Storage of carbon, nitrogen and phosphorus in temperate shrubland ecosystems across Northern China
GUOYan-Pei1, YANGXian1, MOHHAMOTAnwar2, LIUHong-Yan1, MAWen-Hong3, YUShun-Li4, TANGZhi-Yao1,*, 1College of Urban and Environmental Science, Peking University, Beijing 100871, China2Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China;3College of Life Sciences, Inner Mongolia University, Hohhot 010021, China4State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 通讯作者:* 通信作者Author for correspondence (E-mail: zytang@urban.pku.edu.cn) 责任编辑:GUOYan-PeiYANGXianMOHHAMOTAnwarLIUHong-YanMAWen-HongYUShun-LiTANGZhi-Yao 收稿日期:2016-06-14 接受日期:2016-11-10 网络出版日期:2017-01-10 版权声明:2017植物生态学报编辑部本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。 基金资助:中国科学院战略先导性科技专项(XDA05050301)
关键词:碳;氮;磷;储量;密度;灌丛;中国北方 Abstract Aims Studying storage of carbon (C), nitrogen (N) and phosphorus (P) in ecosystems is of significance in understanding carbon and nutrient cycling. Previous researches in ecosystem C, N and P storage have biased towards forests and grasslands. Shrubland ecosystems encompass a wide gradient in precipitation and soil conditions, providing a unique opportunity to explore the patterns of ecosystem C, N and P storage in relation to climate and soil properties. Methods We estimated densities and storage of organic C, N and P of shrubland ecosystems in Northern China based on data from 433 shrubland sites. Important findings The main results are summarized as follows: the average organic C, N and P densities in temperate shrubland ecosystems across Northern China were 69.8 Mg·hm-2, 7.3 Mg·hm-2 and 4.2 Mg·hm-2, respectively. The average plant C, N and P densities were 5.1 Mg·hm-2, 11.5 × 10-2 Mg·hm-2 and 8.6 × 10-3 Mg·hm-2, respectively, and were significantly correlated with precipitation and soil nutrient concentrations. The average litter C, N and P densities were 1.4 Mg·hm-2, 3.8 ×10-2 Mg·hm-2, 2.5 ×10-3 Mg·hm-2 and were significantly correlated with temperature and precipitation. The average soil organic C, N and P densities in the top 1 m were 64.0 Mg·hm-2, 7.1 Mg·hm-2 and 4.2 Mg·hm-2, respectively and the former two were significantly correlated with temperature and precipitation. The total organic C, N and P storage of shrublands in Northern China were 1.7 Pg, 164.9 Tg and 124.8 Tg, respectively. The plant C, N and P storage were 128.4 Tg, 3.1 Tg and 0.2 Tg, respectively. The litter C, N and P storage were 8.4 Tg, 0.45 Tg, 0.027 Tg, respectively. Soil is the largest C, N and P pool in the studied area. The soil organic C, N and P storage in the top 1 meter were 1.6 Pg, 161.3 Tg and 124.6 Tg, respectively.
Keywords:carbon;nitrogen;phosphorus;storage;density;shrublands;Northern China -->0 PDF (806KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 郭焱培, 杨弦, 安尼瓦尔·买买提, 刘鸿雁, 马文红, 于顺利, 唐志尧. 中国北方温带灌丛生态系统碳、氮、磷储量. 植物生态学报, 2017, 41(1): 14-21 https://doi.org/10.17521/cjpe.2016.0201 GUOYan-Pei, YANGXian, MOHHAMOTAnwar, LIUHong-Yan, MAWen-Hong, YUShun-Li, TANGZhi-Yao. Storage of carbon, nitrogen and phosphorus in temperate shrubland ecosystems across Northern China. Chinese Journal of Plant Ecology, 2017, 41(1): 14-21 https://doi.org/10.17521/cjpe.2016.0201 陆地生态系统各组分碳(C)储量的研究有助于正确评价生态系统在区域及全球C循环中的作用。近30年来, 我国****开展了大量估算中国植被C储量的研究, 特别是在森林(周玉荣等, 2000; Fang et al., 2001; 赵敏和周广胜, 2004; 方精云等, 2007)和草地生态系统(Ni, 2002; 朴世龙等, 2004; Fan et al., 2008; 方精云等, 2010)。作为中国北方重要的植被类型之一, 灌丛在中国陆地生态系统的C循环中具有重要的作用, 其分布及生长也随全球气候波动而变化(胡会峰等, 2006)。研究中国北方灌丛生态系统的C储量对全面了解中国陆地生态系统的C储量和C周转有着重要的意义。然而, 与大量的森林和草地生态系统C储量研究相比, 灌丛生态系统C储量的研究很少, 估算结果也存在极大的差异。例如Ni (2001)根据不同灌丛生态系统的全球平均植被密度结合中国灌丛分布面积估算得出中国灌丛生态系统C密度为45.6 Mg·hm-2, 总C储量为8.02 Pg; 胡会峰等(2006)搜集中国实测灌丛生物量数据, 用植被平均C密度法估算得出中国灌丛植被C密度为10.88 Mg·hm-2, 总C储量为1.68 Pg, 其中北方地区的总C储量约为406.6 Tg。 作为生态系统养分循环的重要部分, 氮(N)、磷(P)在生态系统中的储量和分配受到多种因素的影响(Ellert & Gregorich, 1996), 也影响到植物生长和生态系统功能。但与C储量研究相比, 生态系统N、P储量的研究较少。对中国生态系统N、P储量的研究主要集中于土壤库的估算(Tian et al., 2006; Yang et al., 2007), 对植被N、P库的研究目前还是空白。 本研究采用统一的调查、采样和测试标准, 对中国北方的典型灌丛生态系统进行了系统的实地调查, 以此为基础准确估算了中国北方灌丛生态系统的C、N、P密度和储量, 试图回答如下科学问题: 中国北方灌丛生态系统的C、N、P密度有多大?环境如何影响中国北方灌丛生态系统的C、N、P密度?中国北方灌丛生态系统的C、N、P储量有多大?
生物量C、N、P密度与年降水量、土壤养分含量都显著正相关(p < 0.001), 尤其与年降水量和土壤N含量的相关度较高。然而它们与年平均气温的关系相对较弱, 只有P密度与年平均气温相关关系显著(p < 0.01)(图1)。 显示原图|下载原图ZIP|生成PPT 图1中国北方灌丛生物量碳(A-D)、氮(E-H)、磷(I-L)密度与环境的关系(点线: p > 0.01; 短划线: 0.001 < p < 0.01; 实线: p < 0.001)。 -->Fig. 1Biomass carbon (C) (A-D), nitrogen (N) (E-H) and phosphorus (P) (I-L) densities for shrublands of Northern China in relation to environmental factors (dotted line: p > 0.01; dashed line: 0.001 < p < 0.01; solid line: p < 0.001). AP, annual precipitation; MAT, mean annual temperature; STN, soil total nitrogen concentration; STP, soil total phosphorus concentration. -->
凋落物C、N、P密度与年平均气温呈显著的负相关关系(p < 0.001), 与年降水量有较显著的正相关关系(对于凋落物C、N, p < 0.01, 对于P, p < 0.001)(图2)。 显示原图|下载原图ZIP|生成PPT 图2中国北方灌丛凋落物碳(A-D)、氮(E-H)、磷(I-L)密度与环境的关系。不同线型和缩写的意义见图1。 -->Fig. 2Litter carbon (C) (A-D), nitrogen (N) (E-H) and phosphorus (P) (I-L) densities for shrublands of Northern China in relation to environmental factors. Please see Fig. 1 for the meaning of different line types and abbreviations. -->
1 m深土壤有机C与N、P密度随年平均气温升高显著降低(p < 0.001), 而且土壤有机C与N密度随年降水量增加显著增加(p < 0.001), 而P密度的变化趋势较弱(图3)。 显示原图|下载原图ZIP|生成PPT 图3中国北方灌丛土壤有机碳(A, B)、氮(C, D)、磷(E, F)密度与气候的关系。不同线型和缩写的意义见图1。 -->Fig. 3Soil organic carbon (C) (A, B), nitrogen (N) (C, D) and phosphorus (P) (E, F) densities for shrubland of Northern China in relation to climatic factors. Please see Fig. 1 for the meaning of different line types and abbreviations. -->
2.3 中国北方灌丛生态系统C、N、P储量
研究区域灌丛总面积为2.89 × 107 hm2, 约占研究区陆地总面积的5.7%, 其中落叶阔叶灌丛和稀疏灌丛的总面积为2.88 × 107 hm2。总有机C及N、P储量分别为1.7 Pg、164.9 Tg、124.8 Tg。其中生物量C、N、P储量分别为128.4 Tg、3.1 Tg、0.2 Tg; 凋落物C、N、P储量分别为8.4 Tg、0.45 Tg、0.027 Tg; 1 m深土壤有机C与N、P储量分别为1.6 Pg、161.3 Tg、124.6 Tg (表2)。 Table 2 表2 表2中国北方主要灌丛的碳、氮、磷储量 Table 2Carbon (C), nitrogen (N) and phosphorus (P) storage of major shrublands in Northern China
灌丛植被型 Shrubland types
落叶阔叶灌丛 Deciduous broadleaf shrublands
稀疏灌丛 Sparse shrublands
总计 Total
面积 Area (104 hm2)
1 828.6
1 050.4
2 879.0
碳储量 C storage (Tg)
1 537.6
183.5
1 721.1
生物量 Biomass
118.6
9.8
128.4
凋落物 Litter
8.2
0.2
8.4
土壤有机碳 Soil organic C
1 410.8
173.5
1 584.3
氮储量 N storage (Tg)
137.1
27.8
164.9
生物量 Biomass
2.8
0.3
3.1
凋落物 Litter
4.5
0.0
4.5
土壤 Soil
133.8
27.5
161.3
磷储量 P storage (Tg)
80.7
44.1
124.8
生物量 Biomass
0.2
0.0
0.2
凋落物 Litter
2.7
0.0
2.7
土壤 Soil
80.5
44.1
124.6
The element storage of each shrubland type is the sum of the area multiplied by corresponding C, N and P densities in each province, instead of the average element density in Table 1 multiplied by total area.储量由各省区不同类型灌丛面积与该省区相应类型灌丛C、N、P平均 密度的乘积加和得到, 因此该数据不简单等同于表1的密度与总面积的乘积。 新窗口打开
本研究通过大范围调查我国北方典型灌丛样地中植物和凋落物的C、N、P含量以及1 m深土壤容重和有机C、N、P含量, 结合遥感数据, 估算了生态系统C、N、P储量。与以往研究相比, 本研究的方法能够得到更加准确的估算结果。但是, 本研究的估算中仍然具有如下来源的不确定性: (1)一些物种的标准株或样品采集数量不够, 其相关生长方程或元素含量是利用近缘物种的调查或测试数据建立的。(2)对C、N、P储量的估算是将调查样地的平均C、N、P密度推广到同省份相同类型的植被。上述两个近似处理环节可能会对C、N、P储量的估算带来一些误差。补充调查数据将会减小这些误差和不确定性, 从而更加准确地估算C、N、P储量。 The authors have declared that no competing interests exist. 作者声明没有竞争性利益冲突.
BaiYF, WuJG, XingQ, PanQM, HuangJH, YangDL, HanXG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau .89, 2140-2153. [本文引用: 1]
[2]
BrooksML (2003). Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert ., 40, 344-353. [本文引用: 1]
[3]
Chapin IIIFS (1980). The mineral nutrition of wild plants ., 11, 233-260. [本文引用: 1]
[4]
Chapin IIIFS, VitousekPM, van CleveK (1986). The nature of nutrient limitation in plant communities ., 127, 48-58. [本文引用: 1]
[5]
ClevelandCC, LiptzinD (2007). C, N, P stoichiometry in soil, is there a ‘Redfield ratio’ for the microbial biomass? , 85, 235-252. [本文引用: 2]
[6]
DixonRK, SolomonAM, BrownS, HoughtonRA, TrexierMC, WisniewskiJ (1994). Carbon pools and flux of global forest ecosystems ., 263, 185-190. [本文引用: 1]
[7]
EllertBH, GregorichEG (1996). Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forested soils of Ontario .161, 587-603. [本文引用: 1]
[8]
FanJ, ZhongH, HarrisW, YuG, WangS, HuZ, YueY (2008). Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass ., 86, 375-396. [本文引用: 2]
[9]
FangJY, ChenAP, PengCH, ZhaoSQ, CiLJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998 ., 292, 2320-2322. [本文引用: 2]
FangJY, YangYH, MaWH, MohammatA, ShenHH (2010). Ecosystem carbon stocks and their changes in China’s grasslands ., 40, 566-576. (in Chinese)[方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花 (2010). 中国草地生态系统碳库及其变化 . , 40, 566-576.] [本文引用: 4]
[12]
HijmansRJ, CameronSE, ParraJL, JonesPG, JarvisA (2005). Very high resolution interpolated climate surfaces for global land areas ., 25, 1965-1978. [本文引用: 1]
[13]
HobbieSE (1996). Temperature and plant species control over litter decomposition in Alaskan Tundra ., 66, 503-522. [本文引用: 1]
[14]
HuHF, WangZH, LiuGH, FuBJ (2006). Vegetation carbon storage of major shrublands in China ., 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量 . , 30, 539-544.] [本文引用: 5]
[15]
JobbágyEG, JacksonRB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation ., 10, 423-436. [本文引用: 2]
[16]
JohnMK (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid ., 109, 214-220. [本文引用: 1]
[17]
NiJ (2001). Carbon storage in terrestrial ecosystems of China, estimates at different spatial resolutions and their respon- ses to climate change ., 49, 339-358.
[18]
NiJ (2002). Carbon storage in grasslands of China ., 50, 205-218. [本文引用: 2]
[19]
PiaoSL, FangJY, HeJS, XiaoY (2004). Spatial distribution of grassland biomass in China ., 28, 491-498. (in Chinese with English abstract) [朴世龙, 方精云, 贺金生, 肖玉 (2004). 中国草地植被生物量及其空间分布格局 . , 28, 491-498.] [本文引用: 3]
[20]
PostWM, PastorJ, ZinkePJ, StangenbergerAG (1985). Global patterns of soil nitrogen storage ., 317, 613-616. [本文引用: 1]
[21]
SchimelDS, BraswellBH, HollandEA, McKeownR, OjimaDS, PainterTH, PartonWJ, TownsendAR (1994). Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils ., 8, 279-293. [本文引用: 1]
[22]
TianH, WangS, LiuJ, PanS, ChenH, ZhangC, ShiX (2006). Patterns of soil nitrogen storage in China . . doi: 10.1029/2005GB002464. [本文引用: 1]
[23]
WynnJG, BirdMI, VellenL, Grand-ClementE, CarterJ, BerrySL (2006). Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls . . doi: 10.1029/2005GB002576. [本文引用: 1]
[24]
YangX, TangZY, JiCJ, LiuHY, MaWH, MohhamotA, ShiZY, SunW, WangT, WuX, YuSL, YueM, ZhengCY (2014). Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China ., 4, 5488. doi: 10.1038/srep05448.
[25]
YangYH, MaWH, MohhamotA, FangJY (2007). Storage, patterns and controls of soil nitrogen in China ., 17, 776-785. [本文引用: 1]
[26]
ZhangL, WuBF, LiXS, XingQ (2014). Classification system of China land cover for carbon budget ., 34, 7158-7166. (in Chinese with English abstract)[张磊, 吴炳方, 李晓松, 邢强 (2014). 基于碳收支的中国土地覆被分类系统 . , 34, 7158-7166.] [本文引用: 2]
[27]
ZhaoM, ZhouGS (2004). Carbon storage of forest vegetation and its relationship with climatic factors ., 24, 50-54. (in Chinese with English abstract)[赵敏, 周广胜 (2004). 中国森林生态系统的植物碳贮量及其影响因子分析 . , 24, 50-54.] [本文引用: 2]
[28]
ZhouXH, TalleyM, LuoYQ (2009). Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA ., 12, 1369-1380. [本文引用: 2]
[29]
ZhouYR, YuZL, ZhaoSD (2000). Carbon storage and budget of major Chinese forest types ., 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡 . , 24, 518-522.] [本文引用: 2]
Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau 1 2008
... 生物量C、N、P密度随年降水量和土壤N、P含量增加显著升高, 其中年降水量的拟合优度最高.水分是中国北方植被分布和生长的限制因素, 水分的增加促进植物的生长(Bai et al., 2008), 而C作为植物生物量最主要的组成元素, 其密度也会随水分增加而增加.同理, N、P密度也与C密度一样随降水量增加而增加.除了水分以外, 土壤养分含量的增加也会促进植物的生长(Chapin III, 1980; Chapin III et al., 1986), 所以生物量C、N、P密度也会相应增加.而土壤N含量与生物量C、N、P密度的拟合优度都比土壤P含量更高, 这可能是由于中国北方灌丛生态系统的降水与土壤N含量有较强的相关性 (r = 0.62), 降水可能会带来更多的N输入(N沉降和凋落物)(Brooks, 2003; Zhou et al., 2009). ...
Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert 1 2003
... 生物量C、N、P密度随年降水量和土壤N、P含量增加显著升高, 其中年降水量的拟合优度最高.水分是中国北方植被分布和生长的限制因素, 水分的增加促进植物的生长(Bai et al., 2008), 而C作为植物生物量最主要的组成元素, 其密度也会随水分增加而增加.同理, N、P密度也与C密度一样随降水量增加而增加.除了水分以外, 土壤养分含量的增加也会促进植物的生长(Chapin III, 1980; Chapin III et al., 1986), 所以生物量C、N、P密度也会相应增加.而土壤N含量与生物量C、N、P密度的拟合优度都比土壤P含量更高, 这可能是由于中国北方灌丛生态系统的降水与土壤N含量有较强的相关性 (r = 0.62), 降水可能会带来更多的N输入(N沉降和凋落物)(Brooks, 2003; Zhou et al., 2009). ...
The mineral nutrition of wild plants 1 1980
... 生物量C、N、P密度随年降水量和土壤N、P含量增加显著升高, 其中年降水量的拟合优度最高.水分是中国北方植被分布和生长的限制因素, 水分的增加促进植物的生长(Bai et al., 2008), 而C作为植物生物量最主要的组成元素, 其密度也会随水分增加而增加.同理, N、P密度也与C密度一样随降水量增加而增加.除了水分以外, 土壤养分含量的增加也会促进植物的生长(Chapin III, 1980; Chapin III et al., 1986), 所以生物量C、N、P密度也会相应增加.而土壤N含量与生物量C、N、P密度的拟合优度都比土壤P含量更高, 这可能是由于中国北方灌丛生态系统的降水与土壤N含量有较强的相关性 (r = 0.62), 降水可能会带来更多的N输入(N沉降和凋落物)(Brooks, 2003; Zhou et al., 2009). ...
The nature of nutrient limitation in plant communities 1 1986
... 生物量C、N、P密度随年降水量和土壤N、P含量增加显著升高, 其中年降水量的拟合优度最高.水分是中国北方植被分布和生长的限制因素, 水分的增加促进植物的生长(Bai et al., 2008), 而C作为植物生物量最主要的组成元素, 其密度也会随水分增加而增加.同理, N、P密度也与C密度一样随降水量增加而增加.除了水分以外, 土壤养分含量的增加也会促进植物的生长(Chapin III, 1980; Chapin III et al., 1986), 所以生物量C、N、P密度也会相应增加.而土壤N含量与生物量C、N、P密度的拟合优度都比土壤P含量更高, 这可能是由于中国北方灌丛生态系统的降水与土壤N含量有较强的相关性 (r = 0.62), 降水可能会带来更多的N输入(N沉降和凋落物)(Brooks, 2003; Zhou et al., 2009). ...
C, N, P stoichiometry in soil, is there a ‘Redfield ratio’ for the microbial biomass? 2 2007