Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil
OU HuiPing,, ZHOU LiuQiang, HUANG JinSheng, ZHU XiaoHui, ZENG Yan, PENG JiaYu, XIE RuLin, TAN HongWei,, LI ZhongNing, SHEN XiaoWei, LIU XiHuiAgricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/South China Scientific Observation and Experiment Station of Plant Nutrition and Fertilization Technology, Ministry of Agriculture and Rural Affairs, Nanning 530007
Received:2020-08-21Revised:2020-10-22Online:2021-07-01 作者简介 About authors 区惠平,E-mail: ouhuiping2006@163.com。
摘要 【目的】探讨南方赤红壤蔗区基于甘蔗产量与土壤磷素平衡的磷肥施用量,为该地区农田磷素高效利用与科学施磷提供参考依据。【方法】于2014—2016年在广西甘蔗主产区(南宁市武鸣区)布置田间定位试验,共设5个磷肥施用量水平,分别是0(P0)、75 kg P2O5·hm-2(P1)、150 kg P2O5·hm-2(P2)、300 kg P2O5·hm-2(P3)和 600 kg P2O5·hm-2(P4),连续3年测定甘蔗蔗茎、蔗叶产量和土壤Olsen-P含量,采用Mitscherlich模型拟合蔗茎产量对Olsen-P的响应曲线,计算土壤Olsen-P农学阈值,并分析植株磷含量,计算甘蔗吸磷量,磷肥利用率和磷素表观平衡状况。【结果】与P1处理相比,P2处理蔗茎产量显著提高8.3%(2014年)、18.0%(2015年)和15.5%(2016年)。蔗叶和地上部产量均以P2或P3处理最高,但不同施磷量间蔗茎、蔗叶和地上部产量整体无显著差异。P2—P4处理蔗茎磷累积量、蔗叶磷累积量和地上部磷累积量也相当。土壤Olsen-P含量、磷素表观平衡量和磷素盈余率均随施磷量的增加而显著增加,而磷素表观回收率和磷素偏生产力随施磷量的增加逐渐下降,以P1处理最高,显著高于P3和P4处理。Mitscherlich方程拟合获得Olsen-P农学阈值为13.4 mg·kg-1。相关分析表明,施磷量与磷素盈余率、磷素盈余率与土壤Olsen-P含量呈极显著的线性正相关关系(P小鱼0.01);磷素盈余率与甘蔗蔗茎产量呈极显著二次相关(P小鱼0.01),与磷素表观回收利用率、磷素偏生产力呈极显著指数相关(P小鱼0.01)。当施磷量为40.9 kg·hm-2时,磷素盈余率为0,土壤Olsen-P含量为15.87 mg·kg-1,甘蔗蔗茎产量为 94.2 t·hm-2。线性加平台拟合下的优化施磷量,土壤磷素盈余率为216.2%—232.7%,土壤Olsen-P含量为24.7—25.4 mg·kg-1,甘蔗蔗茎产量为99.7—100 t·hm-2。【结论】在Olsen-P含量较高的蔗区,40.9 kgP2O5·hm-2施用量能维持土壤磷素平衡,保持土壤适宜的Olsen-P含量,获得较高的产量与磷肥利用率,可以作为推荐的适宜施磷量。 关键词:甘蔗;磷肥施用量;Olsen-P;磷素平衡
Abstract 【Objective】 This study was conducted to explore the phosphate fertilizer rate based on sugarcane yield and phosphorus (P) balance in soil, with an aim to provide a reference for the efficient utilization and scientific management of P in farmland. 【Method】A 3-year continuous field trail was conducted in Wuming district of Nanning city of Guangxi province from 2014 to 2016, which was designed with five phosphate fertilization treatments, including non-phosphate fertilization (P0), 75 kg P2O5·hm-2 (P1), 150 kg P2O5·hm-2 (P2), 300 kg P2O5·hm-2 (P3) and 600 kg P2O5·hm-2 (P4). The yield of cane and leaves and Olsen-P content in soil were measured, and the relation between cane yield and Olsen-P was evaluated by Mitscherlich model. The agronomic threshold of soil Olsen-P was also calculated. Plant P content, P uptake, P utilization efficiency and P balance in soil were further analyzed. 【Result】Compared with P0 treatment, the cane yield was significantly increased by 8.3% (2014), 18.0% (2015) and 15.5% (2016) under P2 treatment. P2 or P3 treatments had the highest yields for leaves and above-ground part, but there was no significant difference in cane, leaves and above-ground part among different P application rates. P accumulations in cane, leaves and above were also similar among P2 to P4 treatments. Olsen-P content, P balance and P surplus rate increased significantly with the increase of P application rate, while the PRE and PPFP decreased gradually with the increase of P application rate; where P1 treatment was the highest, which was significantly higher than that under P3 and P4 treatments. The agronomic threshold of Olsne-P was 13.4 mg kg-1 based on Mitscherlich model. Correlation analysis showed that P surplus rate was significantly positively correlated with P application rate and soil Olsen-P (P<0.01), and which was significantly quadratic correlated with sugarcane stem yield (P<0.01), and significantly exponential correlated with PRE and PPFP (P<0.01). When P application rate was 40.9 kg·hm-2, P surplus rate, soil Olsen-P content and cane yield were 0,15.87 mg kg-1and 94.2 t·hm-2, respectively. While the maximum cane yield was obtained by linear and platform fitting, soil P surplus rate, Olsen-P content and cane yield were 216.2%-232.7%, 24.7-25.4 mg·kg-1 and 99.7-100 t·hm-2, respectively. 【Conclusion】 In lateritic red soil with relatively high Olsen-P content, the P application rate of 40.9 kg·hm-2would maintain the soil Olsen P content, meet the demand for high yield and high phosphorus utilization efficiency. Thus, it could be used as the recommended P application amount. Keywords:sugarcane;phosphorus application rate;Olsen-P;phosphorus balance
PDF (627KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 区惠平, 周柳强, 黄金生, 朱晓晖, 曾艳, 彭嘉宇, 谢如林, 谭宏伟, 李忠宁, 沈小微, 刘昔辉. 基于甘蔗产量与土壤磷素平衡的磷肥施用量研究[J]. 中国农业科学, 2021, 54(13): 2818-2829 doi:10.3864/j.issn.0578-1752.2021.13.011 OU HuiPing, ZHOU LiuQiang, HUANG JinSheng, ZHU XiaoHui, ZENG Yan, PENG JiaYu, XIE RuLin, TAN HongWei, LI ZhongNing, SHEN XiaoWei, LIU XiHui. Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil[J]. Scientia Acricultura Sinica, 2021, 54(13): 2818-2829 doi:10.3864/j.issn.0578-1752.2021.13.011
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】施用磷肥是保障作物产量的重要措施。但磷肥进入土壤后,易被土壤吸附、固持,形成难以被植物吸收利用的磷酸盐累积在土壤中[1],造成磷肥利用率降低[2]。目前,磷肥过量施用造成土壤磷素累积的现象在全球十分普遍[3],尤以中国较为严重,土壤磷累积以年均11%的增长速率在递增[4]。过量施磷对作物增产作用不明显[5],还可能导致水体污染等环境问题[6]。因此,研究适宜的磷肥施用量对农业生产具有重要的意义。【前人研究进展】有关磷肥适宜施用量的研究很多,有单一根据作物的农艺性状表现及产量效应确定的磷肥施用量[7,8],也有根据土壤速效磷含量或磷肥利用率调整的磷肥施用量[9,10]。而综合考虑作物高产、肥料高效、土壤培肥和环境友好等因素的磷肥推荐方法更符合当前养分管理目标由单一增产向高产、环保、优质等多目标综合的变化[11]。众多研究表明,土壤速效磷含量与施磷量及土壤磷盈亏呈显著正相关关系[12,13,14]。土壤每盈余磷100 kg·hm-2,土壤速效磷可提升1.44—5.74 mg·kg-1[15]。适当的磷盈余有助于土壤生产力和作物生长,然而,过度的磷盈余增加磷流失风险。需要根据不同类型土壤磷素平衡关系、作物产量适当地调整磷肥投入量。吴启华等[16]在有效磷含量较高的黑土区,综合作物产量、磷素吸收、磷肥利用效率和土壤表观磷平衡、有效磷含量,认为施用常规磷水平的80%作为黑土区玉米生产的推荐施磷水平。【本研究切入点】甘蔗是我国最主要的糖料作物,其种植面积占我国常年糖料作物种植面积的85%以上,产糖量占食糖总产量的90%以上[17]。甘蔗产量的稳定增长是保障我国食糖安全的根本。然而,当前甘蔗种植区的滥施、乱施磷肥问题仍较突出,多数蔗区磷肥施入量高达465—513 kg P2O5·hm-2[18],而每吨原料蔗的磷素吸收量仅为0.27—0.7 kg[19]。目前国内外****对甘蔗适宜施磷量的确定大多基于甘蔗的产量效应、生长农艺性状、土壤速效磷含量等某些单一指标[7-8,20-22],综合蔗田磷素收支平衡、甘蔗产量、磷素吸收利用与土壤磷素含量的甘蔗适宜施用量鲜见报道。【拟解决的关键问题】本研究通过3年定位试验系统研究不同施磷量下赤红壤蔗区甘蔗蔗茎产量、蔗叶产量、磷素吸收利用、土壤Olsen-P含量、农学阈值和磷素表观平衡状况的综合变化,旨在探讨维持甘蔗高产的前提下,确定节约高效型施磷量,以期为赤红壤蔗区磷肥科学施用提供科学依据。
设置5个磷水平:(1)不施磷肥(P0);(2)75 kg P2O5·hm-2(P1);(3)150 kg P2O5·hm-2(P2);(4)300 kg P2O5·hm-2(P3);(5)600 kg P2O5·hm-2(P4)。所有处理氮钾肥施用量相同,分别为420 kg N·hm-2和300 kg K2O·hm-2。随机区组设计,3次重复,小区面积30 m2(长10 m,宽3 m),共15个小区。试验种植的甘蔗品种为新台糖22,种植制度为1年新植蔗,2年宿根蔗,其中,2014年为新植年份,2015年为第一年宿根,2016为第二年宿根。甘蔗种植及施肥方法参见朱晓晖等[22]文献。杂草与病虫害防治与当地甘蔗种植一致。
表1表明,与P0处理相比,P1处理的蔗茎、蔗叶与地上部产量均无显著变化。当施磷量等于150 kg P2O5·hm-2(P2处理)时,蔗茎产量显著提高8.3%(2014年)、18.0%(2015年)和15.5%(2016年)。但P2—P4处理间无显著差异。蔗叶和地上部产量均以P2或P3处理最高,并于2015年和2016年显著高于P0处理。采用线性加平台模型拟合施磷量与蔗茎、蔗叶、地上部产量的关系得出,3年平均优化施磷量分别为140.2、147.8和142.3 kg P2O5·hm-2,获得最高蔗茎、蔗叶和地上部产量分别为102.6、22.9和125.5 t·hm-2。
Table 1 表1 表1不同施磷量对甘蔗产量的影响 Table 1Effect of phosphorus application rate on sugarcane yield
年份 Year
处理 Treatment
产量 Yield (t·hm-2)
优化施磷量 P application rate (kg P2O5·hm-2)
线性加平台最高产量 Plateau (t·hm-2)
蔗茎 Cane
蔗叶 Leaf
地上部 Aerial part
蔗茎 Cane
蔗叶 Leaf
地上部 Aerial part
蔗茎 Cane
蔗叶 Leaf
地上部 Aerial part
2014
P0
92.2±1.6 b
21.0±0.5 a
113.2±2.1b
150
150
150
98.8
21.1
119.9
P1
95.0±1.6 ab
20.9±0.2 a
115.9±1.7ab
P2
99.9±2.3 a
21.4±0.5 a
121.3±2.0 a
P3
99.1±2.5 ab
21.0±0.3 a
120.1±2.8 ab
P4
98.5±1.6 ab
20.9±0.7 a
119.4±2.2 ab
2015
P0
89.5±2.7 b
20.6± 0.8 b
110.1±3.5 b
109.9
116.6
110.6
106.4
22.6
129.0
P1
101.1±5.7 ab
21.9±0.2 ab
123.0±5.8 ab
P2
105.6±3.1 a
23.0±0.3 a
128.6±3.5 a
P3
108.6±0.6 a
22.9±0.7 a
131.5±0.5 a
P4
105.1±3.8 a
21.9±0.8 ab
127.0±4.1 a
2016
P0
88.3±1.1 b
16.9±0.4 c
105.2±1.4 c
160.8
176.7
166.3
102.6
25.1
127.7
P1
94.0±2.7 ab
19.2±0.1 bc
113.2±2.6 bc
P2
102.0±1.2 a
24.3±1.3 ab
126.3±2.5 ab
P3
102.3±5.1 a
26.9±1.6 a
129.2±6.5 a
P4
102.9±4.1 a
23.3±2.5 ab
126.3±6.6 ab
平均 Average
140.2
147.8
142.3
102.6
22.9
125.5
同年份同列数据后不同小写字母表示处理间差异显著(P<0.05) Different small letters in the same column and the same year meant significant difference between treatments at 5% level
Fig. 5The correlation of P surplus rate with phosphorus application rate, cane yield, soil Olsen-P and phosphorus utilization efficiency
3 讨论
3.1 适宜的施磷量促进甘蔗增产
作为植物体内ADP、ATP、DNA和细胞壁的主要成分,缺磷会引起作物生长障碍[30],对于甘蔗而言,施磷通过提高甘蔗分蘖和有效茎数[31,32],促进甘蔗增产[32,33,34,35],但过低或过高的施磷量均对作物增产效应不明显[36]。有关甘蔗适宜施磷量的研究,JIMMY等[37]在巴西的试验表明,施磷量为60 kg P2O5·hm-2,蔗茎产量最高(136.5 Mg·hm-2),增幅28.9%。GUSTAVO等[38]研究显示,不同的磷肥种类均在268 kg P2O5·hm-2的施用量下获得最大的甘蔗有效茎数。OMOLLO等[35]的研究结果表明,80 kg P2O5·hm-2下,蔗茎产量最高。而AMIN等[39]研究认为,对于砂壤和黏壤,施入90和180 kg P2O5·hm-2的磷酸盐或过磷酸钙均对甘蔗产量无显著影响。可见,适宜的施磷量因不同生态区域的气候、栽培、肥料种类和土壤条件而异[11]。本研究结果表明,施入150 kg P2O5·hm-2磷肥显著提高甘蔗蔗茎产量,这与雷崇华[21]和朱晓晖等[22]的研究结果一致,当继续增施磷肥,甘蔗蔗茎产量无显著变化,说明本试验地力条件下,150 kg P2O5·hm-2的施磷量即可获得甘蔗最高产。
目前,关于甘蔗磷肥适宜用量的确定大多基于产量与施磷量的关系模型[20,21],确定的甘蔗推荐施磷量虽然能获得最高产量或最佳经济效应,却未必能维持蔗田磷处于平衡状态或最佳含量。将土壤速效磷含量持续控制在临界水平范围内的施肥量是最佳施肥量,且适用于不同肥力水平的土壤[49]。侯云鹏等[24]以理论磷素盈余为0时施磷量的95%置信区间作为磷肥的推荐依据,推荐得出的施磷范围既可保证玉米产量又能维持土壤磷素平衡。本研究结果表明,当施磷量为40.9 kg P2O5·hm-2时,磷素盈余率为0,甘蔗蔗茎产量为94.2 t·hm-2,与P1处理3年平均产量(96.3 t·hm-2)相近,而线性加平台模型拟合的优化施磷量,甘蔗产量仅比磷素盈余率为0的提高5.7%—6.1%,但显著提高土壤Olsen-P含量56%—60%,可能加剧土壤磷素向水体流失的风险。因此,在Olsen-P含量较高的蔗区,可以把40.9 kg P2O5·hm-2施用量作为推荐的适宜施磷量。
4 结论
在广西赤红壤土壤Olsen-P含量较高的蔗区,土壤Olsen-P含量、磷素表观平衡量和磷素盈余率均随施磷量的增加而显著增加,磷素表观回收率和磷素偏生产力随施磷量的增加逐渐下降。40.9 kg P2O5·hm-2的施磷量可维持土壤磷素肥力的同时,获得较高的甘蔗产量和磷素利用率。
ZHANG FS, WANG JQ, ZHANG WF, CUI ZL, MANG WQ, CHEN XP, JIANG RF. Nutrient use efficiencies of major cereal crops in China and measures for improvement Acta Pedologica Sinica, 2008, 45(5):915-924. (in Chinese) [本文引用: 1]
LIN AD, CHEN XW, HUANGY, HUANG ZR, CHEN DW, AO JH, ZHOU WL, JIANGY, LI QW. Research progresses on phosphorus nutrition in sugarcane Sugarcane and Canesugar, 2018(6):51-56. (in Chinese) [本文引用: 1]
LIND, ZHU ZQ, WU SY, LI RF, YU NG. Initial report for balanced application of fertilizers to dry land sugarcane Journal of South China University of Tropical Agriculture, 2005, 11(4):8-11. (in Chinese) [本文引用: 2]
SUN KG, LI BQ, LI CH, LIU JB, HE AL. Abundance and deficiency indices of soil available P for maize and fertilization recommendation in Shajiang Black Soil areas-indices of soil Available P based on ASI method Chinese Agricultural Science Bulletin, 2010, 26(21):167-171. (in Chinese) [本文引用: 1]
SHANG HG, LIL, WANG KJ, TAN HW, LAN ZB, YANG BP, PENG LS, LENGY. Research progress on chemical fertilizer and pesticide application reduction and efficiency enhancement technologies of sugarcane production Southwest China Journal of Agricultural Sciences, 2020, 33(1):211-216. DOI: https://www.chinaagrisci.com/article/2021/0578-1752/10.16213/j.cnki.scjas.2020.1.034. (in Chinese) URL [本文引用: 1]
LEI CH, JIANG CP, QIN JF. Study on economic benefit of soil testing and fertilizer recommendation of sugarcane Agricultural Research and Application, 2010(2):9-12. (in Chinese) [本文引用: 2]
OU HP, ZHOU LQ, HUANG MF, HUANG JS, WEI YL, XIE RL, ZENGY, LIU XH, ZHU XH, TAN HW. Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates Journal of Plant Nutrition and Fertilizers, 2016, 22(1):40-47. DOI: https://www.chinaagrisci.com/article/2021/0578-1752/10.11674/zwyf.14298. (in Chinese) URL [本文引用: 1]
JIA LP, CHEN XP, ZHANG FS, LIU HB, WU JF. Study of optimum N supplying rate in winter wheat in Beijing area Journal of China Agricultural University, 2001, 6(3):67-73. (in Chinese) [本文引用: 1]
HAWKESFORDM, HORSTW, KICHEYT, LAMBERSH, SCHJOERRINGJ, MOLLER IS, WHITEP. Function of macronutrients. MARSCHNER P. Marschner’s Mineral Nutrition of Higher Plants , 2012: 135-189. [本文引用: 1]
KINGSTONG. Mineral nutrition of sugarcane//MOORE P H, BOTHA F C. Sugarcane Physiology, Biochemistry, and Functional Biology , 2014: 85-120. [本文引用: 1]
FENG YY, SHENY, XU MG, TIAN YB, REN FL, DUAN YH. Relationship between phosphorus application amount and grain yield of wheat and its response to soil and climate factors Journal of Plant Nutrition and Fertilizers, 2019, 25(4):683-691. DOI: https://www.chinaagrisci.com/article/2021/0578-1752/10.11674/zwyf.18171. (in Chinese) URL [本文引用: 1]
JIMMY W RA, CLAUDIA C CA, EDUARDO AM, GERSON LD, LEANDRO S DAS. Phosphorus fertilization and lime application and its effect on sugarcane growth, yield and borer attack in sugarcane , 2016, 43(1):36-43. [本文引用: 1]
E SZ, YANGZ Q, ZENGX B, WANGY N, LUOZ X, YUANJ H, ZHEZ X. Soil Olsen-P content changing trend and its relationship with phosphorus surplus and crop yield under long-term fertilization in loessial soil region on the Loess Plateau, China Chinese Journal of Applied Ecology, 2017, 28(11):3589-3598. DOI: https://www.chinaagrisci.com/article/2021/0578-1752/10.13287/j.1001-9332.201711.037. (in Chinese) URL [本文引用: 1]
ZHANG SM, HAO MD, LIU YL. Effects of long-term application of P fertilizer on the yield of winter wheat and characteristic of N absorption and soil fertility in dry-land of Loess Plateau Journal of Northwest A & F University (Nat. Sci. Ed.), 2007, 35(7):159-163. (in Chinese) [本文引用: 1]
LU RK, SHI ZY, SHI JP. Nutrient balance of agroecosystem in six provinces in southern China Scientia Agricultura Sinica, 2000, 33(2):63-67. (in Chinese) [本文引用: 1]
XIE RL, HUANG XH, TAN HW, ZHOU LQ, HUAGN MF, HUANG JS, DOGN WB. Critical level of soil available P in sugarcane grove Chinese Journal of Tropical Crops, 2009, 30(3):304-308. (in Chinese) [本文引用: 2]
WANG XR, CAO YP, ZHAGN FS, CHEN XP. Feasibility of a fertilization method for keeping constant application rate of phosphorus by monitoring avaliable phosphorus in the soil Plant Nutrition and Fertilizer Sciences, 1995, 1(3/4):59-64. (in Chinese) [本文引用: 1]