内物种生态策略的分化.杨属(Popolus, 山杨和大青杨)和桦木属(Betula, 白桦和风桦)物种属于资源保守型, 并且同属物种在性状空间内的相似分布指示性状进化的保守型.然而这些物种是本地区的先锋物种, 这些先锋树种(如山杨和白桦)竞争能力较弱, 趋向于LES的缓慢投资-收益端(Kazakou et al., 2006).黄檗、山槐和椴树属(Tilia, 紫椴(Tilia amurensis)和糠椴(Tilia mandshurica))物种则呈现资源获取型策略.例如, 紫椴和糠椴叶片密度较低, 同时这两种植物木质密度也较低, 指示快速的生长策略.因此, 这些物种的叶片倾向于光合能力强、营养物质浓度高的生存策略. ...

Global leaf trait estimates biased due to plasticity in the shade
4
2017

... 一般来说, 养分含量较高的植物, 其光合能力和呼吸消耗均较强, 通过快速的养分循环适应环境(Cornelissen et al., 2003; Wright et al., 2004).本研究中, NareaPareaLMA的增加而增大, 同时, NmassPmassNareaParea均显著正相关(图3, 图4; p < 0.05), 即随着植物LMA增加, 叶片增厚, 使得单位面积的干物质增加, 进而导致单位面积的N、P含量增加(Legner et al., 2014).本研究也发现, 随着LMA增加, NmassPmass降低, 表明叶片N、P含量会随叶单位干物质所分配的叶面积的减少而降低, 与Keenan和Niinemets (2017)在全球尺度上的研究结果相符.但也有许多研究表明, LMA与基于质量的养分含量无关(Hallik et al., 2012; Wyka et al., 2012), 这可能与所研究的树种不同有关. ...

... 本研究还发现在不同的冠层高度下, 叶片性状的权衡关系存在差异.研究结果表明, 三个冠层间性状相关关系的斜率相似(图2-4), 这与Keenan和Niinemets (2017)在全球尺度上的结果不一致.一些性状仅在一层或二层中存在相关关系(图2E, 图3G、3K、3L、3P、3R、3T, 图4C), 表明在不同的冠层中叶片性状间存在不同的权衡关系.在叶片生长发育过程中叶片性状对光环境的变化较为敏感(Pons & Anten, 2004; Niinemets et al., 2015).Rajsnerová等(2015)对不同海拔高度植物上层和下层性状的研究发现叶片CO2同化速率和气孔导度的相关性在冠层上部和下部是不同的.由于随着叶面积的增加, 光可利用指数降低, 大部分植物生长在遮阴的环境下(Keenan & Niinemets, 2017).因此, 光驱动性状可塑性能够改变叶片性状相关性的强度(Keenan & Niinemets, 2017). ...

... 同化速率和气孔导度的相关性在冠层上部和下部是不同的.由于随着叶面积的增加, 光可利用指数降低, 大部分植物生长在遮阴的环境下(Keenan & Niinemets, 2017).因此, 光驱动性状可塑性能够改变叶片性状相关性的强度(Keenan & Niinemets, 2017). ...

... ).因此, 光驱动性状可塑性能够改变叶片性状相关性的强度(Keenan & Niinemets, 2017). ...

Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes
2000

Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile
1
2001

... 随着冠层高度的降低, 光照条件减弱(Niinemets, 2007), 叶片通过增加基于质量的叶绿素含量来适应较少的光照条件(Evans, 1989; Koike et al., 2001).与此同时, 叶片光合速率的增加是由于叶片用于光合作用的矿物质养分的增加(Cheng et al., 2012).Green和Kruger (2001)对12种树种叶性状随光照变化的结果显示叶绿素含量随光照强度增大而减小.本研究中, 白桦和春榆的CCI在上层有最大值, 核桃楸中层的CCI显著大于下层(p < 0.05).这可能是因为CCI为单位面积的叶绿素含量, CCI会随着LMA的增加而增大.这一结果表明, 不同树种对光的敏感度不同.白桦和春榆上层的叶片通过增加CCI来增强光合能力, 从而提高了叶片的光能转换能力.因此, 白桦和春榆适合生长在强光条件下. ...

Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance
1
2014

... 一般来说, 养分含量较高的植物, 其光合能力和呼吸消耗均较强, 通过快速的养分循环适应环境(Cornelissen et al., 2003; Wright et al., 2004).本研究中, NareaPareaLMA的增加而增大, 同时, NmassPmassNareaParea均显著正相关(图3, 图4; p < 0.05), 即随着植物LMA增加, 叶片增厚, 使得单位面积的干物质增加, 进而导致单位面积的N、P含量增加(Legner et al., 2014).本研究也发现, 随着LMA增加, NmassPmass降低, 表明叶片N、P含量会随叶单位干物质所分配的叶面积的减少而降低, 与Keenan和Niinemets (2017)在全球尺度上的研究结果相符.但也有许多研究表明, LMA与基于质量的养分含量无关(Hallik et al., 2012; Wyka et al., 2012), 这可能与所研究的树种不同有关. ...

Quantifying differences between native and introduced species
2016

Empirical models for tracing seasonal changes in leaf area index in deciduous broadleaf forests by digital hemispherical photography
1
2015

... 本研究在黑龙江凉水国家级自然保护区(47.18° N、128.89° E)进行.保护区地形比较复杂, 海拔280-707 m, 坡度10°-15°.由于纬度较高, 太阳辐射较少, 年平均气温为-0.3 ℃, 日平均气温-6.6- 7.5 ℃.该地区年降水量676 mm, 降水主要集中在 7月; 年平均相对湿度约为78%.本地区内地带性植被群落为阔叶红松林, 地带性土壤为暗棕壤(Liu et al., 2015). ...

Trait variation and integration across scales: Is the leaf economic spectrum present at local scales?
2017

Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs
2001

Photosynthesis and resource distribution through plant canopies
2
2007

... 随着冠层高度的降低, 光照条件减弱(Niinemets, 2007), 叶片通过增加基于质量的叶绿素含量来适应较少的光照条件(Evans, 1989; Koike et al., 2001).与此同时, 叶片光合速率的增加是由于叶片用于光合作用的矿物质养分的增加(Cheng et al., 2012).Green和Kruger (2001)对12种树种叶性状随光照变化的结果显示叶绿素含量随光照强度增大而减小.本研究中, 白桦和春榆的CCI在上层有最大值, 核桃楸中层的CCI显著大于下层(p < 0.05).这可能是因为CCI为单位面积的叶绿素含量, CCI会随着LMA的增加而增大.这一结果表明, 不同树种对光的敏感度不同.白桦和春榆上层的叶片通过增加CCI来增强光合能力, 从而提高了叶片的光能转换能力.因此, 白桦和春榆适合生长在强光条件下. ...

... 叶绿素能够指示植物叶片的光合能力(Evans, 1989).LMA与单位质量的叶绿素含量呈显著负相关关系(Niinemets, 2007).然而, 本研究中LMA与叶绿素含量指数无显著相关性(图2), 可能主要源于叶绿素含量是基于单位面积的, 这与Hallik等(2012)的结果一致.本研究中, 叶绿素含量指数与基于质量的养分含量呈显著正相关关系(图3H、3P; p < 0.05), 与以往研究一致(Gábor?ík, 2003); 这主要是因为叶氮在光合器官中分布较多, 而磷在光合作用的物质转化中起重要作用, 所以N、P缺乏易导致叶绿素含量和蛋白含量降低(Chen et al., 2003). ...

Packing the photosynthesis machinery: from leaf to canopy//Laisk A, Nedbal L, Govindjee
1
2009

... 光是影响植物生长发育、森林组成和分布的重要环境因素(Aleric & Kirkman, 2005).冠层是植物最活跃的部分(Ozanne et al., 2003), 其结构和几何特征能够改变光照强度和降水梯度, 从而导致能量运输和分布的空间异质性(Vierling & Wessman, 2000).在密集冠层中, 冠层上部和下部的光能利用率可相差50倍以上(Niinemets & Anten, 2009), 在开阔冠层中, 冠层上部和下部的光能利用率也可相差10-20倍(Joffre et al., 2007).此外, 冠层上部的叶片长期生长在高温、高辐射以及高风速的环境中, 而冠层下部的叶片则生长在较温和的环境中, 如恒温、低辐射以及高湿度(Sanches et al., 2010).可见, 不同冠层中的叶片所处的生境存在明显差异, 而叶片是直接将光转化为能量的主要器官, 通常会通过调整叶片的形态和化学性状来适应环境的变化(Green & Kruger, 2001). ...

Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient
1
1998

... 研究结果表明叶片的结构性状和化学性状间存在相关性.15种树种的LMALTLDMC均呈正相关关系(p < 0.001), 而LDMCLT无显著相关性(图2).虽然LMALDMC都反映对环境的适应策略, 但LMA主要受叶片厚度和叶干质量的影响(Sims & Pearcy, 1992).研究表明, 养分含量与LMA之间的相关性大于其与LDMC之间的相关性(图3; p < 0.05).光对树种的LMA起着很重要的作用(Niinemets et al., 1998; Wyka et al., 2012), 而LDMC更易受降水的影响, 与叶片含水量密切相关(Saura-Mas et al., 2009).因此, 本地区的主导气象因子可能是光照而非降水, 从而在一定程度上限制了LDMC的指示作用. ...

A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types
1
2015

... 本研究还发现在不同的冠层高度下, 叶片性状的权衡关系存在差异.研究结果表明, 三个冠层间性状相关关系的斜率相似(图2-4), 这与Keenan和Niinemets (2017)在全球尺度上的结果不一致.一些性状仅在一层或二层中存在相关关系(图2E, 图3G、3K、3L、3P、3R、3T, 图4C), 表明在不同的冠层中叶片性状间存在不同的权衡关系.在叶片生长发育过程中叶片性状对光环境的变化较为敏感(Pons & Anten, 2004; Niinemets et al., 2015).Rajsnerová等(2015)对不同海拔高度植物上层和下层性状的研究发现叶片CO2同化速率和气孔导度的相关性在冠层上部和下部是不同的.由于随着叶面积的增加, 光可利用指数降低, 大部分植物生长在遮阴的环境下(Keenan & Niinemets, 2017).因此, 光驱动性状可塑性能够改变叶片性状相关性的强度(Keenan & Niinemets, 2017). ...

Global leaf trait relationships: mass, area, and the leaf economics spectrum
2013

Biodiversity meets the atmosphere: a global view of forest canopies
1
2003

... 光是影响植物生长发育、森林组成和分布的重要环境因素(Aleric & Kirkman, 2005).冠层是植物最活跃的部分(Ozanne et al., 2003), 其结构和几何特征能够改变光照强度和降水梯度, 从而导致能量运输和分布的空间异质性(Vierling & Wessman, 2000).在密集冠层中, 冠层上部和下部的光能利用率可相差50倍以上(Niinemets & Anten, 2009), 在开阔冠层中, 冠层上部和下部的光能利用率也可相差10-20倍(Joffre et al., 2007).此外, 冠层上部的叶片长期生长在高温、高辐射以及高风速的环境中, 而冠层下部的叶片则生长在较温和的环境中, 如恒温、低辐射以及高湿度(Sanches et al., 2010).可见, 不同冠层中的叶片所处的生境存在明显差异, 而叶片是直接将光转化为能量的主要器官, 通常会通过调整叶片的形态和化学性状来适应环境的变化(Green & Kruger, 2001). ...

Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies
1
2012

... 性状第二主成分与LTNareaParea正相关, 主要反映了LT和单位面积养分含量对植物的影响.黄檗、五角槭和花楸沿第二主成分与其他物种产生分化.黄檗的Parea较大, 而五角槭和花楸的LT则较小, 反映了不同树种在相同环境条件下的适应性策略.此外, 与最近的研究类似, 研究发现表征叶片大小的性状(第二主成分)与叶经济谱性状(第一主成分)关系较弱(Díaz et al., 2016).然而, 本研究仅分析了叶片性状之间的权衡关系, 植物经济谱性状之间的权衡关系还需进一步研究(Pierce et al., 2012; Reich, 2014). ...

Is plasticity in partitioning of photosynthetic resources between and within leaves important for whole-plant carbon gain in canopies?
1
2004

... 本研究还发现在不同的冠层高度下, 叶片性状的权衡关系存在差异.研究结果表明, 三个冠层间性状相关关系的斜率相似(图2-4), 这与Keenan和Niinemets (2017)在全球尺度上的结果不一致.一些性状仅在一层或二层中存在相关关系(图2E, 图3G、3K、3L、3P、3R、3T, 图4C), 表明在不同的冠层中叶片性状间存在不同的权衡关系.在叶片生长发育过程中叶片性状对光环境的变化较为敏感(Pons & Anten, 2004; Niinemets et al., 2015).Rajsnerová等(2015)对不同海拔高度植物上层和下层性状的研究发现叶片CO2同化速率和气孔导度的相关性在冠层上部和下部是不同的.由于随着叶面积的增加, 光可利用指数降低, 大部分植物生长在遮阴的环境下(Keenan & Niinemets, 2017).因此, 光驱动性状可塑性能够改变叶片性状相关性的强度(Keenan & Niinemets, 2017). ...

Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis
2009

Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude
1
2015

... 本研究还发现在不同的冠层高度下, 叶片性状的权衡关系存在差异.研究结果表明, 三个冠层间性状相关关系的斜率相似(图2-4), 这与Keenan和Niinemets (2017)在全球尺度上的结果不一致.一些性状仅在一层或二层中存在相关关系(图2E, 图3G、3K、3L、3P、3R、3T, 图4C), 表明在不同的冠层中叶片性状间存在不同的权衡关系.在叶片生长发育过程中叶片性状对光环境的变化较为敏感(Pons & Anten, 2004; Niinemets et al., 2015).Rajsnerová等(2015)对不同海拔高度植物上层和下层性状的研究发现叶片CO2同化速率和气孔导度的相关性在冠层上部和下部是不同的.由于随着叶面积的增加, 光可利用指数降低, 大部分植物生长在遮阴的环境下(Keenan & Niinemets, 2017).因此, 光驱动性状可塑性能够改变叶片性状相关性的强度(Keenan & Niinemets, 2017). ...

Convergent effects of elevation on functional leaf traits within and among species
2014

The world-wide “fast-slow” plant economics spectrum: a traits manifesto
1
2014

... 性状第二主成分与LTNareaParea正相关, 主要反映了LT和单位面积养分含量对植物的影响.黄檗、五角槭和花楸沿第二主成分与其他物种产生分化.黄檗的Parea较大, 而五角槭和花楸的LT则较小, 反映了不同树种在相同环境条件下的适应性策略.此外, 与最近的研究类似, 研究发现表征叶片大小的性状(第二主成分)与叶经济谱性状(第一主成分)关系较弱(Díaz et al., 2016).然而, 本研究仅分析了叶片性状之间的权衡关系, 植物经济谱性状之间的权衡关系还需进一步研究(Pierce et al., 2012; Reich, 2014). ...

From tropics to tundra: global convergence in plant functioning
1997

The evolution of plant functional variation: traits, spectra, and strategies
2003

Differential leaf traits of a neotropical tree Cariniana legalis(Mart.) Kuntze (Lecythidaceae): comparing saplings and emergent trees
2
2010

... 光是影响植物生长发育、森林组成和分布的重要环境因素(Aleric & Kirkman, 2005).冠层是植物最活跃的部分(Ozanne et al., 2003), 其结构和几何特征能够改变光照强度和降水梯度, 从而导致能量运输和分布的空间异质性(Vierling & Wessman, 2000).在密集冠层中, 冠层上部和下部的光能利用率可相差50倍以上(Niinemets & Anten, 2009), 在开阔冠层中, 冠层上部和下部的光能利用率也可相差10-20倍(Joffre et al., 2007).此外, 冠层上部的叶片长期生长在高温、高辐射以及高风速的环境中, 而冠层下部的叶片则生长在较温和的环境中, 如恒温、低辐射以及高湿度(Sanches et al., 2010).可见, 不同冠层中的叶片所处的生境存在明显差异, 而叶片是直接将光转化为能量的主要器官, 通常会通过调整叶片的形态和化学性状来适应环境的变化(Green & Kruger, 2001). ...

... 本研究发现只有少数树种的叶片性状在不同冠层高度间存在显著差异, 而且叶片性状的垂直变异存在明显的种间差异.本研究中, 水曲柳和大青杨上层的LMALDMC显著高于下层(p < 0.05), 表明水曲柳和大青杨主要是通过改变LMALDMC反映其对光环境变化的响应.Coble和Cavaleri (2015)研究光照对糖槭(Acer saccharum)林叶片性状的影响时, 也发现随着光照强度减弱, 叶片的LMANarea和C:N减少, 而Nmass增加, 这与本研究结果相符, 例如水曲柳的Nmass在上层具有最小值(p < 0.05).Wyka等(2012)研究叶片结构和光合性状对冠层内光环境变化的响应时也发现, 在阔叶树种中, 阳生叶的LMA显著大于阴生叶.冠层上部光照条件过强, 使得上层叶片处于高光强和缺水的环境下(Sanches et al., 2010).因此, 上层叶片有较高LMALDMC, 使其具有更好的资源获取能力和碳氮固持效率, 有利于抵御强光等不利环境因子的胁迫(Wilson et al., 1999). ...

Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody species
1
2009

... 研究结果表明叶片的结构性状和化学性状间存在相关性.15种树种的LMALTLDMC均呈正相关关系(p < 0.001), 而LDMCLT无显著相关性(图2).虽然LMALDMC都反映对环境的适应策略, 但LMA主要受叶片厚度和叶干质量的影响(Sims & Pearcy, 1992).研究表明, 养分含量与LMA之间的相关性大于其与LDMC之间的相关性(图3; p < 0.05).光对树种的LMA起着很重要的作用(Niinemets et al., 1998; Wyka et al., 2012), 而LDMC更易受降水的影响, 与叶片含水量密切相关(Saura-Mas et al., 2009).因此, 本地区的主导气象因子可能是光照而非降水, 从而在一定程度上限制了LDMC的指示作用. ...

Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza(Araceae) to a transfer from low to high light
1
1992

... 研究结果表明叶片的结构性状和化学性状间存在相关性.15种树种的LMALTLDMC均呈正相关关系(p < 0.001), 而LDMCLT无显著相关性(图2).虽然LMALDMC都反映对环境的适应策略, 但LMA主要受叶片厚度和叶干质量的影响(Sims & Pearcy, 1992).研究表明, 养分含量与LMA之间的相关性大于其与LDMC之间的相关性(图3; p < 0.05).光对树种的LMA起着很重要的作用(Niinemets et al., 1998; Wyka et al., 2012), 而LDMC更易受降水的影响, 与叶片含水量密切相关(Saura-Mas et al., 2009).因此, 本地区的主导气象因子可能是光照而非降水, 从而在一定程度上限制了LDMC的指示作用. ...

Photosynthetically active radiation heterogeneity within a monodominant Congolese rain forest canopy
1
2000

... 光是影响植物生长发育、森林组成和分布的重要环境因素(Aleric & Kirkman, 2005).冠层是植物最活跃的部分(Ozanne et al., 2003), 其结构和几何特征能够改变光照强度和降水梯度, 从而导致能量运输和分布的空间异质性(Vierling & Wessman, 2000).在密集冠层中, 冠层上部和下部的光能利用率可相差50倍以上(Niinemets & Anten, 2009), 在开阔冠层中, 冠层上部和下部的光能利用率也可相差10-20倍(Joffre et al., 2007).此外, 冠层上部的叶片长期生长在高温、高辐射以及高风速的环境中, 而冠层下部的叶片则生长在较温和的环境中, 如恒温、低辐射以及高湿度(Sanches et al., 2010).可见, 不同冠层中的叶片所处的生境存在明显差异, 而叶片是直接将光转化为能量的主要器官, 通常会通过调整叶片的形态和化学性状来适应环境的变化(Green & Kruger, 2001). ...

Let the concept of trait be functional!
2007

Specific leaf area and leaf dry matter content as alternative predictors of plant strategies
1
1999

... 本研究发现只有少数树种的叶片性状在不同冠层高度间存在显著差异, 而且叶片性状的垂直变异存在明显的种间差异.本研究中, 水曲柳和大青杨上层的LMALDMC显著高于下层(p < 0.05), 表明水曲柳和大青杨主要是通过改变LMALDMC反映其对光环境变化的响应.Coble和Cavaleri (2015)研究光照对糖槭(Acer saccharum)林叶片性状的影响时, 也发现随着光照强度减弱, 叶片的LMANarea和C:N减少, 而Nmass增加, 这与本研究结果相符, 例如水曲柳的Nmass在上层具有最小值(p < 0.05).Wyka等(2012)研究叶片结构和光合性状对冠层内光环境变化的响应时也发现, 在阔叶树种中, 阳生叶的LMA显著大于阴生叶.冠层上部光照条件过强, 使得上层叶片处于高光强和缺水的环境下(Sanches et al., 2010).因此, 上层叶片有较高LMALDMC, 使其具有更好的资源获取能力和碳氮固持效率, 有利于抵御强光等不利环境因子的胁迫(Wilson et al., 1999). ...

The worldwide leaf economics spectrum
2
2004

... 一般来说, 养分含量较高的植物, 其光合能力和呼吸消耗均较强, 通过快速的养分循环适应环境(Cornelissen et al., 2003; Wright et al., 2004).本研究中, NareaPareaLMA的增加而增大, 同时, NmassPmassNareaParea均显著正相关(图3, 图4; p < 0.05), 即随着植物LMA增加, 叶片增厚, 使得单位面积的干物质增加, 进而导致单位面积的N、P含量增加(Legner et al., 2014).本研究也发现, 随着LMA增加, NmassPmass降低, 表明叶片N、P含量会随叶单位干物质所分配的叶面积的减少而降低, 与Keenan和Niinemets (2017)在全球尺度上的研究结果相符.但也有许多研究表明, LMA与基于质量的养分含量无关(Hallik et al., 2012; Wyka et al., 2012), 这可能与所研究的树种不同有关. ...

... 不同树种的功能性状反映了植物在生长过程中对资源的利用和分布(Wright et al., 2004).研究表明, 只有少数树种通过改变叶片性状来适应冠层内的光照强度, 而冠层内叶片性状的变化在不同树种间存在差异.在所有树种中, 叶片性状有着较高的相关性.有些性状在三个冠层中均有相关性, 而其他性状仅在一个或两个冠层中存在相关关系.不同树种采用不同的适应策略来适应环境的变化, 其中包括改变叶片的形态性状和化学性状, 且叶经济谱理论在局域尺度上同样适用, 这有助于群落构建和物种共存. ...

Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species
3
2012

... 本研究发现只有少数树种的叶片性状在不同冠层高度间存在显著差异, 而且叶片性状的垂直变异存在明显的种间差异.本研究中, 水曲柳和大青杨上层的LMALDMC显著高于下层(p < 0.05), 表明水曲柳和大青杨主要是通过改变LMALDMC反映其对光环境变化的响应.Coble和Cavaleri (2015)研究光照对糖槭(Acer saccharum)林叶片性状的影响时, 也发现随着光照强度减弱, 叶片的LMANarea和C:N减少, 而Nmass增加, 这与本研究结果相符, 例如水曲柳的Nmass在上层具有最小值(p < 0.05).Wyka等(2012)研究叶片结构和光合性状对冠层内光环境变化的响应时也发现, 在阔叶树种中, 阳生叶的LMA显著大于阴生叶.冠层上部光照条件过强, 使得上层叶片处于高光强和缺水的环境下(Sanches et al., 2010).因此, 上层叶片有较高LMALDMC, 使其具有更好的资源获取能力和碳氮固持效率, 有利于抵御强光等不利环境因子的胁迫(Wilson et al., 1999). ...

... 研究结果表明叶片的结构性状和化学性状间存在相关性.15种树种的LMALTLDMC均呈正相关关系(p < 0.001), 而LDMCLT无显著相关性(图2).虽然LMALDMC都反映对环境的适应策略, 但LMA主要受叶片厚度和叶干质量的影响(Sims & Pearcy, 1992).研究表明, 养分含量与LMA之间的相关性大于其与LDMC之间的相关性(图3; p < 0.05).光对树种的LMA起着很重要的作用(Niinemets et al., 1998; Wyka et al., 2012), 而LDMC更易受降水的影响, 与叶片含水量密切相关(Saura-Mas et al., 2009).因此, 本地区的主导气象因子可能是光照而非降水, 从而在一定程度上限制了LDMC的指示作用. ...

... 一般来说, 养分含量较高的植物, 其光合能力和呼吸消耗均较强, 通过快速的养分循环适应环境(Cornelissen et al., 2003; Wright et al., 2004).本研究中, NareaPareaLMA的增加而增大, 同时, NmassPmassNareaParea均显著正相关(图3, 图4; p < 0.05), 即随着植物LMA增加, 叶片增厚, 使得单位面积的干物质增加, 进而导致单位面积的N、P含量增加(Legner et al., 2014).本研究也发现, 随着LMA增加, NmassPmass降低, 表明叶片N、P含量会随叶单位干物质所分配的叶面积的减少而降低, 与Keenan和Niinemets (2017)在全球尺度上的研究结果相符.但也有许多研究表明, LMA与基于质量的养分含量无关(Hallik et al., 2012; Wyka et al., 2012), 这可能与所研究的树种不同有关. ...

Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration
2017

Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species
2017




相关话题/环境 质量 植物 物质 结构