Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour
WANG YuLin,1, LEI Lin1,2, XIONG WenWen1, YE FaYin1,2, ZHAO GuoHua,1,21College of Food Science, Southwest University, Chongqing 400715 2Chongqing Engineering Research Center for Special Food, Chongqing 400715
Abstract 【Objective】 This study was to explore the effects of steaming-retrogradation pretreatment on the nutritional profiles, physicochemical properties, and in vitro starch digestion of the roasted highland barley flour, with the aim to enrich the processing methods of highland barley.【Method】The effects of steaming-retrogradation pretreatment at different time (0, 6, 12, 18, and 24 h, respectively) on roasted highland barley flour was studied. The microstructure of the roasted highland barley flour was observed by scanning electron microscope and microscope. The effect of steaming-retrogradation pretreatment on short-range molecular order structure, relative crystallinity, and pasting properties of the roasted highland barley flour was determined by Fourier transform infrared spectroscopy, laser confocal microscopic Raman spectroscopy, X-ray diffraction, and rapid viscosity analysis. The effects of steaming-retrogradation pretreatment on the changes of starch digestibility in roasted highland barley flour were determined via In vitro digestion. 【Result】 Compared with the raw highland barley flour, the steaming-retrogradation pretreatment reduced the contents of starch, protein, fat, and β-glucan in roasted highland barley flour. However, steaming without retrogradation pretreatment (0-Roasted) increased the content of water-insoluble dietary fiber, water-soluble dietary fiber, and total dietary fiber in the roasted highland barley flour. The steaming-retrogradation pretreatment destroyed the starch granules in roasted highland barley flour, presenting disappearance of polarization cross. Meanwhile, the short-range molecular order structure was damaged by steaming-retrogradation pretreatment in roasted highland barley flour. Compared with the raw highland barley flour, the relatively crystallinity was reduced by steaming-retrogradation pretreatment in roasted highland barley. However, the relative crystallinity was increased with the increased time of retrogradation in roasted highland barley. The A-type diffraction pattern was changed into the V-type in roasted highland barley flour, indicating the formation of starch-lipid or starch-protein-lipid complexes after heat processing. The steaming-retrogradation pretreatment decreased the L* value while increased a* and b* values in roasted highland barley flour. Compared with the raw highland barley flour, the steaming-retrogradation pretreatment destroyed the pasting peak and caused a lower final viscosity, and increased the oil holding capacity while decreased the water holding capacity of roasted highland barley flour. Compared with the raw highland barley flour, the heat processing could increase the in vitro starch digestibility. Retrogradation at 6-24 h could decrease the content of rapidly digestible starch by 6%-16% and significantly increased the content of slowly digestible starch in roasted highland barley flour. 【Conclusion】 The steaming-retrogradation pretreatment could change nutritional profiles and physicochemical properties of roasted highland barley flour. Retrogradation at 6 h could decrease the in vitro starch digestion of the roasted highland barley flour, which was helpful in maintaining blood glucose homeostasis and could be developed as one of potential foods for diabetics and borderline diabetics. Keywords:roasted highland barley;retrogradation;physicochemical properties;starch digestibility characteristics;β-glucan
PDF (1913KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 王钰麟, 雷琳, 熊文文, 叶发银, 赵国华. 蒸煮-老化预处理对炒制青稞粉理化性质及体外淀粉消化的影响. 中国农业科学, 2021, 54(19): 4207-4217 doi:10.3864/j.issn.0578-1752.2021.19.015 WANG YuLin, LEI Lin, XIONG WenWen, YE FaYin, ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour. Scientia Acricultura Sinica, 2021, 54(19): 4207-4217 doi:10.3864/j.issn.0578-1752.2021.19.015
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】据国际糖尿病联盟报道,2019年全球糖尿病成人患病率约为9.3%,患病人数已达4.63亿,预计2045年全球糖尿病患者可达7亿。在中国,糖尿病成人患者数为1.164亿,居世界首位,相当于每4个糖尿病成人患者中,就有一个是中国人。在糖尿病患者中,2型糖尿病所占比例约90%,它是由胰岛素抵抗和胰岛素分泌不足的内分泌代谢紊乱引起的高血糖[1]。研究表明,膳食中增加全谷物摄入可将2型糖尿病发生风险降低20%—30%[2]。全谷物具有调节血糖的功能,它含有的水溶性膳食纤维被认为是发挥降低餐后血糖和提高胰岛素敏感性的主要物质之一,其机制是通过抑制淀粉酶活性及发酵产生短链脂肪酸影响肠道激素肽YY和胰高血糖素样肽-1来改善胰岛素抵抗[3,4]。淀粉是全谷物中提供葡萄糖的主要来源,根据消化速率分为快消化淀粉(rapidly digestible starch,RDS)、慢消化淀粉(slowly digestible starch,SDS)和抗性淀粉(resistant starch,RS),其中SDS和RS在体内消化缓慢,有助于维持餐后血糖稳定和改善胰岛素敏感性,因此,餐后血糖应答取决于全谷物的淀粉消化率[5]。【前人研究进展】青稞(Hordeum vulgare L. var. nudum Hook. F),又称裸大麦,主要分布于中国西藏、青海、甘肃等地,具有高蛋白、高纤维、高维生素、低脂肪和低糖等营养特点[6]。青稞富含水溶性β-葡聚糖,含量可达8%,远高于大麦、小麦和燕麦[7]。β-葡聚糖在胃肠道内易形成黏性溶液阻碍淀粉分解和葡萄糖吸收,可抑制餐后血糖浓度和胰岛素水平升高[8]。中医和藏医学对青稞食品防治糖尿病的作用也持肯定态度。热加工对全谷物β-葡聚糖理化性质和淀粉消化率的影响已有报道。炒制可显著增加青稞β-葡聚糖含量;而蒸煮对青稞β-葡聚糖的损耗无显著影响[9]。SONIA等[10]发现,煮熟的白米饭在4℃储存24 h后,抗性淀粉含量增加,血糖应答显著下降。老化处理对青稞理化性质的研究甚少。ZHU等[11]研究表明,与生青稞相比,121℃、0.1 MPa下蒸煮不同时间(10—20 min)后再在常温下老化4 d,青稞淀粉短程有序性显著降低,但处理组间无显著性差异。【本研究切入点】青稞常用于制作藏区人民传统的日常主食—糌粑粉。糌粑粉是将青稞除杂、洗净、晾干、翻炒后磨粉,食用时与少量的酥油茶、奶渣和糖等搅拌均匀,捏成团状。目前,青稞加工附加值相对较低,利用合理的加工方式充分发掘其稳定血糖的品质,可提高青稞的保健功能和利用价值。【拟解决的关键问题】本研究以青稞为原料,探讨蒸煮-老化预处理对炒制青稞粉理化性质、β-葡聚糖含量及体外淀粉消化特性等的影响,为开发糖尿病人或血糖偏高人群食用的青稞新产品提供借鉴。
a—f:青稞粉图;g—l:青稞粉扫描电镜图(4000×);m—r:青稞粉显微镜图(4×) Fig. 1Effects of steaming-retrogradation on macrostructures and microstructures of the roasted highland barley
a-f: Pictures of highland barley flour; g-l: Scanning electron microscope pictures of highland barley flour (4000×); m-r: Microscopy pictures of highland barley (4×)
Table 1 表1 表1蒸煮-老化预处理对炒制青稞粉营养成分的影响 (g/100 g) Table 1Effects of steaming-retrogradation on proximate compositions in the roasted highland barely (g/100 g)
样品 Sample
水分* Water
总淀粉 Total starch
蛋白质 Protein
脂肪 Fat
IDF
SDF
TDF
β-葡聚糖 β-glucan
生青稞粉 Raw highland barley flour
13.8±0.1a
62.0±0.3a
8.5±0.5a
2.3±0.1a
18.3±0.4b
7.1±0.0b
25.5±0.4b
6.5±0.3a
0-Roasted
8.6±0.1b
60.2±1.3ab
7.6±0.4b
1.3±0.1bc
20.5±0.4a
10.8±0.1a
31.3±0.5a
2.2±0.1d
6-Roasted
7.0±0.11c
59.4±2.7ab
6.4±0.3c
1.5±0.1bc
16.7±0.0c
6.6±0.1b
23.3±0.1c
2.3±0.1cd
12-Roasted
5.2±0.2d
57.8±2.7ab
6.3±0.2c
1.3±0.4c
16.4±0.5c
6.8±0.6b
23.2±1.1c
2.6±0.0c
18-Roasted
3.4±0.0e
55.6±4.0b
6.8±0.5c
1.5±0.2bc
15.0±0.1d
7.1±0.8b
22.1±0.9c
4.0±0.1b
24-Roasted
2.8±0.1f
57.2±2.3b
7.5±0.5b
1.8±0.1b
15.4±0.2d
7.2±0.0b
22.5±0.2c
4.3±0.2b
*:除水分外,其余含量均为干基。0-Roasted:蒸煮后老化0 h炒制青稞粉;6-Roasted:蒸煮后老化6 h炒制青稞粉;12-Roasted:蒸煮后老化12 h炒制青稞粉;18-Roasted:蒸煮后老化18 h炒制青稞粉;24-Roasted:蒸煮后老化24 h炒制青稞粉。IDF:水不溶性膳食纤维;SDF:水溶性膳食纤维;TDF:总膳食纤维;同列不同小写字母表示差异显著(P<0.05)。下同 *: The other contents are presented as dry basis except moisture. 0-Roasted: Steaming-retrogradation 0 h roasted highland barley flour; 6-Roasted: Steaming-retrogradation 6 h roasted highland barley flour; 12-Roasted: Steaming-retrogradation 12 h roasted highland barley flour; 18-Roasted: Steaming-retrogradation 18 h roasted highland barley flour; 24-Roasted: Steaming-retrogradation 24 h roasted highland barley flour. IDF: Water-insoluble dietary fibre; SDF: Soluble dietary fibre; TDF: Total dietary fibre. Different lowercase letters in the same column indicate significant differences (P<0.05). The same as below
不同大写字母表示持油力差异显著(P<0.05);不同小写字母表示持水力差异显著(P<0.05) Fig. 4Effects of steaming-retrogradation on the water holding capacity and oil holding capacity of the roasted highland barley
Different capital letters indicate significant difference (P<0.05) for oil holding capacity; different lowercase letters indicate significant difference (P<0.05) for water holding capacity
a—c:DS差异显著(P<0.05);A—B:SDS差异显著(P<0.05);A'—C':RS差异显著(P<0.05) Fig. 5Effects of steaming-retrogradation on in vitro digestion of starch in the roasted highland barley
a-c indicate significant difference in RDS (P<0.05); A-B indicate significant difference in SDS (P<0.05); A'-C' indicate significant difference in RS (P<0.05)
YE EQ, CHACKO SA, CHOU EL, KUGIZAKIM, LIU SM. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain The Journal of Nutrition, 2012, 142(7):1304-1313. DOI:10.3945/jn.111.155325URL [本文引用: 1]
GUOP, YU JL, WANG SJ, WANGS, COPELANDL. Effects of particle size and water content during cooking on the physicochemical properties and in vitro starch digestibility of milled durum wheat grains Food Hydrocolloids, 2018, 77:445-453. doi: 10.1016/j.foodhyd.2017.10.021. URL [本文引用: 3]
GOFFH DH, REPINN, FABEKH, KHOURY DE, GIDLEY MJ. Dietary fiber for glycaemia control: Towards a mechanistic understanding Bioactive Carbohydrates and Dietary Fiber, 2018, 14:39-53. doi: 10.1016/j.bcdf.2017.07.005. [本文引用: 1]
WANG XK, WANG YM, LIUC, ZHANG ZB, WANGQ, CHENG AW, GUOX, LI ZG, SUN JY. The relationship between carbohydrate composition of highland barley kernels and glucostasis quality Journal of the Chinese Cereals and Oils Association, 2019, 34(8):34-41. (in Chinese) [本文引用: 1]
WANG XK, LIUC, YANG QM, CHENG AW, WANG YM, WANGQ, SUN JY. Beta glucan content in highland barley grains and its change influenced by different processing methods Shandong Agricultural Sciences, 2019, 51(2):124-130. (in Chinese) [本文引用: 1]
SONIAS, WITJAKSONOF, RIDWANR. Effect of cooling of cooked white rice on resistant starch content and glycemic response Asia Pacific Journal of Clinical Nutrition, 2015, 24(4):620-625. [本文引用: 1]
ZHU YD, WANG ZY, WANGY, LID, WANG LJ. Effect on parboiling processing on structure and thermal properties of highland barley flours Powder Technology, 2020, 364:145-151. doi: 10.1016/j.powtec.2020.01.049. URL [本文引用: 1]
YANG XJ. Research on processing technology of hulless barely tsampa The Food Industry, 2016, 37(8):78-81. (in Chinese) [本文引用: 1]
ASP NG, JOHANSSON CG, HALLMERH, SILJESTROEMM. Rapid enzymatic assay of insoluble and soluble dietary fiber Journal of Agricultural and Food Chemistry, 1983, 31(3):476-482. DOI:10.1021/jf00117a003URL [本文引用: 1]
LI JH, VASANTHANT, ROSSNAGELB, HOOVERR. Starch from hull-less barley: I. Granule morphology, composition and amylopectin structure Food Chemistry, 2001, 74(4):395-405. DOI:10.1016/S0308-8146(01)00246-1URL [本文引用: 1]
XUL, CHENL, ALIB, YANGN, CHENG YS, WU FF, JIN ZY, XU XM. Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.) Food Chemistry, 2017, 229:312-318. DOI:10.1016/j.foodchem.2017.02.096URL [本文引用: 1]
TAN XY, ZHANG BJ, CHENL, LI XX, LIL, XIE FW. Effect of planetary ball-milling on multi-scale structures and pasting properties of waxy and high-amylose corn starches Innovative Food Science & Emerging Technologies, 2015, 30:198-207. doi: 10.1016/j.ifset.2015.03.013. [本文引用: 1]
PUNCHA-ARNONS, UTTAPAPD. Rice starch vs. rice flour: Differences in their properties when modified by heat-moisture treatment Carbohydrate Polymers, 2013, 91(1):85-91. DOI:10.1016/j.carbpol.2012.08.006URL [本文引用: 1]
ZHU FM, DUB, XU BJ. Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China Journal of Cereal Science, 2015, 65:43-47. doi: 10.1016/j.jcs.2015.06.006. URL [本文引用: 2]
QI XG, CHENG LL, LI XJ, ZHANG DY, WU GC, ZHANGH, WANGL, QIAN HF, WANG YN. Effect of cooking methods on solubility and nutrition quality of brown rice powder Food Chemistry, 2019, 274:444-451. doi: 10.1016/j.foodchem.2018.07.164. URL [本文引用: 1]
SHARMAP, GUJRAL HS, ROSELL CM. Effects of roasting on barley β-glucan, thermal, textural and pasting properties Journal of Cereal Science, 2011, 53(1):25-30. DOI:10.1016/j.jcs.2010.08.005URL [本文引用: 1]
LI CL. Self-assembly mechanism in the starch retrogradation and its effect on starch during digestibility [D]. Tianjin: Tianjin University of Science & Technology, 2016. (in Chinese) [本文引用: 1]
ZHENGB, ZHONG SW, TANG YK, CHENL. Understanding the nutritional functions of thermally-processed whole grain highland barley in vitro and in vivo Food Chemistry, 2019, 310:125979. doi: 10.1016/j.foodchem.2019.125979. URL [本文引用: 1]
BJÖRCKI, ASP NG, BIRKHEDD, ELIASSON AC, SJOBERG LB, LUNDQUISTL. Effects of processing on availability of starch for digestion in vitro and in vivo; I Extrusion cooking of wheat flours and starch Journal of Cereal Science, 1984, 2(3):165-178. DOI:10.1016/S0733-5210(84)80030-2URL [本文引用: 1]
GOUDARG, SHARMAP, JANGHUS, LONGVAHT. Effect of processing on barley β-glucan content, its molecular weight and extractability International Journal of Biological Macromolecules, 2020, 162:1204-1216. doi: 10.1016/j.ijbiomac.2020.06.208. URL [本文引用: 1]
WANG SJ, WANG SK, GUOP, LIUL, WANGS. Multiscale structural changes of wheat and yam starches during cooking and their effect on in vitro enzymatic digestibility Journal of Agricultural and Food Chemistry, 2017, 65(1):156-166. DOI:10.1021/acs.jafc.6b04272URL [本文引用: 1]
BAI YP, ZHOU HM, ZHU KR, LIQ. Effect of thermal treatment on the physicochemical, ultrastructural and nutritional characteristics of whole grain highland barley Food Chemistry, 2020, 17:128657. doi: 10.1016/j.foodchem.2020.128657. [本文引用: 1]
PU HY, CHENL, LIL, LI XX. Multi-scale structural and digestion resistibility changes of high-amylose corn starch after hydrothermal- pressure treatment at different gelatinizing temperatures Food Research International, 2013, 53(1):456-463. DOI:10.1016/j.foodres.2013.05.021URL [本文引用: 1]
SEVENOUO, HILL SE, FARHAT IA, MITCHELL JR. Organisation of the external region of the starch granule as determined by infrared spectroscopy International Journal of Biological Macromolecules, 2002, 31(1):79-85. DOI:10.1016/S0141-8130(02)00067-3URL [本文引用: 1]
KHUNAEP, TRANT, SIRIVONGPAISALP. Effect of heat-moisture treatment on structural and thermal properties of rice starches differing in amylose content Starch-Staerke, 2007, 59(12):593-599. DOI:10.1002/(ISSN)1521-379XURL [本文引用: 2]
ZOUJ, XU MJ, TANGW, WEN LR, YANGB. Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment Food Chemistry, 2020, 309:125733. DOI:10.1016/j.foodchem.2019.125733URL [本文引用: 1]
WANG SJ, LI CL, ZHANGX, COPELANDL, WANGS. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch Scientific Reports, 2016, 6:20965. DOI:10.1038/srep20965URL [本文引用: 2]
GUOP, YU JL, COPELANDL, WANGS, WANG SJ. Mechanisms of starch gelatinization during heating of wheat flour and its effect on invitro starch digestibility Food Hydrocolloids, 2018, 82:370-378. doi: 10.1016/j.foodhyd.2018.04.012. URL [本文引用: 1]
JAFARIM, KOOCHEKIA, MILANIE. Effect of extrusion cooking on chemical structure, morphology, crystallinity and thermal properties of sorghum flour extrudates Journal of Cereal Science, 2017, 75:324-331. doi: 10.1016/j.jcs.2017.05.005. URL [本文引用: 1]
JING XJ. Effects of different hot processing on process properties and nutritional effect of germinated barley [D]. Zhengzhou: Zhengzhou University of Light Industry, 2019. (in Chinese) [本文引用: 2]
LI GP. Effect of thermal processing on the colloidal and functional properties of chestnut starch [D]. Beijing: Beijing Forestry University, 2018. (in Chinese) [本文引用: 2]
ASHWAR BA, GANIA, WANI IA, SHAHA, MASOODI FA, SAXENA DC. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization Food Hydrocolloids, 2016, 56:108-117. DOI:10.1016/j.foodhyd.2015.12.004URL [本文引用: 1]
LUO XL, WANGQ, ZHENG BD, LIN LM, CHEN BY, ZHENG YF, XIAO JB. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice Food and Chemical Toxicology, 2017, 109:1003-1009. doi: 10.1016/j.fct.2017.02.029. URL [本文引用: 1]
ZHANG QF, LIM, LI HY, MENG JY. Effects of different processing methods on dietary fiber composition and functional properties of highland barley Cereals & Oils, 2020, 33(2):91-94. (in Chinese) [本文引用: 1]
PARK KH, LEE KY, LEE HG. Chemical composition and physicochemical properties of barley dietary fiber by chemical modification International Journal of Biological Macromolecules, 2013, 60(6):360-365. DOI:10.1016/j.ijbiomac.2013.06.024URL [本文引用: 1]
FANGC. Effects of different additives on glycemic index and properties of extruded rice [D]. Nanchang: Nanchang University, 2018. (in Chinese) [本文引用: 1]
WANG SJ, LI CL, COPELANDL, NIUQ, WANGS. Starch retrogradation: A comprehensive review Comprehensive Reviews in Food Science and Food Safety, 2015, 14(5):568-585. DOI:10.1111/crf3.2015.14.issue-5URL [本文引用: 1]