Effects of nitrogen addition on soil respiration in shrublands in Mt. Dongling, Beijing, China
ZHANGJian-Hua1,2,*,, TANGZhi-Yao3, SHENHai-Hua2, FANGJing-Yun2,3 1Xinzhou Normal University, Xinzhou, Shanxi 034000, China2State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, Chinaand 3College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China 通讯作者:* E-mail: 1042584932@qq.com; wj123-2007@163.com* E-mail: 1042584932@qq.com; wj123-2007@163.com 责任编辑:ZHANGJian-HuaTANGZhi-YaoSHENHai-HuaFANGJing-Yun 收稿日期:2016-03-9 接受日期:2016-09-21 网络出版日期:2017-01-10 版权声明:2017植物生态学报编辑部本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。 基金资助:中国科学院战略先导性科技专项(XDA- 05050300)和全球变化国家重大科学研究计划(2010- CB950600和2014CB954004)
展开
摘要 土壤呼吸是陆地生态系统碳收支的重要组成部分。与森林相比, 自然或半自然的灌丛主要分布在养分贫瘠的地区, 通常认为它们对环境变化较为敏感。外源氮输入可能会显著影响灌丛的土壤呼吸。迄今为止, 人们对大气氮沉降对灌丛土壤呼吸的影响知之甚少。该文通过氮添加试验, 研究了北京东灵山荆条(Vitex negundo var. heterophylla)和绣线菊(Spiraea salicifolia)灌丛土壤呼吸及其对不同氮添加水平(对照(0)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1))的响应。结果表明: 自然条件下, 荆条和绣线菊灌丛的土壤总呼吸年通量为5.91和4.23 t C·hm-2·a-1, 异养呼吸通量为5.76和3.53 t C·hm-2·a-1, 荆条和绣线菊灌丛的总呼吸和异养呼吸均与土壤温度呈显著的指数关系。荆条和绣线菊灌丛土壤总呼吸温度敏感性系数(Q10)的变化范围分别为1.44-1.58和1.43-1.98, 异养呼吸Q10的变化范围分别为1.38-2.11和1.49-1.88。短期氮添加抑制了荆条灌丛的自养呼吸, 而对土壤总呼吸和异养呼吸影响不明显; 氮添加促进了绣线菊灌丛的异养呼吸, 而对土壤总呼吸和自养呼吸均无显著影响; 氮添加对两种灌丛土壤呼吸年通量及土壤总呼吸Q10均无显著影响。
关键词:氮沉降;土壤呼吸;碳循环;温度敏感性;温带灌丛 Abstract Aims Soil respiration from terrestrial ecosystems is an important component of terrestrial carbon budgets. Compared to forests, natural or semi-natural shrublands are mostly distributed in nutrient-poor sites, and usually considered to be relatively vulnerable to environmental changes. Increased nitrogen (N) input to ecosystems may remarkably influence soil respiration in shrublands. So far the effects of N deposition on shrubland soil respiration are poorly understood. The aim of this study is to investigate the soil respiration of Vitex negundo var. heterophylla and Spiraea salicifolia shrublands and their response to N deposition. Methods We carried out a N enrichment experiment in V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, with four N addition levels (N0, control, 0; N1, low N, 20 kg N·hm-2·a-1; N2, medium N, 50 kg N·hm-2·a-1 and N3, high N, 100 kg N·hm-2·a-1). Respiration was measured from 2012-2013 within all treatments. Important findings Under natural conditions, annual total and heterotrophic respiration were 5.91 and 4.23, 5.76 and 3.53 t C·hm-2·a-1 for the V. negundo var. heterophylla and S. salicifolia shrublands, respectively and both were not affected by short-term N addition. In both shrubland types, soil respiration rate exhibited significant exponential relationships with soil temperature. Temperature sensitivity (Q10) of total soil respiration in V. negundo var. heterophylla and S. salicifolia shrublands ranged from 1.44 to 1.58 and 1.43 to 1.98, and Q10 of heterotrophic soil respiration ranged from 1.38 to 2.11 and 1.49 to 1.88, respectively. Short-term N addition decreased only autotrophic respiration rate during the growing season, but had no significant effects on total and heterotrophic soil respiration in V. negundo var. heterophylla shrubland. In contrast, N addition enhanced the heterotrophic soil respiration rate and did not influence autotrophic and total soil respiration in S. salicifolia shrubland.
2012年5月, 在荆条和绣线菊灌丛内分别选择具有代表性、立地条件基本一致的地段, 按照随机区组试验设计方法设置实验。在每种灌丛类型内, 分别设置12个5 m × 5 m的实验样方, 相邻样方之间设置5-10 m的缓冲带(图1A)。在每个5 m × 5 m样方中随机放置3个直径20 cm的Collar环, 用于测量土壤总呼吸(Rs)。通过壕沟法切断根系区分自养呼吸和异养呼吸: 在每个样方四周挖掘1 m深(植物根系分布层以下)的壕沟后, 用厚塑料布贴在壕沟周围后将土回填, 隔离小区周围的根系, 以阻止根系向小区内生长(杜恩在, 2013)。再除去样方内所有活体植物, 设置3个Collar环, 用于土壤微生物呼吸的测定(图1B), 土壤总呼吸与土壤微生物呼吸之差为根系呼吸。 显示原图|下载原图ZIP|生成PPT 图1北京东灵山地区灌丛氮添加试验设计。A, 样方示意图。B, Collar环示意图。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。 -->Fig. 1Experimental design in shrublands on Mt. Dongling, Beijing, northern China. A, Schematic diagram of Quadrats. B, Schematic diagram of Collar rings. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. -->
施肥梯度主要参照中国森林养分添加实验网络(NEECF) (Du et al., 2013)。添加氮素为尿素, 共设置4个水平, 分别为对照(N0)、低氮(N1, 相当于20 kg N·hm-2·a-1)、中氮(N2, 相当于50 kg N·hm-2·a-1)和高氮(N3, 相当于100 kg N·hm-2·a-1)。从2012年5月开始, 一直到2013年9月在生长季(5-9月)每月月初进行施肥。施肥主要通过肩背式喷雾器方式进行: 施肥前将每个样地所需尿素溶于2 L清水中(Du et al., 2013), 在样地灌丛下人工均匀地进行喷洒; 每次施肥时, 对照样地(N0)喷洒等量的清水。
荆条和绣线菊灌丛的土壤总呼吸存在明显的季节格局(表1, p < 0.001), 总体呈单峰型。2012年的峰值均出现在8月, 2013年的峰值出现在7月(图2A, 2D)。重复测量方差分析结果显示, 在生长季, 施肥对荆条灌丛和绣线菊灌丛土壤总呼吸均无显著影响(p > 0.05) (表2)。 显示原图|下载原图ZIP|生成PPT 图2不同氮添加对荆条(左)和绣线菊(右)灌丛土壤总呼吸(Rs)、自养呼吸(Ra)及异养呼吸(Rh)的影响(平均值±标准误差)。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。 -->Fig. 2Influence of different nitrogen addition on the soil total respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) of Vitex negundo var. heterophylla (left) and Spiraea salicifolia (right) shrublands (mean ± SE). N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. -->
Table 2 表2 表2时间和氮添加处理对荆条和绣线菊灌丛土壤总呼吸(Rs)、异养呼吸(Rh)及自养呼吸(Ra)影响的双因子方差分析 Table 2Two-way ANOVA test results for the effects of time and nitrogen addition treatments on total soil respiration (Rs), heterotrophic respiration (Rh) and autotrophic respiration rate (Ra) in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands
自由度 Degree of freedom
Rs
Rh
Ra
F
p
F
p
F
p
荆条灌丛 Vitex negundo var. heterophylla shrubland
处理 Treatment
3
1.51
0.218
0.33
0.807
3.33
0.024
时间 Time1)
9
52.49
<0.001
33.18
<0.001
14.60
<0.001
处理×时间 Treatment × Time
27
0.42
0.994
0.45
0.989
0.88
0.631
绣线菊灌丛 Spiraea salicifolia shrubland
处理 Treatment
3
1.49
0.224
4.43
0.006
0.42
0.740
时间 Time
9
88.65
<0.001
42.90
<0.001
7.25
<0.001
处理×时间 Treatment × Time
27
0.39
0.996
0.49
0.980
0.32
0.999
1) measuring time of soil and heterotrophic respiration.1) 土壤呼吸和异养呼吸的测量时间。 新窗口打开 荆条和绣线菊灌丛土壤总呼吸与土壤温度呈显著的指数关系(图3)。两灌丛对氮添加的响应不同, 具体表现在, 低高氮(N1, N3)处理和中氮(N2)处理在一定程度上分别提高和降低了荆条灌丛土壤呼吸Q10, 而绣线菊灌丛在相应氮处理的土壤呼吸Q10的变化却表现出相反趋势。N0、N1、N2、N3处理下荆条和绣线菊灌丛土壤总呼吸的Q10分别为1.52、1.58、1.44、1.55和1.54、1.43、1.98、1.44 (表3)。施肥没有显著改变Q10。各处理水平的土壤总呼吸与土壤水分均显著正相关(图4)。 显示原图|下载原图ZIP|生成PPT 图3不同氮添加处理的荆条和绣线菊灌丛土壤总呼吸(Rs)与土壤温度的关系。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。 -->Fig. 3Relationship between total soil respiration (Rs) and soil temperature in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands under different nitrogen addition treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. -->
显示原图|下载原图ZIP|生成PPT 图4不同处理的荆条和绣线菊灌丛土壤总呼吸(Rs)与土壤含水量的关系。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。 -->Fig. 4Relationship between total soil respiration (Rs) and soil moisture in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands under different nitrogen addition treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. -->
Table 3 表3 表3土壤呼吸(R, μmol CO2·m-2·s-1)和组分与5 cm土壤温度(T, °C))的指数关系模型(R = aeKt) Table 3Models (R = aeKt) for the relationship between total and component of soil respiration (R, μmol CO2·m-2·s-1) and soil temperature 5 cm under the surface
灌丛类型 Shrubland type
呼吸组分 Respiration component
处理 Treatment
n
R2
参数 Parameter
a
K
Q10
荆条 Vitex negundo var. heterophylla
土壤总呼吸
N0
217
0.13
1.322
0.042
1.52
Total soil respiration
N1
227
0.08
0.878
0.046
1.58
N2
231
0.13
1.296
0.036
1.44
N3
234
0.12
1.109
0.044
1.55
异养呼吸
N0
220
0.20
1.183
0.035
1.42
Heterotrophic respiration
N1
221
0.26
0.327
0.075
2.11
N2
224
0.14
1.137
0.032
1.38
N3
242
0.18
0.594
0.058
1.78
绣线菊 Spiraea salicifolia
土壤总呼吸
N0
228
0.28
1.192
0.043
1.54
Total soil respiration
N1
218
0.16
1.445
0.036
1.43
N2
232
0.39
0.678
0.069
1.98
N3
216
0.15
1.609
0.037
1.44
异养呼吸
N0
224
0.33
0.753
0.049
1.63
Heterotrophic respiration
N1
221
0.22
1.003
0.040
1.49
N2
234
0.39
0.666
0.063
1.88
N3
213
0.31
0.942
0.047
1.59
N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. Q10, temperature sensitivity.N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。Q10, 温度敏感性系数。 新窗口打开
2.2 氮添加对土壤异养呼吸的影响
荆条和绣线菊灌丛的异养呼吸存在明显的季节格局, 总体呈单峰型。荆条灌丛的土壤异养呼吸在2012和2013年的峰值分别出现在8月和7月(图2B, 2E), 而绣线菊灌丛的峰值均出现在7月。各处理对荆条灌丛的异养呼吸无显著影响(图2B), 在生长季, N2和N3处理显著地促进了绣线菊灌丛的异养呼吸, 而N1处理效果不显著(图2E; 表2)。 各氮处理水平下, 荆条和绣线菊灌丛土壤异养呼吸与土壤温度呈显著的指数关系(图5; 表3)。氮添加对两灌丛土壤异养呼吸温度敏感性的影响不同, N1和N3处理提高了荆条灌丛土壤异养呼吸温度敏感性, 而N2处理降低了其温度敏感性; N0、N1、N2、N3处理下的Q10分别为1.42、2.11、1.38、1.78 (图5; 表3)。N1和N3处理降低了绣线菊灌丛土壤异养呼吸温度敏感性, 而N2处理提高了其温度敏感性; N0、N1、N2、N3处理下的Q10分别为1.63、1.49、1.88、1.59。各氮处理水平下, 荆条和绣线菊灌丛的土壤异养呼吸与土壤水分均显著正相关(图6)。 显示原图|下载原图ZIP|生成PPT 图5不同氮添加处理的荆条和绣线菊灌丛土壤异养呼吸(Rh)与土壤温度的关系。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。 -->Fig. 5Relationship between soil heterotrophic respiration (Rh) and soil temperature in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands under different nitrogen addition treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. -->
显示原图|下载原图ZIP|生成PPT 图6不同氮处理的荆条和绣线菊灌丛土壤异养呼吸(Rh)与土壤含水量的关系。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。 -->Fig. 6Relationship between soil heterotrophic respiration (Rh) and soil moisture in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands under different nitrogen addition treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. -->
在荆条灌丛样地, N0、N1、N2和N3处理的土壤总呼吸年碳排放量分别为: 5.91、7.93、5.30和5.09 t C·hm-2·a-1, 低氮处理的排放比对照高出34.1%, 中氮和高氮处理的排放量几乎相同, 排放量均低于对照, 约降低了10.4%; 氮添加降低了异养呼吸, 各氮处理的异养呼吸年排放量分别为: 5.76、3.56、5.04和4.25 t C·hm-2·a-1 (图7A、7B)。方差分析结果表明, 氮添加对荆条灌丛土壤呼吸、异养呼吸年通量均无显著影响。 显示原图|下载原图ZIP|生成PPT 图7氮添加对荆条和绣线菊灌丛异养呼吸(Rh)和土壤总呼吸(Rs)年通量的影响(平均值±标准误差)。相同字母a和b上标表示各处理间无显著差异(p > 0.05)。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。 -->Fig. 7Influence of nitrogen addition on soil heterotrophic (Rh) and total (Rs) respiration in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands (mean ± SE). The same letter a and b indicate no significant (p > 0.05) among treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. -->
在绣线菊样地, 各氮添加样地的土壤总呼吸年碳排放量分别为: 4.23、3.60、3.60和5.99 t C·hm-2·a-1; 高氮处理的排放比对照高出41.7%; 中氮和低氮处理的排放量相同, 均低于对照, 约降低了14.7%; 各氮添加样地的异养呼吸同对照组很接近(图7A、7B)。氮添加对绣线菊灌丛土壤总呼吸、异养呼吸年通量均无显著的影响。 从图8和表4可知, 荆条样地对照组中异养呼吸占总呼吸比例最高(95.0%); 中氮处理(N2)下异养呼吸所占比例与对照组的接近; 低氮处理(N1)的异养呼吸占总呼吸的比例最低(47.0%)。在绣线菊样地, 中氮(N2)处理样地的异养呼吸占总呼吸的比例最高(95.0%), 高氮(N3)处理的异养呼吸贡献最低(54.5%)。 显示原图|下载原图ZIP|生成PPT 图8氮添加对荆条和绣线菊灌丛异养呼吸组分贡献率(Rh/Rs)的影响(平均值±标准误差)。图中相同字母表示各处理间差异不显著(p > 0.05)。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。 -->Fig. 8Influence of nitrogen addition on contributions of heterotrophic respiration to total soil respiration (Rh/Rs) in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands (mean ± SE). The same letter a and b indicate no significant (p > 0.05) among treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively. -->
Table 4 表4 表42013年不同处理下土壤总呼吸和异养呼吸的年通量(平均值±标准误差, n = 3) Table 4Annual flux of soil total (Rs) and heterotrophic (Rh) respiration (t C·hm-2·a-1) in 2013 under different nitrogen addition treatments (mean ± SE, n = 3)
AllisonSD, CzimczikCI, TreseserKK (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest ., 14, 1156-1168. [本文引用: 1]
[2]
AmmannC, FlechardCR, LeifeldJ, NeftelA, FuhrerJ (2007). The carbon budget of newly established temperate grassland depends on management intensity .121, 5-20. [本文引用: 1]
[3]
BowdenRD, DavidonE, SavageK, ArabiaC, SteudlerP (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest ., 196, 43-56. [本文引用: 4]
[4]
BowdenRD, NadelhofferKJ, BooneRD, MelilloJM, GarrisonJB (1993). Contributions of aboveground litter, below- ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest ., 23, 1402-1407. [本文引用: 1]
[5]
BronsonDR, GowerST, TannerM, LinderS, van HerkI (2008). Response of soil surface CO2 flux in a boreal forest to ecosystem warming .14, 856-867. [本文引用: 1]
[6]
BurtonAJ, PregitzerKS, ZoggGP, ZakDR (1998). Drought reduces root respiration in sugar maple forests ., 8, 771-778. [本文引用: 1]
ChenBY, LiuSR, GeJP, WangH, ChangJG, SunTT, MaJM, ShiG (2007). The relationship between soil respiration and the temperature at different soil depths in subalpine coniferous forest of western Sichuan Province ., 18, 1219-1224. (in Chinese with English abstract)[陈宝玉, 刘世荣, 葛剑平, 王辉, 常建国, 孙甜甜, 马姜明, 施恭 (2007). 川西亚高山针叶林土壤呼吸速率与不同土层温度的关系 . , 18, 1219-1224.] [本文引用: 1]
[9]
ChenST, HuangY, ZouJW, ShenQR, HuZH, QinYM, ChenHS, PanGX (2010). Modeling interannual variability of global soil respiration from climate and soil properties ., 150, 590-605. [本文引用: 1]
[10]
ClevelandCC, TownsendAR (2006). Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere .103, 10316-10321. [本文引用: 1]
[11]
CurielYJ, JanssensIA, CarraraA, CeulemansR (2004). Annual Ql0 of soil respiration reflects plant phenological patterns as well as temperature sensitivity ., 10, 161-169. [本文引用: 1]
[12]
DavidsonEA, JanssensIA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change .440, 165-173. [本文引用: 1]
[13]
DemolingF, NilssonLO, BaathE (2008). Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils ., 40, 370-379. [本文引用: 1]
[14]
DengQ, ZhouGY, LiuJX, LiuSZ, DuanHL, ChenXM, ZhangDQ (2009). Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China .33, 1023-1033. (in Chinese with English abstract)[邓琦, 周国逸, 刘菊秀, 刘世忠, 段洪浪, 陈小梅, 张德强 (2009). CO2浓度倍增、高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响 . , 33, 1023-1033.]
[15]
DiemerM (1997). Effects of elevated CO2 on gas exchange characteristics of alpine grassland ., 18, 177-182. [本文引用: 1]
[16]
DuEZ (2013). Impacts of Nitrogen Enrichment on Carbon Cycling in an Old-growth Larch (Larix gmelinii Rupr.) Forest . . (in Chinese with English abstract)[杜恩在 (2013). 氮添加对兴安落叶松原始林碳收支主要过程的影响 . .] [本文引用: 4]
[17]
DuEZ, ZhouZ, LiP, HuXY, MaYC, WangW, ZhengCY, ZhuJX, HeJS, FangJY (2013). NEECF: A project of nutrient enrichment experiments in China’s forests ., 6, 428-435.
[18]
ElberlingB, BrandtKK (2003). Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling ., 35, 263-272. [本文引用: 1]
[19]
FengY, MaKM, ZhangYX, QiJ, ZhangJY (2007). Species abundance distribution of Quercus liaotungensis forest along altitudinal gradient in Dongling Mountain, Beijing . , 27, 4743-4750. (in Chinese with English abstract)[冯云, 马克明, 张育新, 祁建, 张洁瑜 (2007). 北京东灵山辽东栎(Quercus liaotungensis)林沿海拔梯度的物种多度分布 . , 27, 4743-4750.] [本文引用: 1]
[20]
FiskMC, FaheyTJ (2001). Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests ., 53, 201-223. [本文引用: 1]
GallowayJN, TownsendAR, ErismanJW, BekundaM, CaiZ, FreneyJR, MartinelliLA, SeitzingerSP, SuttonMA (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions .20, 889-892. [本文引用: 1]
[23]
GorissenA, TietemaA, JoostenNN, EstiarteM, PenuelasJ, SowerbyA, BridgetA, EmmettBA, BeierC (2004). Climate change affects carbon allocation to the soil in shrublands .7, 650-661. [本文引用: 1]
[24]
HanY, ZhangZ, WangCH, JiangFH, XiaJY (2012). Effects of mowing and nitrogen addition on soil respiration in three patches in an old field grassland in Inner Mongolia ., 5, 219-228. [本文引用: 1]
[25]
HibbardKA, LawBE, ReichsteinM, SulzmanJ (2005). An analysis of soil respiration across northern hemisphere temperate ecosystems ., 73, 29-70. [本文引用: 1]
[26]
HuHF, WangZH, LiuGH, FuBJ (2006). Vegetation carbon storage of major shrublands in China ., 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量 . , 30, 539-544.] [本文引用: 1]
[27]
HuSP, YuXX, GuoYS (2010). Quantification analysis on site conditions of natural Vitex negundo community in Beijing mountainous area ., 3, 60-63. (in Chinese with English abstract)[胡淑萍, 余新晓, 郭永盛 (2010). 北京山区天然荆条灌丛立地条件的数量化分析 . , 3, 60-63.] [本文引用: 1]
[28]
HuZH, LiHM, YangYP, ChenST, LiCZ, ShenSH (2010). Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broad-leaved forest ., 31, 1726-1732. (in Chinese with English abstract)[胡正华, 李涵茂, 杨燕萍, 陈书涛, 李岑子, 申双和 (2010). 模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响 . , 31, 1726-1732.] [本文引用: 2]
[29]
JassalRS, BlackTA, CaiT, KaiM, LiZ, Gaumont-GuayD, NesicZ (2007). Components of ecosystem respiration and an estimate of net primary productivity of an Intermediate-aged Douglas-fir stand ., 144, 44-57. [本文引用: 2]
[30]
JiaSX, WangZQ, MeiL, SunY, QuanXK, ShiJW, YuSQ, SunHL, GuJC (2007). Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantations in China . , 31, 372-379. (in Chinese with English abstract)[贾淑霞, 王政权, 梅莉, 孙玥, 全先奎, 史建伟, 于水强, 孙海龙, 谷加存 (2007). 施肥对落叶松和水曲柳人工林土壤呼吸的影响 . , 31, 372-379.] [本文引用: 2]
[31]
LiDJ, MoJM, FangYT, PengSL, GundersenP (2003). Impact of nitrogen deposition on forest plants ., 3, 1891-1900. (in Chinese with English abstract)[李德军, 莫江明, 方运霆, 彭少麟, GundersenP (2003). 氮沉降对森林植物的影响 . , 3, 1891-1900.] [本文引用: 1]
[32]
LiQL, XiaoHL, ZengXD, FengYJ, MoJM (2013). Effects of simulated nitrogen deposition on soil chemical properties of forests ., 22, 1872-1878. (in Chinese with English abstract)[李秋玲, 肖辉林, 曾晓舵, 冯乙晴, 莫江明 (2013). 模拟氮沉降对森林土壤化学性质的影响 . , 22, 1872-1878.] [本文引用: 1]
[33]
LiWB, JinCJ, JingYL, WuJB, YuanFH, GuanDX, WangAZ (2014). Response of soil respiration to enhanced nitrogen deposition in broadleaved Korean pine forest in Changbai Mountains ., 12, 89-93. (in Chinese with English abstract)[李伟斌, 金昌杰, 井艳丽, 吴家兵, 袁凤辉, 关德新, 王安志 (2014). 长白山阔叶红松林土壤呼吸对氮沉降增加的响应 . , 12, 89-93.] [本文引用: 1]
LiuCQ (1994). The study on techniques in determining shrub phytomass ., 3, 61-65. (in Chinese with English abstract)[刘存琦 (1994). 灌木植物量测定技术的研究 . , 3, 61-65.] [本文引用: 1]
[36]
LiuSH, FangJY (1997). Effect factors of soil respiration and the temperature’s effects on soil respiration in the global scale ., 17, 469-476. (in Chinese with English abstract)[刘绍辉, 方精云 (1997). 土壤呼吸的影响因素及全球尺度下温度的影响 . , 17, 469-476.] [本文引用: 1]
[37]
LiuSM, JiangQC, LiY (2010). Response of soil respiration to simulated nitrogen deposition under the middle-aged Eucalyptus grandis plantation in Ya’an City . 21, 60-64. (in Chinese with English abstract)[刘盛梅, 姜清成, 李芸 (2010). 华西雨屏区巨桉中龄林土壤呼吸对模拟氮沉降的响应 . , 21, 60-64.] [本文引用: 2]
[38]
LiuXR, RenJQ, LiSG, ZhangQW (2015). Effects of simul- ated nitrogen deposition on soil net nitrogen mineralization in the meadow steppe of Inner Mongolia, China ., 10, e0134039. doi: 10.1371/journal.pone. 0134039 [本文引用: 1]
[39]
MatsonPA, McdowellWH, TownsendAR, VitousekPM (1999). The globalization of N deposition: Ecosystem consequences in tropical environments ., 46, 67-83. [本文引用: 1]
[40]
MicksP, AberJD, BooneRD, DavidsonEA (2004). Short term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen enriched temperate forests ., 196, 57-70. [本文引用: 1]
[41]
MoJM, FangYT, XuGL, LiDJ, XueJH (2005). The short- term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China ., 25, 682-690. (in Chinese with English abstract)[莫江明, 方运霆, 徐国良, 李德军, 薛璟花 (2005). 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟氮沉降的短期响应 . , 25, 682-690.] [本文引用: 2]
[42]
PengY, ChenG, ChenGT, LiangZ, TuLH (2015). Effects of simulated nitrogen deposition on soil respiration in a secondary evergreen broad-leaved forest on Wawushan Mountain ., 21, 733-739. (in Chinese with English abstract)[彭勇, 陈刚, 陈冠陶, 梁政, 涂利华 (2015). 模拟氮沉降对瓦屋山常绿阔叶次生林土壤呼吸的影响 . , 21, 733-739.] [本文引用: 3]
[43]
QiYC, LiuXC, DongYS, PengQ, HeYT, SunLG, JiaJQ, CaoCC (2014). Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China .26, 834-845. [本文引用: 1]
[44]
QuanQ, ZhangZ, HeNP, SuHX, WenXF, SunXM (2015). Short-term effect of nitrogen addition on soil respiration of three temperate forests in Dongling Mountain .3, 797-804. (in Chinese with English abstract)[全权, 张震, 何念鹏, 苏宏新, 温学发, 孙晓敏 (2015). 短期氮添加对东灵山三种森林土壤呼吸的影响 . , 3, 797-804.] [本文引用: 1]
RaichJW, PolterCS (1995). Global patterns of carbon dioxide emissions from soils ., 9, 23-36. [本文引用: 2]
[47]
SavageKE, DavidsonEA (2001). Interannual variation of soil respiration in two New England forests .15, 337-350. [本文引用: 1]
[48]
SitaulaBK, BakkenLR, AbrahamsenG (1995). N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil ., 27, 1401-1408. [本文引用: 1]
[49]
SottaED, MeirP, MalhiY, NobreAD, HodnettM, GraceJ (2004). Soil CO2 efflux in a tropical forest in the central Amazon ., 10, 601-617. [本文引用: 1]
[50]
StevensCJ, DiseNB, MountfordJO, GowingDJ (2004). Impact of nitrogen deposition on the species richness of grasslands .303, 1876-1879. [本文引用: 1]
[51]
TresederKK (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies ., 164, 347-355. [本文引用: 1]
[52]
TuLH, DaiHZ, HuTX, ZhangJ, LuoSH (2011). Effects of simulated nitrogen deposition on soil respiration in aBambusa pervariabilis × Dendrocala mopsi plantation in rainy area of West China . , 22, 829-836. (in Chinese with English abstract)[涂利华, 戴洪忠, 胡庭兴, 张健, 雒守华 (2011). 模拟氮沉降对华西雨屏区撑绿杂交竹林土壤呼吸的影响 . , 22, 829-836.] [本文引用: 1]
[53]
TuLH, HuTX, ZhangJ (2010). Effects of simulated nitrogen deposition on the fine root characteristics and soil respiration in a Pleioblastus amarus plantation in rainy area of West China . , 21, 2472-2478. (in Chinese with English abstract)[涂利华, 胡庭兴, 张健 (2010). 模拟氮沉降对华西雨屏区苦竹林细根特性和土壤呼吸的影响 . , 21, 2472-2478.] [本文引用: 2]
[54]
WangXG, ZhuB, WangYQ, ZhengXH (2007). Soil respiration and its sensitivity to temperature under different land use conditions ., 27, 1960-1968. (in Chinese with English abstract)[王小国, 朱波, 王艳强, 郑循华 (2007). 不同土地利用方式下土壤呼吸及其温度敏感性 . , 27, 1960-1968.] [本文引用: 1]
[55]
WesselWW, TietemaA, BeierC, EmmettBA, PeñuelasJ, NielsenTR (2004). A qualitative ecosystem assessment for different shrublands in western Europe under impact of climate change ., 7, 662-671. [本文引用: 1]
[56]
WuD, ZhangR, GaoSH, FuX, DengHB, ShaoGF, ZhangXD (2015). Effects of simulated nitrogen deposition on the each component of soil respiration in the Populus L. plantations in a riparian zone of the mid-lower Yangtze River . , 35, 717-724. (in Chinese with English abstract)[吴迪, 张蕊, 高升华, 付晓, 邓红兵, 邵国凡, 张旭东 (2015). 模拟氮沉降对长江中下游滩地杨树林土壤呼吸各组分的影响 . , 35, 717-724.] [本文引用: 2]
[57]
XieHH, YangLL, BaoZY (2006). Resources of the Spiraeas and their application to landscaping . , 42(7), 104-112. (in Chinese with English abstract)[谢华辉, 杨莉莉, 包志毅 (2006). 绣线菊属植物资源及其在园林中的应用前景 . , 42(7), 104-112.] [本文引用: 1]
[58]
XuM, QiY (2001). Spatial and seasonal variations ofQ10 determined by soil respiration measurements at a Sierra Nevada forest . , 15, 687-696. [本文引用: 1]
[59]
YangQP, XuM, LiuHS, WangJS, LiuLX, ChiYG, ZhengYP (2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration ., 31, 2301-2311. (in Chinese with English abstract)[杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普 (2011). 土壤呼吸温度敏感性的影响因素和不确定性 . , 31, 2301-2311.] [本文引用: 1]
[60]
YaoH, HuXY, ZhuJL, ZhuJX, JiCJ, FangJY (2015). Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing ., 39, 849-856. (in Chinese with English abstract)[姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云 (2015). 北京东灵山3种温带森林土壤呼吸及其20年的变化 . , 39, 849-856.] [本文引用: 2]
[61]
ZakDR, PregitzerKS, CurtisPS, VogelCS, HolmesWE, LussenhopJ (2000). Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen byPopulus tremuloides .10, 34-46. [本文引用: 1]
[62]
ZhangDQ, ShiPL, ZhangXZ (2005). Some advance in the main factors controlling soil respiration ., 20, 778-785. (in Chinese with English abstract)[张东秋, 石培礼, 张宪洲 (2005). 土壤呼吸主要影响因素的研究进展 . , 20, 778-785.] [本文引用: 1]
[63]
ZhangJH (2015). Effects of Nitrogen Addition on Carbon Cycling of Shrublands in Mt. Dongling, Beijing . . (in Chinese with English abstract)[张建华 (2015). 氮添加对北京东灵山灌丛碳循环的影响 . .] [本文引用: 1]
[64]
ZhangJR, GaoJR, CuiQ, YangQL (2013). Point pattern analysis for relationships of Vitex negundo var. heterophylla in three typical stands . 30, 226-233. (in Chinese with English abstract)[张金瑞, 高甲荣, 崔强, 杨麒麟 (2013). 3种典型立地荆条种群及种间分布的空间点格局 . , 30, 226-233.] [本文引用: 1]
[65]
ZhangY, HongM (2014). Response of soil respiration to experimental warming and nitrogen addition in Inner Mongolia desert steppe ., 22, 1227-1231. (in Chinese with English abstract)[张宇, 红梅 (2014). 内蒙古荒漠草原土壤呼吸对模拟增温和氮素添加的响应 . , 22, 1227-1231.] [本文引用: 1]
[66]
ZhengJJ, FangHJ, ChenSL, YuGR, ZhangPL, XiuMJ, ZhangYN (2012). Effects of N addition on soil organic carbon components in an alpine meadow on the eastern Qinghai-Tibetan Plateau ., 32, 5363-5372. (in Chinese with English abstract)[郑娇娇, 方华军, 程淑兰, 于贵瑞, 张裴雷, 徐敏杰, 李英年 (2012). 增氮对青藏高原东缘典型高寒草甸土壤有机碳组成的影响 . , 32, 5363-5372.] [本文引用: 1]
Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest 1 2008
... 近几十年来, 人类活动排放到大气中的活性氮迅速增加, 其总量超过了所有陆地生态系统自然产生的活性氮排放, 这种趋势在未来的数十年内还将持续下去(Galloway et al., 2004; 2008).氮沉降的持续增加已经对各生态系统的特征和过程产生了很大影响(Rabalais, 2002).大气氮沉降引起森林的土壤酸化、影响树木生长及生物多样性, 甚至严重威胁森林生态系统的结构与功能(Matson et al., 1999; 李德军等, 2003; 莫江明等, 2005; 李秋玲等, 2013).同样, 氮沉降会降低草原物种多样性(Stevens et al., 2004)、净氮矿化(Liu et al., 2015)及活性有机碳含量(郑娇娇等, 2012).作为全球碳循环流通的一个关键环节, 土壤呼吸也受到大气氮沉降增加的影响, 有关氮沉降对土壤呼吸影响的研究多集中于森林和草地(Han et al., 2012; 李伟斌等, 2014; Qi et al., 2014; 吴迪等, 2015).但在不同生态系统, 土壤呼吸对氮沉降的响应并不一致, 例如, 邓琦等(2009)发现高氮处理对鼎湖山南亚热带人工森林生态系统土壤呼吸的影响与季节的降雨量紧密相关.不同研究发现氮沉降可能促进(Diemer, 1997; Cleveland & Town-send, 2006; Ammann et al., 2007; 涂利华等, 2010; 张宇和红梅, 2014)或减缓土壤呼吸速率(贾淑霞等, 2007; 彭勇等, 2015), 但也有研究发现氮沉降对土壤呼吸无显著影响(Allison et al., 2008). ...
The carbon budget of newly established temperate grassland depends on management intensity 1 2007
... 近几十年来, 人类活动排放到大气中的活性氮迅速增加, 其总量超过了所有陆地生态系统自然产生的活性氮排放, 这种趋势在未来的数十年内还将持续下去(Galloway et al., 2004; 2008).氮沉降的持续增加已经对各生态系统的特征和过程产生了很大影响(Rabalais, 2002).大气氮沉降引起森林的土壤酸化、影响树木生长及生物多样性, 甚至严重威胁森林生态系统的结构与功能(Matson et al., 1999; 李德军等, 2003; 莫江明等, 2005; 李秋玲等, 2013).同样, 氮沉降会降低草原物种多样性(Stevens et al., 2004)、净氮矿化(Liu et al., 2015)及活性有机碳含量(郑娇娇等, 2012).作为全球碳循环流通的一个关键环节, 土壤呼吸也受到大气氮沉降增加的影响, 有关氮沉降对土壤呼吸影响的研究多集中于森林和草地(Han et al., 2012; 李伟斌等, 2014; Qi et al., 2014; 吴迪等, 2015).但在不同生态系统, 土壤呼吸对氮沉降的响应并不一致, 例如, 邓琦等(2009)发现高氮处理对鼎湖山南亚热带人工森林生态系统土壤呼吸的影响与季节的降雨量紧密相关.不同研究发现氮沉降可能促进(Diemer, 1997; Cleveland & Town-send, 2006; Ammann et al., 2007; 涂利华等, 2010; 张宇和红梅, 2014)或减缓土壤呼吸速率(贾淑霞等, 2007; 彭勇等, 2015), 但也有研究发现氮沉降对土壤呼吸无显著影响(Allison et al., 2008). ...
Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest 4 2004
... 本研究发现氮添加对荆条灌丛生长季的土壤总呼吸、异养呼吸无显著影响(图2; 表2).这一结果与长期实验所发现的施氮促进了土壤呼吸的结果 (Bowden et al., 2004; Micks et al., 2004; 莫江明等, 2005)并不一致.这可能与施肥时间短、实验期间降水量少等因素导致土壤养分利用效率很低有关, 有关机制还需要更长时间的施肥处理才能验证.N2和N3处理促进了绣线菊灌丛生长季土壤的异养呼吸, 这可能与氮添加导致绣线菊细根生物量和代谢强度增加、增加土壤有机质进而增强微生物活性等有关(Zak et al., 2000; Bowden et al., 2004; 涂利华等, 2010).氮添加对荆条和绣线菊灌丛土壤呼吸的年通量均无显著的影响, 可能原因在于东灵山灌丛地处阳坡, 白天蒸发量大, 再加上在实验期间雨量较少, 导致灌丛土壤含水量极低; 而土壤水分对土壤养分的溶解转移、微生物活动、矿物分化等都有重要影响, 土壤水分的缺乏导致上述过程受阻, 从而减弱了施肥对呼吸的影响.研究发现, 氮添加会改变土壤微生物群落结构, 而这种改变在不同类型森林会存在差异, 这会导致不同类型森林土壤呼吸对氮添加的响应不同.此外, 氮素的添加效应还取决于氮添加量、土壤氮素水平和土壤可利用性氮含量(Demoling et al., 2008).通常情况下, 低氮添加可以促进植物生长、增加凋落物产量, 使较多的碳分配至地下部分等, 最终增强土壤呼吸(Bowden et al., 2004), 而高氮添加会导致土壤可利用性氮含量增加, 引起植物地下部分的碳素分配减少(Litton et al., 2007), 最终抑制根际的自养呼吸(Treseder, 2004).氮添加还会降低微生物生物量和活性, 抑制土壤有机质分解, 使土壤呼吸降低(Bowden et al., 2004). ...
... ; Bowden et al., 2004; 涂利华等, 2010).氮添加对荆条和绣线菊灌丛土壤呼吸的年通量均无显著的影响, 可能原因在于东灵山灌丛地处阳坡, 白天蒸发量大, 再加上在实验期间雨量较少, 导致灌丛土壤含水量极低; 而土壤水分对土壤养分的溶解转移、微生物活动、矿物分化等都有重要影响, 土壤水分的缺乏导致上述过程受阻, 从而减弱了施肥对呼吸的影响.研究发现, 氮添加会改变土壤微生物群落结构, 而这种改变在不同类型森林会存在差异, 这会导致不同类型森林土壤呼吸对氮添加的响应不同.此外, 氮素的添加效应还取决于氮添加量、土壤氮素水平和土壤可利用性氮含量(Demoling et al., 2008).通常情况下, 低氮添加可以促进植物生长、增加凋落物产量, 使较多的碳分配至地下部分等, 最终增强土壤呼吸(Bowden et al., 2004), 而高氮添加会导致土壤可利用性氮含量增加, 引起植物地下部分的碳素分配减少(Litton et al., 2007), 最终抑制根际的自养呼吸(Treseder, 2004).氮添加还会降低微生物生物量和活性, 抑制土壤有机质分解, 使土壤呼吸降低(Bowden et al., 2004). ...
... ).通常情况下, 低氮添加可以促进植物生长、增加凋落物产量, 使较多的碳分配至地下部分等, 最终增强土壤呼吸(Bowden et al., 2004), 而高氮添加会导致土壤可利用性氮含量增加, 引起植物地下部分的碳素分配减少(Litton et al., 2007), 最终抑制根际的自养呼吸(Treseder, 2004).氮添加还会降低微生物生物量和活性, 抑制土壤有机质分解, 使土壤呼吸降低(Bowden et al., 2004). ...
... ).氮添加还会降低微生物生物量和活性, 抑制土壤有机质分解, 使土壤呼吸降低(Bowden et al., 2004). ...
Contributions of aboveground litter, below- ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest 1 1993
... 土壤呼吸是陆地生态系统碳循环的重要过程, 也是土壤碳库向大气输出碳的主要途径和大气CO2的重要来源(刘绍辉和方精云, 1997).全球土壤呼吸年通量为75-120 Pg C, 是化石燃料燃烧排放量的10倍以上(Raich & Polter, 1995), 因此土壤呼吸的强弱在很大程度上决定了全球气候变化与碳循环间的反馈关系(杨庆朋等, 2011; 吴迪等, 2015).在全球变化背景下, 土壤呼吸速率的微小变化就可能改变大气中CO2浓度和土壤碳素的周转速率(Bronson et al., 2008; 姚辉等, 2015), 进而延缓或加剧气候变化.土壤呼吸是一个复杂的生物化学过程, 在不同的生态系统中土壤呼吸受众多因素的综合影响(Bowden et al., 1993; Sitaula et al., 1995; Burton et al., 1998; Fisk & Fahey, 2001; Savage & Davidson, 2001; Hibbard et al., 2005; 张东秋等, 2005; Davidson & Janssens, 2006; Chen et al., 2010; 全权等, 2015). ...
Response of soil surface CO2 flux in a boreal forest to ecosystem warming 1 2008
... 土壤呼吸是陆地生态系统碳循环的重要过程, 也是土壤碳库向大气输出碳的主要途径和大气CO2的重要来源(刘绍辉和方精云, 1997).全球土壤呼吸年通量为75-120 Pg C, 是化石燃料燃烧排放量的10倍以上(Raich & Polter, 1995), 因此土壤呼吸的强弱在很大程度上决定了全球气候变化与碳循环间的反馈关系(杨庆朋等, 2011; 吴迪等, 2015).在全球变化背景下, 土壤呼吸速率的微小变化就可能改变大气中CO2浓度和土壤碳素的周转速率(Bronson et al., 2008; 姚辉等, 2015), 进而延缓或加剧气候变化.土壤呼吸是一个复杂的生物化学过程, 在不同的生态系统中土壤呼吸受众多因素的综合影响(Bowden et al., 1993; Sitaula et al., 1995; Burton et al., 1998; Fisk & Fahey, 2001; Savage & Davidson, 2001; Hibbard et al., 2005; 张东秋等, 2005; Davidson & Janssens, 2006; Chen et al., 2010; 全权等, 2015). ...
Drought reduces root respiration in sugar maple forests 1 1998
... 土壤呼吸是陆地生态系统碳循环的重要过程, 也是土壤碳库向大气输出碳的主要途径和大气CO2的重要来源(刘绍辉和方精云, 1997).全球土壤呼吸年通量为75-120 Pg C, 是化石燃料燃烧排放量的10倍以上(Raich & Polter, 1995), 因此土壤呼吸的强弱在很大程度上决定了全球气候变化与碳循环间的反馈关系(杨庆朋等, 2011; 吴迪等, 2015).在全球变化背景下, 土壤呼吸速率的微小变化就可能改变大气中CO2浓度和土壤碳素的周转速率(Bronson et al., 2008; 姚辉等, 2015), 进而延缓或加剧气候变化.土壤呼吸是一个复杂的生物化学过程, 在不同的生态系统中土壤呼吸受众多因素的综合影响(Bowden et al., 1993; Sitaula et al., 1995; Burton et al., 1998; Fisk & Fahey, 2001; Savage & Davidson, 2001; Hibbard et al., 2005; 张东秋等, 2005; Davidson & Janssens, 2006; Chen et al., 2010; 全权等, 2015). ...
Principles of Terrestrial Ecosystem Ecology 1 2002
... 土壤呼吸在不同气候带和植被类型存在很大差异, 并与净初级生产力密切相关(涂丽华等, 2011).本研究结果表明, 东灵山荆条和绣线菊灌丛土壤总呼吸的年通量分别为5.91和4.23 t C·hm-2·a-1, 均显著低于南亚热带鼎湖山季风常绿阔叶林(10.80 t C·hm-2·a-1)、北亚热带-南暖温带过渡区锐齿栎(Quercus aliena var. acuteserrata)老林(7.79 t C·hm-2·a-1)、北亚和热带北缘锐齿栎林(7.71 t C·hm-2·a-1)(胡正华等, 2010), 但与当地白桦(Betula platyphylla)林(5.74 t C·hm-2·a-1)、辽东栎(Quercus mongolica)林(4.55 t C·hm-2·a-1)和油松(Pinus tabuliformis)林(4.14 t C·hm-2·a-1) (姚辉等, 2015)的土壤总呼吸相差不大.说明不同植被类型土壤呼吸与纬度地带性的温度变化有一定的相关性, 土壤呼吸的差异可能与气候状况、植被类型、树龄和立地条件等因素有关(胡正华等, 2010). ...
Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China 1 2014
... 近几十年来, 人类活动排放到大气中的活性氮迅速增加, 其总量超过了所有陆地生态系统自然产生的活性氮排放, 这种趋势在未来的数十年内还将持续下去(Galloway et al., 2004; 2008).氮沉降的持续增加已经对各生态系统的特征和过程产生了很大影响(Rabalais, 2002).大气氮沉降引起森林的土壤酸化、影响树木生长及生物多样性, 甚至严重威胁森林生态系统的结构与功能(Matson et al., 1999; 李德军等, 2003; 莫江明等, 2005; 李秋玲等, 2013).同样, 氮沉降会降低草原物种多样性(Stevens et al., 2004)、净氮矿化(Liu et al., 2015)及活性有机碳含量(郑娇娇等, 2012).作为全球碳循环流通的一个关键环节, 土壤呼吸也受到大气氮沉降增加的影响, 有关氮沉降对土壤呼吸影响的研究多集中于森林和草地(Han et al., 2012; 李伟斌等, 2014; Qi et al., 2014; 吴迪等, 2015).但在不同生态系统, 土壤呼吸对氮沉降的响应并不一致, 例如, 邓琦等(2009)发现高氮处理对鼎湖山南亚热带人工森林生态系统土壤呼吸的影响与季节的降雨量紧密相关.不同研究发现氮沉降可能促进(Diemer, 1997; Cleveland & Town-send, 2006; Ammann et al., 2007; 涂利华等, 2010; 张宇和红梅, 2014)或减缓土壤呼吸速率(贾淑霞等, 2007; 彭勇等, 2015), 但也有研究发现氮沉降对土壤呼吸无显著影响(Allison et al., 2008). ...
短期氮添加对东灵山三种森林土壤呼吸的影响 1 2015
... 土壤呼吸是陆地生态系统碳循环的重要过程, 也是土壤碳库向大气输出碳的主要途径和大气CO2的重要来源(刘绍辉和方精云, 1997).全球土壤呼吸年通量为75-120 Pg C, 是化石燃料燃烧排放量的10倍以上(Raich & Polter, 1995), 因此土壤呼吸的强弱在很大程度上决定了全球气候变化与碳循环间的反馈关系(杨庆朋等, 2011; 吴迪等, 2015).在全球变化背景下, 土壤呼吸速率的微小变化就可能改变大气中CO2浓度和土壤碳素的周转速率(Bronson et al., 2008; 姚辉等, 2015), 进而延缓或加剧气候变化.土壤呼吸是一个复杂的生物化学过程, 在不同的生态系统中土壤呼吸受众多因素的综合影响(Bowden et al., 1993; Sitaula et al., 1995; Burton et al., 1998; Fisk & Fahey, 2001; Savage & Davidson, 2001; Hibbard et al., 2005; 张东秋等, 2005; Davidson & Janssens, 2006; Chen et al., 2010; 全权等, 2015). ...
Nitrogen in aquatic ecosystems 1 2002
... 近几十年来, 人类活动排放到大气中的活性氮迅速增加, 其总量超过了所有陆地生态系统自然产生的活性氮排放, 这种趋势在未来的数十年内还将持续下去(Galloway et al., 2004; 2008).氮沉降的持续增加已经对各生态系统的特征和过程产生了很大影响(Rabalais, 2002).大气氮沉降引起森林的土壤酸化、影响树木生长及生物多样性, 甚至严重威胁森林生态系统的结构与功能(Matson et al., 1999; 李德军等, 2003; 莫江明等, 2005; 李秋玲等, 2013).同样, 氮沉降会降低草原物种多样性(Stevens et al., 2004)、净氮矿化(Liu et al., 2015)及活性有机碳含量(郑娇娇等, 2012).作为全球碳循环流通的一个关键环节, 土壤呼吸也受到大气氮沉降增加的影响, 有关氮沉降对土壤呼吸影响的研究多集中于森林和草地(Han et al., 2012; 李伟斌等, 2014; Qi et al., 2014; 吴迪等, 2015).但在不同生态系统, 土壤呼吸对氮沉降的响应并不一致, 例如, 邓琦等(2009)发现高氮处理对鼎湖山南亚热带人工森林生态系统土壤呼吸的影响与季节的降雨量紧密相关.不同研究发现氮沉降可能促进(Diemer, 1997; Cleveland & Town-send, 2006; Ammann et al., 2007; 涂利华等, 2010; 张宇和红梅, 2014)或减缓土壤呼吸速率(贾淑霞等, 2007; 彭勇等, 2015), 但也有研究发现氮沉降对土壤呼吸无显著影响(Allison et al., 2008). ...
Global patterns of carbon dioxide emissions from soils 2 1995
... 土壤呼吸是陆地生态系统碳循环的重要过程, 也是土壤碳库向大气输出碳的主要途径和大气CO2的重要来源(刘绍辉和方精云, 1997).全球土壤呼吸年通量为75-120 Pg C, 是化石燃料燃烧排放量的10倍以上(Raich & Polter, 1995), 因此土壤呼吸的强弱在很大程度上决定了全球气候变化与碳循环间的反馈关系(杨庆朋等, 2011; 吴迪等, 2015).在全球变化背景下, 土壤呼吸速率的微小变化就可能改变大气中CO2浓度和土壤碳素的周转速率(Bronson et al., 2008; 姚辉等, 2015), 进而延缓或加剧气候变化.土壤呼吸是一个复杂的生物化学过程, 在不同的生态系统中土壤呼吸受众多因素的综合影响(Bowden et al., 1993; Sitaula et al., 1995; Burton et al., 1998; Fisk & Fahey, 2001; Savage & Davidson, 2001; Hibbard et al., 2005; 张东秋等, 2005; Davidson & Janssens, 2006; Chen et al., 2010; 全权等, 2015). ...
Impact of nitrogen deposition on the species richness of grasslands 1 2004
... 近几十年来, 人类活动排放到大气中的活性氮迅速增加, 其总量超过了所有陆地生态系统自然产生的活性氮排放, 这种趋势在未来的数十年内还将持续下去(Galloway et al., 2004; 2008).氮沉降的持续增加已经对各生态系统的特征和过程产生了很大影响(Rabalais, 2002).大气氮沉降引起森林的土壤酸化、影响树木生长及生物多样性, 甚至严重威胁森林生态系统的结构与功能(Matson et al., 1999; 李德军等, 2003; 莫江明等, 2005; 李秋玲等, 2013).同样, 氮沉降会降低草原物种多样性(Stevens et al., 2004)、净氮矿化(Liu et al., 2015)及活性有机碳含量(郑娇娇等, 2012).作为全球碳循环流通的一个关键环节, 土壤呼吸也受到大气氮沉降增加的影响, 有关氮沉降对土壤呼吸影响的研究多集中于森林和草地(Han et al., 2012; 李伟斌等, 2014; Qi et al., 2014; 吴迪等, 2015).但在不同生态系统, 土壤呼吸对氮沉降的响应并不一致, 例如, 邓琦等(2009)发现高氮处理对鼎湖山南亚热带人工森林生态系统土壤呼吸的影响与季节的降雨量紧密相关.不同研究发现氮沉降可能促进(Diemer, 1997; Cleveland & Town-send, 2006; Ammann et al., 2007; 涂利华等, 2010; 张宇和红梅, 2014)或减缓土壤呼吸速率(贾淑霞等, 2007; 彭勇等, 2015), 但也有研究发现氮沉降对土壤呼吸无显著影响(Allison et al., 2008). ...
A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies 1 2004
... 本研究发现氮添加对荆条灌丛生长季的土壤总呼吸、异养呼吸无显著影响(图2; 表2).这一结果与长期实验所发现的施氮促进了土壤呼吸的结果 (Bowden et al., 2004; Micks et al., 2004; 莫江明等, 2005)并不一致.这可能与施肥时间短、实验期间降水量少等因素导致土壤养分利用效率很低有关, 有关机制还需要更长时间的施肥处理才能验证.N2和N3处理促进了绣线菊灌丛生长季土壤的异养呼吸, 这可能与氮添加导致绣线菊细根生物量和代谢强度增加、增加土壤有机质进而增强微生物活性等有关(Zak et al., 2000; Bowden et al., 2004; 涂利华等, 2010).氮添加对荆条和绣线菊灌丛土壤呼吸的年通量均无显著的影响, 可能原因在于东灵山灌丛地处阳坡, 白天蒸发量大, 再加上在实验期间雨量较少, 导致灌丛土壤含水量极低; 而土壤水分对土壤养分的溶解转移、微生物活动、矿物分化等都有重要影响, 土壤水分的缺乏导致上述过程受阻, 从而减弱了施肥对呼吸的影响.研究发现, 氮添加会改变土壤微生物群落结构, 而这种改变在不同类型森林会存在差异, 这会导致不同类型森林土壤呼吸对氮添加的响应不同.此外, 氮素的添加效应还取决于氮添加量、土壤氮素水平和土壤可利用性氮含量(Demoling et al., 2008).通常情况下, 低氮添加可以促进植物生长、增加凋落物产量, 使较多的碳分配至地下部分等, 最终增强土壤呼吸(Bowden et al., 2004), 而高氮添加会导致土壤可利用性氮含量增加, 引起植物地下部分的碳素分配减少(Litton et al., 2007), 最终抑制根际的自养呼吸(Treseder, 2004).氮添加还会降低微生物生物量和活性, 抑制土壤有机质分解, 使土壤呼吸降低(Bowden et al., 2004). ...
模拟氮沉降对华西雨屏区撑绿杂交竹林土壤呼吸的影响 1 2011
... 土壤呼吸在不同气候带和植被类型存在很大差异, 并与净初级生产力密切相关(涂丽华等, 2011).本研究结果表明, 东灵山荆条和绣线菊灌丛土壤总呼吸的年通量分别为5.91和4.23 t C·hm-2·a-1, 均显著低于南亚热带鼎湖山季风常绿阔叶林(10.80 t C·hm-2·a-1)、北亚热带-南暖温带过渡区锐齿栎(Quercus aliena var. acuteserrata)老林(7.79 t C·hm-2·a-1)、北亚和热带北缘锐齿栎林(7.71 t C·hm-2·a-1)(胡正华等, 2010), 但与当地白桦(Betula platyphylla)林(5.74 t C·hm-2·a-1)、辽东栎(Quercus mongolica)林(4.55 t C·hm-2·a-1)和油松(Pinus tabuliformis)林(4.14 t C·hm-2·a-1) (姚辉等, 2015)的土壤总呼吸相差不大.说明不同植被类型土壤呼吸与纬度地带性的温度变化有一定的相关性, 土壤呼吸的差异可能与气候状况、植被类型、树龄和立地条件等因素有关(胡正华等, 2010). ...
模拟氮沉降对华西雨屏区苦竹林细根特性和土壤呼吸的影响 2 2010
... 近几十年来, 人类活动排放到大气中的活性氮迅速增加, 其总量超过了所有陆地生态系统自然产生的活性氮排放, 这种趋势在未来的数十年内还将持续下去(Galloway et al., 2004; 2008).氮沉降的持续增加已经对各生态系统的特征和过程产生了很大影响(Rabalais, 2002).大气氮沉降引起森林的土壤酸化、影响树木生长及生物多样性, 甚至严重威胁森林生态系统的结构与功能(Matson et al., 1999; 李德军等, 2003; 莫江明等, 2005; 李秋玲等, 2013).同样, 氮沉降会降低草原物种多样性(Stevens et al., 2004)、净氮矿化(Liu et al., 2015)及活性有机碳含量(郑娇娇等, 2012).作为全球碳循环流通的一个关键环节, 土壤呼吸也受到大气氮沉降增加的影响, 有关氮沉降对土壤呼吸影响的研究多集中于森林和草地(Han et al., 2012; 李伟斌等, 2014; Qi et al., 2014; 吴迪等, 2015).但在不同生态系统, 土壤呼吸对氮沉降的响应并不一致, 例如, 邓琦等(2009)发现高氮处理对鼎湖山南亚热带人工森林生态系统土壤呼吸的影响与季节的降雨量紧密相关.不同研究发现氮沉降可能促进(Diemer, 1997; Cleveland & Town-send, 2006; Ammann et al., 2007; 涂利华等, 2010; 张宇和红梅, 2014)或减缓土壤呼吸速率(贾淑霞等, 2007; 彭勇等, 2015), 但也有研究发现氮沉降对土壤呼吸无显著影响(Allison et al., 2008). ...
... 本研究发现氮添加对荆条灌丛生长季的土壤总呼吸、异养呼吸无显著影响(图2; 表2).这一结果与长期实验所发现的施氮促进了土壤呼吸的结果 (Bowden et al., 2004; Micks et al., 2004; 莫江明等, 2005)并不一致.这可能与施肥时间短、实验期间降水量少等因素导致土壤养分利用效率很低有关, 有关机制还需要更长时间的施肥处理才能验证.N2和N3处理促进了绣线菊灌丛生长季土壤的异养呼吸, 这可能与氮添加导致绣线菊细根生物量和代谢强度增加、增加土壤有机质进而增强微生物活性等有关(Zak et al., 2000; Bowden et al., 2004; 涂利华等, 2010).氮添加对荆条和绣线菊灌丛土壤呼吸的年通量均无显著的影响, 可能原因在于东灵山灌丛地处阳坡, 白天蒸发量大, 再加上在实验期间雨量较少, 导致灌丛土壤含水量极低; 而土壤水分对土壤养分的溶解转移、微生物活动、矿物分化等都有重要影响, 土壤水分的缺乏导致上述过程受阻, 从而减弱了施肥对呼吸的影响.研究发现, 氮添加会改变土壤微生物群落结构, 而这种改变在不同类型森林会存在差异, 这会导致不同类型森林土壤呼吸对氮添加的响应不同.此外, 氮素的添加效应还取决于氮添加量、土壤氮素水平和土壤可利用性氮含量(Demoling et al., 2008).通常情况下, 低氮添加可以促进植物生长、增加凋落物产量, 使较多的碳分配至地下部分等, 最终增强土壤呼吸(Bowden et al., 2004), 而高氮添加会导致土壤可利用性氮含量增加, 引起植物地下部分的碳素分配减少(Litton et al., 2007), 最终抑制根际的自养呼吸(Treseder, 2004).氮添加还会降低微生物生物量和活性, 抑制土壤有机质分解, 使土壤呼吸降低(Bowden et al., 2004). ...
... 土壤呼吸是陆地生态系统碳循环的重要过程, 也是土壤碳库向大气输出碳的主要途径和大气CO2的重要来源(刘绍辉和方精云, 1997).全球土壤呼吸年通量为75-120 Pg C, 是化石燃料燃烧排放量的10倍以上(Raich & Polter, 1995), 因此土壤呼吸的强弱在很大程度上决定了全球气候变化与碳循环间的反馈关系(杨庆朋等, 2011; 吴迪等, 2015).在全球变化背景下, 土壤呼吸速率的微小变化就可能改变大气中CO2浓度和土壤碳素的周转速率(Bronson et al., 2008; 姚辉等, 2015), 进而延缓或加剧气候变化.土壤呼吸是一个复杂的生物化学过程, 在不同的生态系统中土壤呼吸受众多因素的综合影响(Bowden et al., 1993; Sitaula et al., 1995; Burton et al., 1998; Fisk & Fahey, 2001; Savage & Davidson, 2001; Hibbard et al., 2005; 张东秋等, 2005; Davidson & Janssens, 2006; Chen et al., 2010; 全权等, 2015). ...
北京东灵山3种温带森林土壤呼吸及其20年的变化 2 2015
... 土壤呼吸是陆地生态系统碳循环的重要过程, 也是土壤碳库向大气输出碳的主要途径和大气CO2的重要来源(刘绍辉和方精云, 1997).全球土壤呼吸年通量为75-120 Pg C, 是化石燃料燃烧排放量的10倍以上(Raich & Polter, 1995), 因此土壤呼吸的强弱在很大程度上决定了全球气候变化与碳循环间的反馈关系(杨庆朋等, 2011; 吴迪等, 2015).在全球变化背景下, 土壤呼吸速率的微小变化就可能改变大气中CO2浓度和土壤碳素的周转速率(Bronson et al., 2008; 姚辉等, 2015), 进而延缓或加剧气候变化.土壤呼吸是一个复杂的生物化学过程, 在不同的生态系统中土壤呼吸受众多因素的综合影响(Bowden et al., 1993; Sitaula et al., 1995; Burton et al., 1998; Fisk & Fahey, 2001; Savage & Davidson, 2001; Hibbard et al., 2005; 张东秋等, 2005; Davidson & Janssens, 2006; Chen et al., 2010; 全权等, 2015). ...
... 土壤呼吸在不同气候带和植被类型存在很大差异, 并与净初级生产力密切相关(涂丽华等, 2011).本研究结果表明, 东灵山荆条和绣线菊灌丛土壤总呼吸的年通量分别为5.91和4.23 t C·hm-2·a-1, 均显著低于南亚热带鼎湖山季风常绿阔叶林(10.80 t C·hm-2·a-1)、北亚热带-南暖温带过渡区锐齿栎(Quercus aliena var. acuteserrata)老林(7.79 t C·hm-2·a-1)、北亚和热带北缘锐齿栎林(7.71 t C·hm-2·a-1)(胡正华等, 2010), 但与当地白桦(Betula platyphylla)林(5.74 t C·hm-2·a-1)、辽东栎(Quercus mongolica)林(4.55 t C·hm-2·a-1)和油松(Pinus tabuliformis)林(4.14 t C·hm-2·a-1) (姚辉等, 2015)的土壤总呼吸相差不大.说明不同植被类型土壤呼吸与纬度地带性的温度变化有一定的相关性, 土壤呼吸的差异可能与气候状况、植被类型、树龄和立地条件等因素有关(胡正华等, 2010). ...
Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen byPopulus tremuloides 1 2000
... 本研究发现氮添加对荆条灌丛生长季的土壤总呼吸、异养呼吸无显著影响(图2; 表2).这一结果与长期实验所发现的施氮促进了土壤呼吸的结果 (Bowden et al., 2004; Micks et al., 2004; 莫江明等, 2005)并不一致.这可能与施肥时间短、实验期间降水量少等因素导致土壤养分利用效率很低有关, 有关机制还需要更长时间的施肥处理才能验证.N2和N3处理促进了绣线菊灌丛生长季土壤的异养呼吸, 这可能与氮添加导致绣线菊细根生物量和代谢强度增加、增加土壤有机质进而增强微生物活性等有关(Zak et al., 2000; Bowden et al., 2004; 涂利华等, 2010).氮添加对荆条和绣线菊灌丛土壤呼吸的年通量均无显著的影响, 可能原因在于东灵山灌丛地处阳坡, 白天蒸发量大, 再加上在实验期间雨量较少, 导致灌丛土壤含水量极低; 而土壤水分对土壤养分的溶解转移、微生物活动、矿物分化等都有重要影响, 土壤水分的缺乏导致上述过程受阻, 从而减弱了施肥对呼吸的影响.研究发现, 氮添加会改变土壤微生物群落结构, 而这种改变在不同类型森林会存在差异, 这会导致不同类型森林土壤呼吸对氮添加的响应不同.此外, 氮素的添加效应还取决于氮添加量、土壤氮素水平和土壤可利用性氮含量(Demoling et al., 2008).通常情况下, 低氮添加可以促进植物生长、增加凋落物产量, 使较多的碳分配至地下部分等, 最终增强土壤呼吸(Bowden et al., 2004), 而高氮添加会导致土壤可利用性氮含量增加, 引起植物地下部分的碳素分配减少(Litton et al., 2007), 最终抑制根际的自养呼吸(Treseder, 2004).氮添加还会降低微生物生物量和活性, 抑制土壤有机质分解, 使土壤呼吸降低(Bowden et al., 2004). ...
土壤呼吸主要影响因素的研究进展 1 2005
... 土壤呼吸是陆地生态系统碳循环的重要过程, 也是土壤碳库向大气输出碳的主要途径和大气CO2的重要来源(刘绍辉和方精云, 1997).全球土壤呼吸年通量为75-120 Pg C, 是化石燃料燃烧排放量的10倍以上(Raich & Polter, 1995), 因此土壤呼吸的强弱在很大程度上决定了全球气候变化与碳循环间的反馈关系(杨庆朋等, 2011; 吴迪等, 2015).在全球变化背景下, 土壤呼吸速率的微小变化就可能改变大气中CO2浓度和土壤碳素的周转速率(Bronson et al., 2008; 姚辉等, 2015), 进而延缓或加剧气候变化.土壤呼吸是一个复杂的生物化学过程, 在不同的生态系统中土壤呼吸受众多因素的综合影响(Bowden et al., 1993; Sitaula et al., 1995; Burton et al., 1998; Fisk & Fahey, 2001; Savage & Davidson, 2001; Hibbard et al., 2005; 张东秋等, 2005; Davidson & Janssens, 2006; Chen et al., 2010; 全权等, 2015). ...