房蕊,1, 于镇华1, 李彦生1, 谢志煌1,2, 刘俊杰1, 王光华1, 刘晓冰1, 陈渊1, 刘居东1, 张少庆1, 吴俊江3, Stephen J HERBERT4, 金剑,11中国科学院东北地理与农业生态研究所/黑土区农业生态重点实验室,中国哈尔滨 150081 2中国科学院大学,中国北京 100049 3黑龙江省农业科学院大豆研究所/农业农村部大豆栽培重点实验室/黑龙江省大豆栽培重点实验室,中国哈尔滨 150086 4Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil
FANG Rui,1, YU ZhenHua1, LI YanSheng1, XIE ZhiHuang1,2, LIU JunJie1, WANG GuangHua1, LIU XiaoBing1, CHEN Yuan1, LIU JuDong1, ZHANG ShaoQing1, WU JunJiang3, Stephen J HERBERT4, JIN Jian,11Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences/Key Laboratory of Mollisols Agroecology, Harbin 150081, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs/Heilongjiang Key Laboratory of Soybean Cultivation, Harbin 150086, China 4Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
Abstract Elevated atmospheric CO2 concentration (eCO2) and warming may affect the crop photosynthesis, and consequently alter the translocation of photosynthetic carbon to soil. Under climate change, the change of photosynthetic carbon retained in soil may shape the structure of microbial community involved in photosynthetic carbon transformation. As a major driver of soil carbon cycle, soil microorganism plays an important role in the transformation of soil organic matter. The changes of microbial community structure and function under climate change are likely to affect the turnover of soil organic matter, resulting in an increase or decrease in the concentration of atmosphere CO2 as a feedback to climate change. Soil carbon balance depends on the input and output of carbon in the soil and its retention in the soil. However, it is unclear that how climate change may affect the stability of the soil carbon pool. Therefore, the change of the soil carbon pool corresponding with soil microbial community structure is the core mechanism of terrestrial ecosystem in response to climate change, which is important to the management of soil organic carbon and the maintenance of soil productivity on farmland in the future. This paper reviewed the responses of soil carbon pool and soil microbial community structure to global climate change (eCO2 and warming). The main conclusions were as follows: (1) Elevated CO2 and warming exhibited the tradeoff effect on soil carbon pools, but whether soil carbon pool became carbon source depended on the extent of warming; (2) Elevated CO2 increased the accumulation of photosynthetic carbon in plant parts of corn and wheat. Warming also posed an impact on the accumulation of photosynthetic carbon, but the impact varied among different parts with negative or no effect; (3) Warming and eCO2 showed a cumulative effect on soil microbial activity and community diversity, but different microbial kingdoms (bacteria, fungi and archaea) had different roles to affect carbon turnover. Finally, it was proposed that the future research directions included: (1) in-depth study on the impact of climate change on the turnover of root exudates considering the plant-soil interaction and its influence on microbial properties; (2) DNA-SIP being applied to explore the relationship between different plant-carbon sources utilized by soil microorganisms and carbon cycling under eCO2 and warming. Thus, these proposed studies might clarify substrate-utilizing strategies by microbes and the response of microbial community to climate change. Keywords:climate change;soil organic matter;microorganism;photosynthetic carbon;root exudates
PDF (483KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 房蕊, 于镇华, 李彦生, 谢志煌, 刘俊杰, 王光华, 刘晓冰, 陈渊, 刘居东, 张少庆, 吴俊江, Stephen J HERBERT, 金剑. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响. 中国农业科学, 2021, 54(17): 3666-3679 doi:10.3864/j.issn.0578-1752.2021.17.009 FANG Rui, YU ZhenHua, LI YanSheng, XIE ZhiHuang, LIU JunJie, WANG GuangHua, LIU XiaoBing, CHEN Yuan, LIU JuDong, ZHANG ShaoQing, WU JunJiang, Stephen J HERBERT, JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil. Scientia Acricultura Sinica, 2021, 54(17): 3666-3679 doi:10.3864/j.issn.0578-1752.2021.17.009
MOC代表矿质结合态有机碳;POC代表颗粒有机碳;MBC代表微生物碳;DOC代表水溶性有机碳;SOC代表土壤有机碳 MOC means mineral-associated organic carbon; POC means particulate organic carbon; MBC means microbial carbon; DOC means dissolved organic carbon; TOC means total organic carbon
PANOZZOJ F, WALKERC K, MAHARJANP, PARTINGTOND L, KORTEC J. Elevated CO2 affects plant nitrogen and water-soluble carbohydrates but not in vitro metabolisable energy , 2019, 205(6): 647-658. DOI:10.1111/jac.v205.6URL [本文引用: 1]
Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis report//TEAM C, PACHAURI R K, MEYER L A. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change , 2014. [本文引用: 2]
FUT C, HAB, KOJ. Simulation of CO2 enrichment and climate change impacts on soybean production , 2016, 30(1): 25-37. DOI:10.1515/intag-2015-0069URL [本文引用: 1]
BORDIGNONL, FARIAA P, FRANÇAM G C, FERNANDESG W. Osmotic stress at membrane level and photosystem II activity in two C4 plants after growth in elevated CO2 and temperature , 2019, 174(2): 113-122. DOI:10.1111/aab.2019.174.issue-2URL [本文引用: 1]
MEEHLG A, STOCKERT F, COLLINSW D, FRIEDLINGSTEINP, GAYEA, GREGORYJ, KITOHA, KNUTTIR, MURPHYJ, NODAA, RAPERS, WATTERSONI, WEAVERA, ZHAOZ. . Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007. [本文引用: 1]
JINJ T, LIY, LIR J, LIUX L, LIL M. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development Plant Physiology Journal, 2019, 55(5): 558-568.(in Chinese) [本文引用: 1]
NORBYR J, DELUCIAE H, GIELENB, CALFAPIETRAC, GIARDINAC P, KINGJ S, LEDFORDJ, MCCARTHYH R, MOORED J P, CEULEMANSR, DEANGELIS P, FINZIA C, KARNOSKYD F, KUBISKEM E, LUKACM, PREGITZERK S, SCARASCIA-MUGNOZZAG E, SCHLESINGERW H, ORENR. Forest response to elevated CO2 is conserved across a broad range of productivity , 2005, 102(50): 18052-18056. [本文引用: 3]
WANGY H, YUZ H, LIY S, LIUJ J, WANGG H, LIUX B, XIEZ H, HERBERTS, JINJ. Carbon flow in the plant-soil-microbe continuum in response to atmospheric elevated CO2 Soils and Crops, 2018, 7(1): 22-30.(in Chinese) [本文引用: 1]
KUZYAKOVY, GAVRICHKOVAO. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls , 2010, 16(12): 3386-3406. DOI:10.1111/j.1365-2486.2010.02179.xURL [本文引用: 1]
OSANAIY, KNOXO, NACHIMUTHUG, WILSONB. Increasing soil organic carbon with maize in cotton-based cropping systems: Mechanisms and potential. Agriculture, , 2020, 299: 106985. [本文引用: 1]
VANGESTEL N, SHIZ, VANGROENIGEN K J, OSENBERGC W, ANDRESENL C, DUKESJ S, HOVENDENM J, LUOY Q, MICHELSENA, PENDALLE, REICHP B, SCHUURE A G, HUNGATEB A. Predicting soil carbon loss with warming , 2018, 554(7693): E4-E5. DOI:10.1038/nature25745URL [本文引用: 2]
HOPKINSF M, FILLEYT R, GLEIXNERG, LANGEM, TOPS M, TRUMBORES E. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses , 2014, 76: 57-69. DOI:10.1016/j.soilbio.2014.04.028URL [本文引用: 1]
TODD-BROWNK E O, RANDERSONJ T, HOPKINSF, ARORAV, HAJIMAT, JONESC, SHEVLIAKOVAE, TJIPUTRAJ, VOLODINE, WUT, ZHANGQ, ALLISONS D. Changes in soil organic carbon storage predicted by Earth system models during the 21st century , 2014, 11(8): 2341-2356. DOI:10.5194/bg-11-2341-2014URL [本文引用: 2]
PRICED T, PENGC H, APPSM J, HALLIWELLD H. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada , 1999, 26(6): 1237-1248. DOI:10.1046/j.1365-2699.1999.00332.xURL [本文引用: 1]
CONANTR T, STEINWEGJ M, HADDIXM L, PAULE A, PLANTEA F, SIXJ. Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance , 2008, 89(9): 2384-2391. DOI:10.1890/08-0137.1URL [本文引用: 3]
FONTAINES, MARIOTTIA, ABBADIEL. The priming effect of organic matter: A question of microbial competition? , 2003, 35(6): 837-843. DOI:10.1016/S0038-0717(03)00123-8URL [本文引用: 1]
DRIGOB, PIJLA S, DUYTSH, KIELAKA M, GAMPERH A, HOUTEKAMERM J, BOSCHKERH T S, BODELIERP L E, WHITELEYA S, VEENJ A V, KOWALCHUKG A. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2 , 2010, 107(24): 10938-10942. DOI:10.1073/pnas.0912421107URL [本文引用: 2]
VANGROENIGEN K J, QIX, OSENBERGC W, LUOY Q, HUNGATEB A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage , 2014, 344(6183): 508-509. DOI:10.1126/science.1249534URL [本文引用: 3]
DIJKSTRAP, THOMASS C, HEINRICHP L, KOCHG W, SCHWARTZE, HUNGATEB A. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency , 2011, 43(10): 2023-2031. DOI:10.1016/j.soilbio.2011.05.018URL [本文引用: 1]
FISSOREC, GIARDINAC P, KOLKAR K, TRETTINC C, KINGG M, JURGENSENM F, BARTONC D, MCDOWELLS D. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America , 2008, 14(1): 193-205. DOI:10.1111/gcb.2008.14.issue-1URL [本文引用: 1]
DENNISP G, MILLERA J, HIRSCHP R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? , 2010, 72(3): 313-327. DOI:10.1111/fem.2010.72.issue-3URL [本文引用: 1]
LALR. Soil carbon sequestration impacts on global climate change and food security , 2004, 304(5677): 1623-1627. DOI:10.1126/science.1097396URL [本文引用: 1]
LANGLEYJ A, MCKINLEYD C, WOLFA A, HUNGATEB A, DRAKEB G, MEGONIGALJ P. Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2 , 2009, 41(1): 54-60. DOI:10.1016/j.soilbio.2008.09.016URL [本文引用: 1]
CHENGL, LEAVITTS W, KIMBALLB A, PINTERP J Jr, OTTMANM J, MATTHIASA, WALLG W, BROOKST, WILLIAMSD G, THOMPSONT L. Dynamics of labile and recalcitrant soil carbon pools in a Sorghum free-air CO2 enrichment (FACE) agroecosystem , 2007, 39(9): 2250-2263. DOI:10.1016/j.soilbio.2007.03.031URL [本文引用: 1]
GILLR A, POLLEYH W, JOHNSONH B, ANDERSONL J, MAHERALIH, JACKSONR B. Nonlinear grassland responses to past and future atmospheric CO2 , 2002, 417(6886): 279-282. DOI:10.1038/417279aURL [本文引用: 2]
ZHUB, CHENGW X. Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition , 2011, 17(6): 2172-2183. DOI:10.1111/gcb.2011.17.issue-6URL [本文引用: 1]
PENDALLE, DELGROSSO S, KINGJ Y, LECAIND R, MILCHUNASD G, MORGANJ A, MOSIERA R, OJIMAD S, PARTONW A, TANSP P, WHITEJ W C. Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland , 2003, 17(2): 1046. [本文引用: 2]
ANANYEVAK, WANGW, SMUCKERA J M, RIVERSM L, KRAVCHENKOA N. Can intra-aggregate pore structures affect the aggregate's effectiveness in protecting carbon? , 2013, 57: 868-875. DOI:10.1016/j.soilbio.2012.10.019URL [本文引用: 1]
GREGORICHE G, BEAREM H, MCKIMU F, SKJEMSTADJ O. Chemical and biological characteristics of physically uncomplexed organic matter , 2006, 70(3): 975-985. DOI:10.2136/sssaj2005.0116URL [本文引用: 1]
TRIPATHIR, NAYAKA K, BHATTACHARYYAP, SHUKLAA K, SHAHIDM, RAJAR, PANDAB B, MOHANTYS, KUMARA, THILAGAMV K. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice-rice system , 2014, 213: 280-286. DOI:10.1016/j.geoderma.2013.08.031URL [本文引用: 1]
CARDONZ G, HUNGATEB A, CAMBARDELLAC A, CHAPINF S III, FIELDC B, HOLLANDE A, MOONEYH A. Contrasting effects of elevated CO2 on old and new soil carbon pools , 2001, 33(3): 365-373. DOI:10.1016/S0038-0717(00)00151-6URL [本文引用: 5]
XUQ, JINJ, WANGX J, ARMSTRONGR, TANGC X. Susceptibility of soil organic carbon to priming after long-term CO2 fumigation is mediated by soil texture , 2019, 657: 1112-1120. DOI:10.1016/j.scitotenv.2018.11.437URL [本文引用: 5]
FANGR. Effects of elevated CO2 concentration and warming on maize photosynthetic carbon distribution and community of rhizosphere bacterial [D]. Beijing: University of Chinese Academy of Sciences, 2020. (in Chinese) [本文引用: 14]
BLACKC K, DAVISS C, HUDIBURGT W, BERNACCHIC J, DELUCIAE H. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem , 2017, 23(1): 435-445. DOI:10.1111/gcb.13378URL [本文引用: 9]
LINZ B, ZHANGR D. Effects of climate change and elevated atmospheric CO2 on soil organic carbon: A response equation , 2012, 113(2): 107-120. DOI:10.1007/s10584-011-0355-7URL [本文引用: 9]
SAMALS K, DWIVEDIS K, RAOK K, CHOUBEYA K, PRAKASHV, KUMARS, MISHRAJ S, BHATTB P, MOHARANAP C. Five years’ exposure of elevated atmospheric CO2 and temperature enriched recalcitrant carbon in soil of subtropical humid climate , 2020, 203: 104707. DOI:10.1016/j.still.2020.104707URL [本文引用: 25]
DORODNIKOVM, BLAGODATSKAYAE, BLAGODATSKYS, MARHANS, FANGMEIERA, KUZYAKOVY. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size , 2009, 15(6): 1603-1614. DOI:10.1111/gcb.2009.15.issue-6URL [本文引用: 5]
INH J, CHENZ, LIUQ. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China , 2012, 50: 77-84. DOI:10.1016/j.soilbio.2012.03.004URL [本文引用: 11]
KEILUWEITM, BOUGOUREJ J, NICOP S, PETT-RIDGEJ, WEBERP K, KLEBERM. Mineral protection of soil carbon counteracted by root exudates , 2015, 5(6): 588-595. DOI:10.1038/nclimate2580URL [本文引用: 3]
MAT, LIUX, LIJ, ZHANGX D, HEH B. Effects of elevated atmospheric CO2 on the distribution and accumulation of photosynthetic carbon in soil-plant(spring wheat) system Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2238-2246.(in Chinese) [本文引用: 3]
LIUY, LIM, ZHENGJ W, LIL Q, ZHANGX H, ZHENGJ F, PANG X, YUX Y, WANGJ F. Short-term responses of microbial community and functioning to experimental CO2 enrichment and warming in a Chinese paddy field , 2014, 77: 58-68. DOI:10.1016/j.soilbio.2014.06.011URL [本文引用: 13]
XIONGL, LIUX Y, VINCIG, SPACCINIR, DROSOSM, LIL Q, PICCOLOA, PANG X. Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air , 2019, 137: 107544. DOI:10.1016/j.soilbio.2019.107544URL [本文引用: 8]
CHENGX, LUOY, XUX, SHERRYR, ZHANGQ. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming , 2011, 8(6): 1487-1498. DOI:10.5194/bg-8-1487-2011URL [本文引用: 8]
GUANS, ANN, ZONGN, HEY T, SHIP L, ZHANGJ J, HEN P. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow , 2018, 116: 224-236. DOI:10.1016/j.soilbio.2017.10.011URL [本文引用: 7]
GEZ M, ZHOUX, KELLOMÄKIS, BIASIC, WANGK Y, PELTOLAH, MARTIKAINENP J. Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season , 2012, 75: 150-158. DOI:10.1016/j.envexpbot.2011.09.008URL [本文引用: 6]
YUH, DENGY, HEZ L, VANNOSTRAND J D, WANGS, JIND C, WANGA J, WUL Y, WANGD H, TAIX, ZHOUJ Z. Elevated CO2 and warming altered grassland microbial communities in soil top-layers , 2018, 9: 1790. DOI:10.3389/fmicb.2018.01790URL [本文引用: 9]
SCHNECKERJ, BORKENW, SCHINDLBACHERA, WANEKW. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming , 2016, 103: 300-307. DOI:10.1016/j.soilbio.2016.09.003URL [本文引用: 3]
FANGX, ZHOUG Y, QUC, HUANGW J, ZHANGD Q, LIY L, YIZ G, LIUJ X. Translocating subtropical forest soils to a warmer region alters microbial communities and increases the decomposition of mineral-associated organic carbon , 2020, 142: 107707. DOI:10.1016/j.soilbio.2020.107707URL [本文引用: 9]
WIESMEIERM, HÜBNERR, SPÖRLEINP, GEUßU, HANGENE, REISCHLA, SCHILLINGB, VONLÜTZOW M, KÖGEL-KNABNERI. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation , 2014, 20(2): 653-665. DOI:10.1111/gcb.2014.20.issue-2URL [本文引用: 1]
BENBID K, BOPARAIA K, BRARK. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter , 2014, 70: 183-192. DOI:10.1016/j.soilbio.2013.12.032URL [本文引用: 1]
CONANTR T, RYANM G, ÅGRENG I, BIRGEH E, DAVIDSONE A, ELIASSONP E, EVANSS E, FREYS D, GIARDINAC P, HOPKINSF M, HYVÖNENR, KIRSCHBAUMM U F, LAVALLEEJ M, LEIFELDJ, PARTONW J, MEGANSTEINWEG J, WALLENSTEINM D, MARTINWETTERSTEDT J Å, BRADFORDM A. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward , 2011, 17(11): 3392-3404. DOI:10.1111/j.1365-2486.2011.02496.xURL [本文引用: 1]
LOISEAUP, SOUSSANAJ F. Elevated [CO2], temperature increase and N supply effects on the accumulation of below-ground carbon in a temperate grassland ecosystem , 1999, 212(2): 123-131. DOI:10.1023/A:1004632925520URL [本文引用: 1]
CARRILLOY, DIJKSTRAF, LECAIND, BLUMENTHALD, PENDALLE. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria , 2018, 21(11): 1639-1648. DOI:10.1111/ele.2018.21.issue-11URL [本文引用: 2]
SIXJ, CARPENTIERA, VANKESSEL C, MERCKXR, HARRISD, HORWATHW R, LÜSCHERA. Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality , 2001, 234(1): 27-36. DOI:10.1023/A:1010504611456URL [本文引用: 1]
ZHOUG S, WANGY H, XUZ Z, ZHOUL, JIANGY L. Research progress of carbon cycle in Northeast China Progress in Natural Science, 2003, 13(9): 917-922.(in Chinese) [本文引用: 1]
YUZ H, LIY S, JINJ, LIUX B, WANGG H. Carbon flow in the plant-soil-microbe continuum at different growth stages of maize grown in a Mollisol , 2017, 63(3): 362-374. DOI:10.1080/03650340.2016.1211788URL [本文引用: 1]
ANT T. Allocation and microbial immobilization of photosynthetically fixed carbon in plant-soil system with 13C labeling technique [D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese) [本文引用: 2]
MATHEWI, SHIMELISH, MUTEMAM, CHAPLOTV. What crop type for atmospheric carbon sequestration: Results from a global data analysis , 2017, 243: 34-46. DOI:10.1016/j.agee.2017.04.008URL [本文引用: 1]
SHIY B, CAOB, SONGL H, WANGG B. Effect of doubled CO2 concentration on accumulation of photosynthate in Lycium barbarum by13C isotope tracer technique Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 201-206.(in Chinese) [本文引用: 1]
XUZ Z, ZHOUG S. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis , 2005, 123(3): 272-280. DOI:10.1111/ppl.2005.123.issue-3URL [本文引用: 1]
CHENGW G, SAKAIH, YAGIK, HASEGAWAT. Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.) , 2010, 150(9): 1174-1181. DOI:10.1016/j.agrformet.2010.05.001URL [本文引用: 2]
JENKINSOND S, ADAMSD E, WILDA. Model estimates of CO2 emissions from soil in response to global warming , 1991, 351(6324): 304-306. DOI:10.1038/351304a0URL [本文引用: 2]
ZHANGW D, WANGX F, WANGS L. Addition of external organic carbon and native soil organic carbon decomposition: A meta-analysis , 2013, 8(2): e54779. DOI:10.1371/journal.pone.0054779URL [本文引用: 2]
YUEK, FORNARAD A, YANGW Q, PENGY, PENGC H, LIUZ L, WUF Z. Influence of multiple global change drivers on terrestrial carbon storage: Additive effects are common , 2017, 20(5): 663-672. DOI:10.1111/ele.12767URL [本文引用: 3]
LUOY Q, HUID F, ZHANGD Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis , 2006, 87(1): 53-63. DOI:10.1890/04-1724URL [本文引用: 1]
SAYERE J, HEARDM S, GRANTH K, MARTHEWST R, TANNERE V J. Soil carbon release enhanced by increased tropical forest litterfall , 2011, 1(6): 304-307. DOI:10.1038/nclimate1190URL [本文引用: 1]
KUZYAKOVY, HORWATHW R, DORODNIKOVM, BLAGODATSKAYAE. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles , 2019, 128: 66-78. DOI:10.1016/j.soilbio.2018.10.005URL [本文引用: 1]
PANG X. Impact of Climate Change on Chinese Agricultural Production: A Analysis and Evaluation. Beijing: Chinese Agriculture Press, 2010.(in Chinese) [本文引用: 1]
LUM, ZHOUX H, YANGQ, LIH, LUOY Q, FANGC M, CHENJ K, YANGX, LIB. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis , 2013, 94(3): 726-738. DOI:10.1890/12-0279.1URL [本文引用: 1]
YANNIS F, HELGASONB L, JANZENH H, ELLERTB H, GREGORICHE G. Warming effects on carbon dynamics and microbial communities in soils of diverse texture , 2020, 140: 107631. DOI:10.1016/j.soilbio.2019.107631URL [本文引用: 1]
QADERIM M, KUREPINL V, REIDD M. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought , 2006, 128(4): 710-721. DOI:10.1111/ppl.2006.128.issue-4URL [本文引用: 1]
PARTONW J, MORGANJ A, WANGG M, DELGROSSO S. Projected ecosystem impact of the Prairie Heating and CO2 Enrichment experiment , 2007, 174(4): 823-834. DOI:10.1111/nph.2007.174.issue-4URL [本文引用: 1]
MUELLERK E, BLUMENTHALD M, PENDALLE, CARRILLOY, DIJKSTRAF A, WILLIAMSD G, FOLLETTR F, MORGANJ A. Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time , 2016, 19(8): 956-966. DOI:10.1111/ele.2016.19.issue-8URL [本文引用: 1]
LINZ B, ZHANGR D. Dynamics of soil organic carbon under uncertain climate change and elevated atmospheric CO2 , 2012, 22(4): 489-496. DOI:10.1016/S1002-0160(12)60033-2URL [本文引用: 1]
HOLTKAMPR, KARDOLP, VANDER WAL A, DEKKERS C, VANDER PUTTEN W H, DERUITER P C. Soil food web structure during ecosystem development after land abandonment , 2008, 39(1): 23-34. DOI:10.1016/j.apsoil.2007.11.002URL [本文引用: 1]
TISDALLJ M. Possible role of soil microorganisms in aggregation in soils , 1994, 159(1): 115-121. DOI:10.1007/BF00000100URL [本文引用: 1]
张乃莉, 郭继勋, 王晓宇, 马克平. 土壤微生物对气候变暖和大气N沉降的响应 , 2007, 31(2): 252-261. DOI:10.17521/cjpe.2007.0029 [本文引用: 1] 气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上, 而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N 循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。 ZHANGN L, GUOJ X, WANGX Y, MAK P. Soil microbial feedbacks to climate warming and atmospheric N deposition Journal of Plant Ecology, 2007, 31(2): 252-261.(in Chinese) DOI:10.17521/cjpe.2007.0029 [本文引用: 1] 气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上, 而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N 循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。
HAYDENH L, MELEP M, BOUGOURED S, ALLANC Y, NORNGS, PICENOY M, BRODIEE L, DESANTIST Z, ANDERSENG L, WILLIAMSA L, HOVENDENM J. Changes in the microbial community structure of bacteria, Archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil , 2012, 14(12): 3081-3096. DOI:10.1111/emi.2012.14.issue-12URL [本文引用: 4]
BRUCEK D, JONEST H, BEZEMERT M, THOMPSONL J, RITCHIED A. The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities , 2000, 6(4): 427-434. DOI:10.1046/j.1365-2486.2000.00320.xURL [本文引用: 1]
VESTERGÅRDM, REINSCHS, BENGTSONP, AMBUSP, CHRISTENSENS. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2 , 2016, 100: 140-148. DOI:10.1016/j.soilbio.2016.06.010URL [本文引用: 1]
AUSTINE E, CASTROH F, SIDESK E, SCHADTC W, CLASSENA T. Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation , 2009, 41(3): 514-520. DOI:10.1016/j.soilbio.2008.12.010URL [本文引用: 1]
YUZ H, LIY S, WANGG H, LIUJ J, LIUJ D, LIUX B, HERBERTS J, JINJ. Effectiveness of elevated CO2 mediating bacterial communities in the soybean rhizosphere depends on genotypes , 2016, 231: 229-232. DOI:10.1016/j.agee.2016.06.043URL [本文引用: 1]
WANGY H. The effect of elevated CO2 concentration on the turnover of photosynthetically fixed carbon and relevant bacterial community characteristics in Mollisols [D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese) [本文引用: 1]
KLAMERM, ROBERTSM S, LEVINEL H, DRAKEB G, GARLANDJ L. Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis , 2002, 68(9): 4370-4376. DOI:10.1128/AEM.68.9.4370-4376.2002URL [本文引用: 1]
LIPSOND A, WILSONR F, OECHELW C. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem , 2005, 71(12): 8573-8580. DOI:10.1128/AEM.71.12.8573-8580.2005URL [本文引用: 1]
LIX F, HANS J, GUOZ L, SHAOD K, XINL H. Changes in soil microbial biomass carbon and enzyme activities under elevated CO2 affect fine root decomposition processes in a Mongolian oak ecosystem , 2010, 42(7): 1101-1107. DOI:10.1016/j.soilbio.2010.03.007URL [本文引用: 1]
XIONGJ B, HEZ L, SHIS J, KENTA, DENGY, WUL Y, VANNOSTRAND J D, ZHOUJ Z. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem , 2015, 5: 9316. DOI:10.1038/srep09316URL [本文引用: 1]
YUH, HEZ L, WANGA J, XIEJ P, WUL Y, VANNOSTRAND J D, JIND C, SHAOZ M, SCHADTC W, ZHOUJ Z, DENGY. Divergent responses of forest soil microbial communities under elevated CO2 in different depths of upper soil layers , 2018, 84(1): e01694-17. DOI: 10.1128/aem.01694-17. [本文引用: 1]
YANGS H, ZHENGQ S, YUANM T, SHIZ, CHIARIELLON R, DOCHERTYK M, DONGS K, FIELDC B, GUY F, GUTKNECHTJ, HUNGATEB A, LEROUX X, MAX Y, NIBOYETA, YUANT, ZHOUJ Z, YANGY F. Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials , 2019, 652: 1474-1481. DOI:10.1016/j.scitotenv.2018.10.353URL [本文引用: 1]
TUQ C, HEZ L, WUL Y, XUEK, XIEG, CHAINP, REICHP B, HOBBIES E, ZHOUJ Z. Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem , 2017, 106: 99-108. DOI:10.1016/j.soilbio.2016.12.017URL [本文引用: 1]
TERRERC, VICCAS, STOCKERB D, HUNGATEB A, PHILLIPSR P, REICHP B, FINZIA C, PRENTICEI C. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition , 2018, 217(2): 507-522. DOI:10.1111/nph.2018.217.issue-2URL [本文引用: 1]
JINJ, WOODJ, FRANKSA, ARMSTRONGR, TANGC X. Long-term CO2 enrichment alters the diversity and function of the microbial community in soils with high organic carbon , 2020, 144: 107780. DOI:10.1016/j.soilbio.2020.107780URL [本文引用: 1]
SINGHB K, BARDGETTR D, SMITHP, REAYD S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options , 2010, 8(11): 779-790. DOI:10.1038/nrmicro2439URL [本文引用: 1]
BRADFORDM A, DAVIESC A, FREYS D, MADDOXT R, MELILLOJ M, MOHANJ E, REYNOLDSJ F, TRESEDERK K, WALLENSTEINM D. Thermal adaptation of soil microbial respiration to elevated temperature , 2008, 11(12): 1316-1327. DOI:10.1111/ele.2008.11.issue-12URL [本文引用: 2]
XIONGJ B, SUNH B, PENGF, ZHANGH Y, XUEX A, GIBBONSS M, GILBERTJ A, CHUH Y. Characterizing changes in soil bacterial community structure in response to short-term warming , 2014, 89(2): 281-292. DOI:10.1111/fem.2014.89.issue-2URL [本文引用: 1]
LIQ, BAIH H, LIANGW J, XIAJ Y, WANS Q, VANDER PUTTEN W H. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe , 2013, 8(3): e60441. [本文引用: 1]
ALLISONS D, WALLENSTEINM D, BRADFORDM A. Soil-carbon response to warming dependent on microbial physiology , 2010, 3(5): 336-340. DOI:10.1038/ngeo846URL [本文引用: 1]
THAKURM P, DELREAL I M, CESARZS, STEINAUERK, REICHP B, HOBBIES, CIOBANUM, RICHR, WORMK, EISENHAUERN. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation , 2019, 135: 184-193. DOI:10.1016/j.soilbio.2019.04.020URL [本文引用: 1]
TEDERSOOL. Correspondence: Analytical flaws in a continental- scale forest soil microbial diversity study , 2017, 8: 15572. DOI:10.1038/ncomms15572URL [本文引用: 1]
FREYS D, LEEJ, MELILLOJ M, SIXJ. The temperature response of soil microbial efficiency and its feedback to climate , 2013, 3(4): 395-398. DOI:10.1038/nclimate1796URL [本文引用: 1]
FREYS D, DRIJBERR, SMITHH, MELILLOJ. Microbial biomass, functional capacity, and community structure after 12 years of soil warming , 2008, 40(11): 2904-2907. DOI:10.1016/j.soilbio.2008.07.020URL [本文引用: 3]
ALIR S, POLLC, KANDELERE. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality , 2018, 127: 60-70. DOI:10.1016/j.soilbio.2018.09.010URL [本文引用: 2]
ALLISONS D, TRESEDERK K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils , 2008, 14(12): 2898-2909. DOI:10.1111/j.1365-2486.2008.01716.xURL [本文引用: 1]
SCHIMELJ, BALSERT C, WALLENSTEINM. Microbial stress-response physiology and its implications for ecosystem function , 2007, 88(6): 1386-1394. DOI:10.1890/06-0219URL [本文引用: 1]
FIERERN, SCHIMELJ P, HOLDENP A. Variations in microbial community composition through two soil depth profiles , 2003, 35(1): 167-176. DOI:10.1016/S0038-0717(02)00251-1URL [本文引用: 1]
MELILLOJ M, FREYS D, DEANGELISK M, WERNERW J, BERNARDM J, BOWLESF P, POLDG, KNORRM A, GRANDYA S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world , 2017, 358(6359): 101-105. DOI:10.1126/science.aan2874URL [本文引用: 1]
ANDRESENL C, DUNGAITJ A J, BOLR, SELSTEDM B, AMBUSP, MICHELSENA. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-Glycine and FACE CO2 , 2014, 9(1): e85070. DOI:10.1371/journal.pone.0085070URL [本文引用: 2]
HAEIM, ROUSKJ, ILSTEDTU, ÖQUISTM, BÅÅTHE, LAUDONH. Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community , 2011, 43(10): 2069-2077. DOI:10.1016/j.soilbio.2011.06.005URL [本文引用: 1]
CHENJ, LUOY Q, XIAJ Y, JIANGL F, ZHOUX H, LUM, LIANGJ Y, SHIZ, SHELTONS, CAOJ J. Stronger warming effects on microbial abundances in colder regions , 2015, 5: 18032. DOI:10.1038/srep18032URL [本文引用: 1]
ADAIRK L, LINDGREENS, POOLEA M, YOUNGL M, BERNARD-VERDIERM, WARDLED A, TYLIANAKISJ M. Above and belowground community strategies respond to different global change drivers , 2019, 9: 2540. DOI:10.1038/s41598-019-39033-4URL [本文引用: 2]
FENGJ J, WANGC, LEIJ S, YANGY F, YANQ Y, ZHOUX S, TAOX Y, NINGD L, YUANM M, QINY J, SHIZ J, GUOX E, HEZ L, VANNOSTRAND J D, WUL Y, BRACHO-GARILLOR G, PENTONC R, COLEJ R, KONSTANTINIDISK T, LUOY Q, SCHUURE A G, TIEDJEJ M, ZHOUJ Z. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community , 2020, 8(1): 3. DOI:10.1186/s40168-019-0778-3URL [本文引用: 1]
FENNERN, FREEMANC, LOCKM A, HARMENSH, REYNOLDSB, SPARKST. Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments , 2007, 41(9): 3146-3152. DOI:10.1021/es061765vURL [本文引用: 1]
HUH W, MACDONALDC A, TRIVEDIP, ANDERSONI C, ZHENGY, HOLMESB, BODROSSYL, WANGJ T, HEJ Z, SINGHB K. Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems , 2016, 92: 1-15. DOI:10.1016/j.soilbio.2015.09.008URL [本文引用: 1]
OSANAIY, JANESJ K, NEWTONP C D, HOVENDENM J. Warming and elevated CO2 combine to increase microbial mineralisation of soil organic matter , 2015, 85: 110-118. DOI:10.1016/j.soilbio.2015.02.032URL [本文引用: 2]
BAIW M, WANS Q, NIUS L, LIUW X, CHENQ S, WANGQ B, ZHANGW H, HANX G, LIL H. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling , 2010, 16(4): 1306-1316. DOI:10.1111/gcb.2010.16.issue-4URL [本文引用: 1]
DIJKSTRAF A, CARRILLOY, PENDALLE, MORGANJ A. Rhizosphere priming: A nutrient perspective , 2013, 4: 216. [本文引用: 1]