Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China
CUIGuang-Shuai1,2, ZHANGLin1,*,, SHENWei1, LIUXin-Sheng3, WANGYuan-Tao1,2 1Key Laboratory of Alpine Ecology and Biodiversity of Chinese Academy of Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, Chinaand 3College of Tourism and Territorial Resources, Jiujiang University, Jiujiang, Jiangxi 332005, China 通讯作者:* 通信作者Author for correspondence (E-mail: zhanglin@itpcas.ac.cn) 责任编辑:CUIGuang-ShuaiZHANGLinSHENWeiLIUXin-ShengWANGYuan-Tao 收稿日期:2016-01-13 接受日期:2016-05-9 网络出版日期:2017-01-10 版权声明:2017植物生态学报编辑部本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。 基金资助:中国科学院战略性先导科技专项(XDA- 05050303)、国家自然科学基金(41471039)、中国科学院西部行动计划项目(KZCX2-XB3-08-02)
关键词:植物相对生长法;生物量体积;碳密度;冠幅;雅鲁藏布江中游 Abstract Aims The expansion of shrublands is considered as one of the key reasons leading to the increase of carbon density in terrestrial ecosystems in China. In the present study, our aims were to explore the biomass allocation and carbon density of Sophora moorcroftiana shrublands in Xizang. Methods We sampled the biomass of S. moorcroftiana shrubs from 18 sites in the middle reaches of Yarlung Zangbo River, Xizang. Using concentrations of different organs, we estimated the carbon density of different layers in S. moorcroftiana shrublands. Important findings The plant cover rather than biomass volume (the product of cover and height) provided the best fit for aboveground biomass. The average of the total biomass was 5.71 Mg·hm-2, ranging from 2.32 to 8.96 Mg·hm-2. The average biomass of shrub layer, the main component of shrub ecosystem, was 4.08 Mg·hm-2, accounting for 71% of the total biomass. The belowground biomass of shrub and herb layers was 2.08 and 0.86 Mg·hm-2, respectively, which was higher than the corresponding aboveground biomass. The average biomass carbon density was 2.48 Mg·hm-2. Shrub vegetation in the eastern part of the middle reaches has lower carbon density than that in the western part. The relatively high biomass allocation to roots to increase water and nutrient undertake as well as physical support for plants is an important strategy of S. moorcroftiana to cope with the arid environment on the Qinghai-Xizang Plateau. Moreover, the lower carbon density in the eastern part of the middle reaches might be due to the dry environment resulted from high temperature and evapotranspiration and enhanced human activities at low altitudes. The continuous decrease of evapotranspiration under scenarios of future climate change may lead to increase in carbon density in S. moorcroftiana shrublands.
Keywords:plant allometry;biomass volume;carbon density;crown breadth;middle reaches of Yarlung Zangbo River -->0 PDF (717KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 崔光帅, 张林, 沈维, 刘新圣, 王媛韬. 西藏雅鲁藏布江流域中段砂生槐灌丛生物量分配及碳密度. 植物生态学报, 2017, 41(1): 53-61 https://doi.org/10.17521/cjpe.2016.0019 CUIGuang-Shuai, ZHANGLin, SHENWei, LIUXin-Sheng, WANGYuan-Tao. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China. Chinese Journal of Plant Ecology, 2017, 41(1): 53-61 https://doi.org/10.17521/cjpe.2016.0019 作为生态系统最基本的特征指标, 生物量直接反映了生态系统生产力水平的高低(Keeling & Phillips, 2007), 同时作为衡量植被固碳能力的重要参数, 生物量的准确测定在碳循环与气候变化相关研究中具有重要意义(Dai et al., 2013)。碳密度是指单位土地面积的碳存储量, 是反映生态系统碳存储能力的重要指标之一, 作为估算生态系统碳储量和研究生态系统与大气碳交换的重要参数, 其准确估算是判定碳汇、制定缓解全球变化的合理政策措施的重要依据(吕超群和孙书存, 2004)。 灌丛通常是指高度在3 m以内、茎干具有多个分枝且主干不明显的木本植物。在以往研究中, 灌丛常被当作介于森林和草地之间的一个过渡类型, 并没有受到足够的重视。在五年一次的中国森林资源清查工作中, 灌丛(灌木林)也只有一个简单的面积信息①(① 森林资源管理司(2010). 全国森林资源统计——第七次全国森林资源清查.)。目前有关生物量和碳密度方面的研究, 灌丛远远滞后于森林和草地(胡会峰等, 2006)。随着全球气候变暖和人类活动的加强, 灌丛入侵草地、森林等问题越来越突出(Sturm et al., 2001; Montane et al., 2007), 草地向灌丛生态系统的演替加快, 进而增大灌丛分布面积, 这被认为是我国陆地生态系统碳储量增加的主要原因(王玲, 2009; 朴世龙等, 2010)。然而灌丛植被的碳汇能力是目前我国陆地生态系统碳汇研究中最不确定的一个因素(Piao et al., 2009), 因此加强灌丛群落生物量和碳密度相关研究, 对于准确估算我国陆地生态系统碳汇功能和固碳潜力具有重要意义。 在西藏, 灌丛分布相当普遍, 几乎除羌塘高原西北部以外都有分布, 其面积达13 × 106 hm2, 已经超过森林, 成为西藏陆地生态系统中分布面积仅次于草地的一个重要类型(中国科学院中国植被图编辑委员会, 2001), 因此灌丛是西藏植被碳汇估算中不可或缺的组成部分。然而, 目前有关西藏灌丛生物量方面的研究鲜有报道(王启基等, 1991; 李英年等, 2006; 梁倍等, 2013), 涉及根系生物量的研究则更少(高巧等, 2014)。西藏雅鲁藏布江(以下简称雅江)中游地区是西藏经济社会发展的核心区域, 而砂生槐(Sophora moorcroftiana)灌丛正是该区分布最广、最具代表性的灌丛类型, 其受人类活动的影响较大, 因此探索该区砂生槐灌丛群落的生物量现状及其分配规律对于指导当地生态建设具有现实意义。砂生槐灌丛主要分布在雅江流域中段的宽谷、两侧低山及拉萨河、年楚河等主要支流的宽谷内。作为典型的河谷灌丛, 砂生槐具有良好的防风固沙、涵养水源等重要生态作用(彭跃明, 1997)。以往研究主要集中在砂生槐的种群和群落结构、繁殖特性、固沙特性和物种多样性等方面(赵文智, 1998; 郭其强等, 2009; 李海东等, 2011; 王文娟等, 2011; 杨兆平等, 2011; 赵垦田等, 2013), 尚未见到有关群落生物量和碳密度方面的报道。本研究采用相对生长法对西藏雅鲁藏布江流域中游的砂生槐灌丛进行地上和地下不同器官的生物量调查, 利用样方法测定了草本植物和凋落物的生物量, 并结合实测的全碳含量对灌丛植被碳密度进行了详尽计算, 以期为准确评价西藏灌丛生态系统碳收支和碳平衡提供基础数据, 为指导当地生态建设提供科学依据。
西藏雅鲁藏布江流域中段砂生槐灌丛群落平均总生物量为5.71 Mg·hm-2, 变化范围在2.32-8.96 Mg·hm-2, 其中灌木层平均为4.08 Mg·hm-2, 占群落总生物量的71.45%; 草本层为1.53 Mg·hm-2, 占26.80%; 凋落物量仅为0.1 Mg·hm-2, 占1.75%。进一步分析群落地上生物量与地下生物量的关系, 发现二者显著正相关(图2), 表明利用地上生物量的测定数据估算研究区范围内的砂生槐灌丛植被的地下生物量是可行的。 显示原图|下载原图ZIP|生成PPT 图2砂生槐灌丛地上部分与地下部分生物量关系。 -->Fig. 2The relationship between aboveground and belowground biomass of Sophora moorcroftiana communities. -->
砂生槐灌丛各部分实测的平均全碳含量分别为: 枝47.02%, 叶44.92%, 根45.93%, 草本地上部分36.37%, 草本地下部分33.79%, 凋落物43.49%。利用这些实测的不同器官全碳含量数据, 结合各样点生物量计算出砂生槐灌丛平均碳密度为2.48 Mg·hm-2, 变化范围在1.03-3.90 Mg·hm-2, 其中, 灌木层、草本层和凋落物碳密度分别为1.88 Mg·hm-2、0.55 Mg·hm-2和0.05 Mg·hm-2 (图3)。灌木层各器官碳密度所占比例分别是: 枝39.89%, 叶10.11%, 根50.00%, 碳密度主要集中在根和枝, 二者占89.89%。各部分碳密度大小顺序为灌木层根>灌木层枝>灌木层叶>草本层地下部分>草本层地上部分>凋落物。 显示原图|下载原图ZIP|生成PPT 图3砂生槐灌丛碳密度分布(平均值±标准误差)。 -->Fig. 3The distribution of carbon density (mean ± SE, Mg·hm-2) within Sophora moorcroftiana shrubs. -->
进一步比较东、西部样点碳密度的差异, 发现西部地区砂生槐灌木层碳密度显著高于东部(p < 0.05, 表4), 草本层和凋落物则表现为东部>西部, 但差异不显著(p > 0.05, 表4)。 Table 4 表4 表4雅江流域中段砂生槐灌丛碳密度东西部差异 Table 4Difference of carbon density (Mg·hm-2) between east and west regions of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River
区域 Region
平均海拔 Mean altitude (m)
灌木层盖度 Coverage of shrub layer (%)
灌木层 Shrub layer
草本层 Herb layer
凋落物 Litterfall
合计 Total
东部 Eastern
3 625
23.00a
1.40a
0.62a
0.053a
2.07a
西部 Western
3 900
39.88b
2.49b
0.46a
0.039a
2.98b
Different letters within a column indicate significant difference at the level of α = 0.05.同列不同小写字母表示在0.05水平差异显著。 新窗口打开
DaiL, JiaJ, YuD, LewisBJ, ZhouL, ZhouW, ZhaoW, JiangL (2013). Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China ., 300, 106-116. [本文引用: 1]
[2]
FuDF (2014). Shrub wood carbon reserve estimation in Tibet Autonomous Region ., 33, 4-7. (in Chinese with English abstract)[付达夫 (2014). 西藏自治区灌木林碳储量估算 . , 33, 4-7.] [本文引用: 1]
[3]
GaoQ, YangXC, YinCY, LiuQ (2014). Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Ganzi Zangzu Autonomous Prefecture of Sichuan Province, China ., 38, 355-365. (in Chinese with English abstract)[高巧, 阳小成, 尹春英, 刘庆 (2014). 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算 . , 38, 355-365.] [本文引用: 3]
[4]
GuoQQ, LuoDQ, FangJP, RenDZ, WangZH, FuJF (2009). Research status, utilization and protection measures of Sophora moorcroftiana in Tibet . , 24, 98-101. (in Chinese with English abstract)[郭其强, 罗大庆, 方江平, 仁德智, 王贞红, 傅军锋 (2009). 西藏砂生槐的研究现状及其利用与保护对策 . , 24, 98-101.] [本文引用: 1]
[5]
HuHF, WangZH, LiuGH, FuBJ (2006). Vegetation carbon storage of major shrublands in China ., 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量 . , 30, 539-544.] [本文引用: 2]
[6]
KeelingHC, PhillipsOL (2007). The global relationship between forest productivity and biomass ., 16, 618-631. [本文引用: 1]
[7]
LiHD, ShenWS, SheGH, SunM, YuanL, LinNF (2011). Population structure and point pattern of Sophora moor- croftiana in Tibet . , 31, 1443-1448. (in Chinese with English abstract)[李海东, 沈渭寿, 佘光辉, 孙明, 袁磊, 林乃峰 (2011). 西藏砂生槐种群结构与点格局分析 . , 31, 1443-1448.] [本文引用: 1]
[8]
LiYN, YuXF, XuZQ, LiuLL, YaoWX, WangL (2014). Carbon density characteristics of two typical shrub communities in the northern mountain region of Hebei ., 50(6), 28-33. (in Chinese with English abstract)[李亚男, 虞晓凡, 许中旗, 刘乐乐, 姚卫星, 王丽 (2014). 冀北山地2种典型灌丛的碳密度特征 . , 50(6), 28-33.] [本文引用: 1]
[9]
LiYN, ZhaoL, WangQX, DuMY, GuS, XuSX, ZangFW, ZhaoXQ (2006). Estimation of biomass and annual turnover quantities of Potentilla froticosa shrub . , 14, 72-76. (in Chinese with English abstract)[李英年, 赵亮, 王勤学, 杜明远, 古松, 徐世晓, 张发伟, 赵新全 (2006). 高寒金露梅灌丛生物量及年周转量 . , 14, 72-76.] [本文引用: 3]
[10]
LiangB, DiL, ZhaoCY, PengSZ, PengHH, WangC (2013). Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains ., 25, 367-373. (in Chinese with English abstract)[梁倍, 邸利, 赵传燕, 彭守璋, 彭焕华, 王超 (2013). 祁连山天老池流域灌丛地上生物量空间分布 . , 25, 367-373.] [本文引用: 1]
[11]
LiuGH, ZhangJY, ZhangYX, ZhouJY, GuanWB, MaKM, FuBJ (2003). Distribution regulation of aboveground biomass of three main shrub types in the dry valley of Minjiang River ., 21, 24-32. (in Chinese with English abstract)[刘国华, 张洁瑜, 张育新, 周建云, 关文彬, 马克明, 傅伯杰 (2003). 岷江干旱河谷三种主要灌丛地上生物量的分布规律 . , 21, 24-32.] [本文引用: 1]
[12]
LüCQ, SunSC (2004). A review on the distribution patterns of carbon density in density in terrestrial ecosystems ., 28, 692-703. (in Chinese with English abstract)[吕超群, 孙书存 (2004). 陆地生态系统碳密度格局研究概述 . , 28, 692-703.] [本文引用: 1]
[13]
MontaneF, RoviraP, CasalsP (2007). Shrub encroachment into mesic mountain grasslands in the Iberian peninsula: Effects of plant quality and temperature on soil C and N stocks ., 21, 1-10. [本文引用: 1]
[14]
PengYM (1997). Study on sand fixation effect of Sophora moorcroftiana in Yaluzangbu river middle valley, Tibet . , 22, 6-8. (in Chinese with English abstract)[彭跃明 (1997). 西藏雅鲁藏布江中部流域砂生槐固沙作用研究 . , 22, 6-8.] [本文引用: 2]
[15]
PiaoSL, FangJY, CiaisP, PeylinP, HuangY, SitchS, WangT (2009). The carbon balance of terrestrial ecosystems in China .458, 1009-1014. [本文引用: 1]
[16]
PiaoSL, FangJY, HuangY (2010). The carbon balance of terrestrial ecosystems in China ., 12, 20-22. (in Chinese with English abstract)[朴世龙, 方精云, 黄耀 (2010). 中国陆地生态系统碳收支 . , 12, 20-22.] [本文引用: 1]
[17]
SongYC (2001). . East China Normal University Press, Shanghai. 353-422. (in Chinese)[宋永昌 (2001). . 华东师范大学出版社, 上海. 353-422.] [本文引用: 1]
[18]
SturmM, RacineC, TapeK (2001). Increasing shrub abundance in the Arctic ., 411, 546-547. [本文引用: 1]
[19]
SunX (2010). Study on Community Structure and Biomass of Xizang Sophora moorcroftiana . . (in Chinese with English abstract)[孙旭 (2010). 西藏砂生槐群落结构与生物量研究 . .] [本文引用: 1]
[20]
The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2001). . Science Press, Beijing. (in Chinese)[中国科学院中国植被图编辑委员会 (2001). . 科学出版社, 北京.] [本文引用: 2]
[21]
WangL (2009). Study of Biomass and Its Models of Main Shrub Community Type in Northwest Sichuan . . (in Chinese with English abstract)[王玲 (2009). 川西北地区主要灌丛类型生物量及其模型研究 . .] [本文引用: 1]
[22]
WangQJ, ZhouXM, ZhangYQ, ZhaoXQ (1991). Structure characteristics and biomass of Potentilla froticosa shrub in Qinghai Plateau . , 11, 333-340. (in Chinese with English abstract)[王启基, 周兴民, 张堰青, 赵新全 (1991). 青藏高原金露梅灌丛的结构特征及其生物量 . , 11, 333-340.] [本文引用: 2]
[23]
WangWJ, HeDH, TangXQ, GongWF (2011). Effects of different temperature and sand burial depths on seed germination seedling growth ofSophora moorcroftiana . , 31, 1437-1442. (in Chinese with English abstract)[王文娟, 贺达汉, 唐小琴, 巩文峰 (2011). 不同温度和沙埋深度对砂生槐种子萌发及幼苗生长的影响 . , 31, 1437-1442.] [本文引用: 1]
[24]
WangYJ, HuangCD, ZhangJ, YangWQ, WangXS (2010). Species diversity, biomass and their relationship of shrubberies in an arid valley of the Minjiang River ., 27, 567-572. (in Chinese with English abstract)[王勇军, 黄从德, 张健, 杨万勤, 王宪帅 (2010). 岷江干旱河谷灌丛物种多样性、生物量及其关系 . , 27, 567-572.] [本文引用: 1]
[25]
WuSH, YinYH, ZhengD, YangQY (2005). Climate changes in the Tibetan Plateau during the last three decades ., 60, 3-11. (in Chinese with English abstract)[吴绍洪, 尹云鹤, 郑度, 杨勤业 (2005). 青藏高原近30年气候变化趋势, , 60, 3-11.] [本文引用: 1]
[26]
YangZG, TangXP, LuHY, MaPF, HongJC (2013). The hanges of potential evapotranspiration over Yarlung Zangbo River Basin during 1961-2010 ., 68, 1263-1268. (in Chinese with English abstract)[杨志刚, 唐小萍, 路红亚, 马鹏飞, 洪建昌 (2013). 近50年雅鲁藏布江流域潜在蒸散量的变化特征 . , 68, 1263-1268.] [本文引用: 1]
[27]
YangZP, ShenWS, SunM, SunJ, LiHD (2011). Structural characteristics ofSophora moorcroftiana community on wind-sandy land in middle reaches of Yaluzangbu River . , 21, 1121-1126. (in Chinese with English abstract)[杨兆平, 沈渭寿, 孙明, 孙俊, 李海东 (2011). 雅鲁藏布江中游河谷风沙化土地砂生槐群落结构特征 . , 21, 1121-1126.] [本文引用: 1]
[28]
YinYH, WuSH, ZhaoDS (2013). Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau .118, 10850-10860. [本文引用: 1]
[29]
ZhaoKT, YangXL, MaHP, ZhangXJ (2013). Analyses on community characteristics and soil microorganism dynamics during ecological restoration ofSophora moorcroftiana in the semi-arid valley of Lhasa . , 49(2), 25-20. (in Chinese with English abstract)[赵垦田, 杨小林, 马和平, 张新军 (2013). 拉萨半干旱河谷砂生槐灌丛生态恢复过程的群落特征与土壤微生物动态分析 . , 49(2), 25-20.] [本文引用: 1]
[30]
ZhaoWZ (1998). A preliminary study on the arenaceous adaptability ofSophora moorcroftiana . , 22, 379-384. (in Chinese with English abstract)[赵文智 (1998). 砂生槐沙生适应性初步研究 . , 22, 379-384.] [本文引用: 1]
Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China 1 2013