Research Advances of Applying Virus-Induced Gene Silencing in Vegetables
LI Jie,, LUO JiangHong, YANG Ping,College of Life Science and Technology, Honghe University, Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Mengzi 661100, Yunnan
Abstract Recently, the virus-induced gene silencing (VIGS) as a reverse genetics tool is used for gene function analysis. Due to its advantages of simple construction, low cost and short cycle, VIGS technology has been extensively and deeply studied in the field of functional genomics. VIGS technology, as a fast, effective, high-throughout new technology, has played an important role in research of vegetable functional genes in plant development processes, disease resistance, stress resistance, biosynthesis and metabolic regulation. Herein, it is of great significance to excavate new genes and identify the function of disease resistance, stress resistance genes, crop improvement and molecular breeding by using VIGS technology. Many VIGS systems with virus as vector have been successfully established in vegetable crops, but they still have some shortcomings. With the in-depth exploration of the mechanism of VIGS and the continuous development of virus vectors, VIGS has been applied to a wider range of vegetable crops. This paper reviewed the current status and research progresses of gene function of eggplant, melons and leafy vegetables based on VIGS technology in recent years, and the mechanism of VIGS technology, the application of virus vector and the progress of VIGS technology was briefly analyzed. Meanwhile, the advantages and disadvantages of VIGS technology, RNA interference (RNAi) and current CRISP/CAS9 technology were compared and analyzed. It focused on the application of VIGS technology in vegetable fruit development and disease resistance, and the latest progresses of VIGS technology in vegetable crop metabolic regulation, hormone regulation, biotic and abiotic stress responses were summarized. The cases of studying target genes function and silencing phenotypes of solanaceous, melon, leafy and legume vegetables by VIGS were listed. Finally, the problems and deficiencies of VIGS technology in studying gene function of vegetable crops were summarized, such as lack of suitable VIGS vector, lack of effective virus vector infection method, difficulty in systematic silencing in some tissues, low silencing efficiency, inherent limitations of VIGS, etc. At the same time, the future research directions of VIGS technology in the development of virus vectors with higher specificity and stability, selection of efficient gene fragments, and establishment of virus vectors suitable for more host range were proposed. The application foreground of gene function analysis, improvement, molecular breeding of vegetable crops and production not carrying exogenous gene of vegetable varieties by VIGS technique was prospected. This review would provide a guidance and give ideas for future studies on the growth and development of vegetable crops, secondary metabolism and adversity stress related gene function research and breakthrough in the key factors restricting VIGS technique. Keywords:gene silencing;VIGS;vegetable;gene function
PDF (542KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 李杰, 罗江宏, 杨萍. 病毒诱导基因沉默在蔬菜作物上应用的研究进展[J]. 中国农业科学, 2021, 54(10): 2154-2166 doi:10.3864/j.issn.0578-1752.2021.10.011 LI Jie, LUO JiangHong, YANG Ping. Research Advances of Applying Virus-Induced Gene Silencing in Vegetables[J]. Scientia Acricultura Sinica, 2021, 54(10): 2154-2166 doi:10.3864/j.issn.0578-1752.2021.10.011
在菠菜雌花发育机制的研究中,通过甜菜曲顶病毒(beet curly top virus,BCTV)诱导的VIGS体系,对DELLA家族转录因子SpGAI在GA参与雌花形成中的基因功能得到了验证。沉默SpGAI后雌花表现出雄花器官的表型特征,中度表型是发育一个雄蕊代替雌蕊,但仍产生两个萼片;重度表型是发育4个萼片、1个雌蕊和1个雄蕊,同时花有4个萼片,类似于藜科植物中的完全花。沉默SpGAI后雄花发育成野生型雄花,但对外观表型没有影响[64]。MA等[70]以甘蓝BoPDS为靶基因,利用CRISPR/Cas9系统实现甘蓝基因组的精准编辑,主要是依赖单链向导RNA表达基因来完成突变体的构建,与VIGS技术相比,构建程序复杂,且目标基因在核苷酸预期位置容易缺失。在研究叶用莴苣热胁迫下Hsp70表达量和形态变化时,研究者构建pTRV-LsHsp702711沉默体系,发现未进行胁迫处理的沉默植株LsHsp70-2711表达量下降,茎明显伸长,热胁迫和干旱处理后的沉默植株LsHsp70-2711表达量显著低于对照植株,且高温胁迫对sHsp70-2711的影响大于干旱胁迫[65]。
CONSTANTIN等[71]利用豌豆早枯病毒(pea early browning virus,PEBV)研发了一套有效的VIGS体系,使得在豌豆中利用反向遗传学方法研究基因功能成为可能。在研究ROS、Ca2+参与豌豆叶绿素合成的研究中,利用VIGS技术构建了叶绿素合成关键基因CHLI沉默体系,采用组织化学和荧光染色试验发现沉默豌豆植株中ROS和胞间游离Ca2+增多,且豌豆发黄叶片中产生超氧阴离子和过氧化氢[67]。研究者还利用VIGS技术沉默了豌豆质膜水通道蛋白基因PsPIP2;1,发现沉默植株的叶片和根系中PsPIP2;1下调表达,从而证明豌豆叶片和根系水分运输中PsPIP2;1对水通道蛋白具有调节作用[68]。ZHANG等[72]利用菜豆荚斑驳病毒(bean pod mottle virus,BPMV)在大豆上成功建立了VIGS体系,且该病毒载体能够应用于大豆、菜豆等豆类蔬菜上,改造后拓展了BPMV病毒的宿主范围。
FANG ZY. Development progress and future perspectives of vegetable breeding sciences and technologies in China Journal of Agriculture, 2018,8(1):21-27. (in Chinese) [本文引用: 1]
HUANG JK, WANG JM, XIEW, WANG XB, HOU LL, ZHOUH, SHENGY, LIUX. Modern agricultural transformation and trend of food supply and demand in China Engineering Science, 2019,21(5):1-9. (in Chinese) [本文引用: 1]
BURCH-SMITH TM, ANDERSON JC, MARTIN GB, DINESH-KUMAR SP. Applications and advantages of virus-induced gene silencing for gene function studies in plants , 2004,39(5):734-746. DOI:10.1111/tpj.2004.39.issue-5URL [本文引用: 1]
MANNINGK, T?RM, POOLEM, HONGY, THOMPSON AJ, KING GJ, GIOVANNONI JJ, SEYMOUR GB. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening , 2006,38(8):948-952. DOI:10.1038/ng1841URL [本文引用: 1]
SENTHIL-KUMARM, MYSORE KS. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato , 2011,9(7):797-806. DOI:10.1111/pbi.2011.9.issue-7URL [本文引用: 1]
IGARASHIA, YAMAGATAK, SUGAIT, TAKAHASHIY, SUGAWARAE, TAMURAA, YAEGASHIH, YAMAGISHIN, TAKAHASHIT, ISOGAIM, TAKAHASHIH, YOSHIKAWAN. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes , 2009,386(2):407-416. DOI:10.1016/j.virol.2009.01.039URL [本文引用: 1]
GOLENBERG EM, SATHER DN, HANCOCK LC, BUCKLEY KJ, VILLAFRANCO NM, BISARO DM. Development of a gene silencing DNA vector derived from a broad host range geminivirus 2009,5:9. DOI:10.1186/1746-4811-5-9URL [本文引用: 1]
PANDEYP, CHOUDHURY NR, MUKHERJEE SK. A geminiviral amplicon VA derived from tomato leaf curl virus ToLCV can replicate in a wide variety of plant species and also acts as a VIGS vector , 2009,6:152. DOI:10.1186/1743-422X-6-152URL [本文引用: 1]
CAI XZ, WANG CC, XU YP, XU QF, ZHENGZ, ZHOU XP. Efficient gene silencing induction in tomato by a viral satellite DNA vector , 2007,125(2):169-175. DOI:10.1016/j.virusres.2006.12.016URL [本文引用: 1]
HUANG CJ, XIEY, ZHOU XP. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component , 2009,7(3):254-265. DOI:10.1111/pbi.2009.7.issue-3URL [本文引用: 1]
LI GL, WU HX, SUN YQ. Construction of RNAi expression vector of BvWRKY23 gene in sugar beet Crops, 2020(5):41-47. (in Chinese) [本文引用: 1]
KUMAGAIM, DONSONJ, DELLA-CIOPPAG, HARVEYD, HANLEYK, GRILL LK. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA , 1995,92(5):1679-1683. [本文引用: 1]
RUIZ MT, VOINNETO, BAULCOMBE DC. Initiation and maintenance of virus-induced gene silencing , 1998,10(6):937-946. DOI:10.1105/tpc.10.6.937URL [本文引用: 1]
VALENTINET, SHAWJ, BLOK VC, PHILLIPS MS, OPARKA KJ, LACOMMEC. Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector . , 2004,136(4):3999-4009. DOI:10.1104/pp.104.051466URL [本文引用: 1]
WANG XY, CAO AZ, YU CM, WANG DW, WANG XE, CHEN PD. Establishment of an effective virus induced gene silencing system with BSMV in Haynaldia villosa , 2010,37(2):967-972. DOI:10.1007/s11033-009-9766-1URL [本文引用: 1]
ZHANGY, RUAN JX, MA XM, FU LL, QIAO YE, DUAN SJ, MENGP, LI CW. Identification and construction of the recombinant vector of virus induced gene silencing of soybean heterodera glycines ichinohe Acta Agricultural Boreali-Sinica, 2012,27(3):223-226. (in Chinese) [本文引用: 1]
PANDEYP, SENTHIL-KUMARM, MYSORE KS. Advances in plant gene silencing methods , 2015,1287(3):3-23. [本文引用: 1]
ZHAOZ, LIU FZ, ZHANGY, QI DX, CHEN YH, LIANY. VIGS expression vector construction and expression analyses of SmMsrA gene in eggplant Acta Horticulturae Sinica, 2015,42(8):1495-1504. (in Chinese) [本文引用: 1]
SONGT, TIANJ, LIP, LIU MJ, ZHANGQ, GUO CK, LIJ. Vector construction and functional analysis of AcCBF1 using VIGS method in almond flower organs Journal of Fruit Science, 2019,36(4):421-429. (in Chinese) [本文引用: 1]
YANG TW, WU AQ, SHENG DF, LI CW. Applications of virus-induced gene silencing in studies on tomato functional genomics Acta Horticulturae Sinica, 2014,41(3):564-576. (in Chinese) [本文引用: 1]
LIUM, LI LM, WU HJ, GU QS. Research progress in VIGS technology and its application in Cucurbitaceae crops Journal of Fruit Science, 2018,35(11):1422-1429. (in Chinese) [本文引用: 2]
ZHENG LP, XIE LY, LIN QY, XIE LH. Advance in virus-induced gene silencing Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2008,37(6):636-640. (in Chinese) [本文引用: 2]
TUTTLE JR, HAIGLER CH, ROBERTSOND. Method: Low-cost delivery of the cotton leaf crumple virus-induced gene silencing system , 2012,8(1):27. DOI:10.1186/1746-4811-8-27URL [本文引用: 1]
WANG XD, JI SX, SHEN XN, LIU WX, WAN FH, ZHANG GF, Lü ZC. Research and application of nanoparticle-mediated RNAi technology in pest control Chinese Journal of Biological Control, 2020, 1-20. (in Chinese) [本文引用: 1]
WU LL, ZHU MJ, WANGM, LI XP, LIU YP, PEIL, YANG SQ, XUQ, WANGH, GUO WZ. The limitation and improvement of CRISPR/Cas9 technology in crops application Modern Agricultural Science and Technology, 2020(22):26-29. (in Chinese) [本文引用: 1]
RAMEGOWDAV, SENTHIL-KUMARM, UDAYAKUMARM, MYSORE KS. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance , 2013,13(1):193-210. DOI:10.1186/1471-2229-13-193URL [本文引用: 1]
ZHAO JP, WANG GY, JIANG HL, LIU TL, DONG JG, WANG ZH, ZHANG BL, SONG JQ. Virus-based microRNA silencing in plants , 2020,2172:243-257. [本文引用: 1]
CONGL, RAN FA, COXD, LIN SL, BARRETTOR, HABIBN, HSU PD, WU XB, JIANG WY, MARRAFFINI LA, ZHANGF. Multiplex genome engineering using CRISPR/Cas systems , 2013,339(6121):819-823. DOI:10.1126/science.1231143URL [本文引用: 1]
MANDALS, JI WM, MCKNIGHT TD. Candidate gene networks for acylsugar metabolism and plant defense in wild tomato Solanum pennellii , 2020,32(1):81-99. DOI:10.1105/tpc.19.00552URL [本文引用: 1]
HO LH, KLEMENS PATRICK AW, NEUHAUS HE, KO HY, HSIEH SY, GUO WJ. SlSWEET1a is involved in glucose import to young leaves in tomato plants , 2019,70(12):3241-3254. DOI:10.1093/jxb/erz154URL [本文引用: 1]
SUN BM, ZHU ZS, CHEN CHJ, CHEN GJ, CAO BH, CHEN CM, LEI JJ. Jasmonate-inducible R2R3-MYB transcription factor regulates capsaicinoid biosynthesis and stamen development in Capsicum , 2019,67(39):10891-10903. DOI:10.1021/acs.jafc.9b04978URL [本文引用: 1]
LI CJ, HIRANOH, KASAJIMAI, YAMAGISHIN, YOSHIKAWAN. Virus-induced gene silencing in chili pepper by apple latent spherical virus vector , 2019,273:113711. DOI:10.1016/j.jviromet.2019.113711URL [本文引用: 1]
D'AMELIAV, RAIOLAA, CARPUTOD, FILIPPONEE, BARONEA, RIGANO MM. A basic Helix-Loop-Helix (SlARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits , 2019,9(1):3699. DOI:10.1038/s41598-019-40142-3URL [本文引用: 1]
WANG CC, SULLIM, FU DQ. The role of phytochromes in regulating biosynthesis of sterol glycoalkaloid in eggplant leaves , 2017,12(12):e0189481. DOI:10.1371/journal.pone.0189481URL [本文引用: 1]
WANG CC, FU DQ. Virus-induced gene silencing of the eggplant chalcone synthase gene during fruit ripening modifies epidermal cells and gravitropism , 2018,66(11):2623-2629. DOI:10.1021/acs.jafc.7b05617URL [本文引用: 1]
FUX, SHI ZH, JIANGY, JIANG LL, QI MF, XUT, LI TL. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission , 2019,19(1):233. DOI:10.1186/s12870-019-1840-9URL [本文引用: 1]
ZHANG HJ, YAN MJ, DENGR, SONG FM, JIANGM. The Silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus- induced gene silencing analysis in tomato , 2020,727:144245. DOI:10.1016/j.gene.2019.144245URL [本文引用: 1]
QIU ZK, YAN SH, XIAB, JIANGJ, YU BW, LEI JJ, CHEN CM, CHENL, YANGY, WANGYQ, TIAN SB, CAO BH. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase , 2019,70(19):5343-5354. DOI:10.1093/jxb/erz259URL [本文引用: 1]
ALIN, ANSARH, MUHAMMADA, MUHAMMAD IK, MUHAMMAD FA, MADIHAZ, KHALID AK, HAMED AG, HE SL. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity against soil borne pathogen , 2019,137(12):103758. DOI:10.1016/j.micpath.2019.103758URL [本文引用: 1]
WANG GP, KONGJ, CUI DD, ZHAO HB, NIUY, XU MY, JIANG GF, ZHAO YH, WANG WY. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the γ-aminobutyric acid metabolic pathway , 2019,97(6):1032-1047. DOI:10.1111/tpj.2019.97.issue-6URL [本文引用: 1]
ZHANGY, XU KD, PEI DL, YU DS, ZHANGJ, LI XL, CHENG, YANGH, ZHOU WJ, LI CW. ShORR-1, a novel tomato gene, confers enhanced host resistance to Oidium neolycopersici , 2019,10(7):1400. DOI:10.3389/fpls.2019.01400URL [本文引用: 1]
CHENGY, AHAMMED GJ, YAO ZP, YE QJ, RUAN MY, WANG RQ, LI ZM, ZHOU GZ, WAN HJ. Comparative genomic analysis reveals extensive genetic variations of WRKYs in solanaceae and functional variations of CaWRKYs in pepper , 2019,10:492. DOI:10.3389/fgene.2019.00492URL [本文引用: 1]
COX DE, DYERS, WEIRR, CHESETOX, STURROCKM, COYNED, TORTOB, MAULE AG, DALZELL JJ. ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbe-parasite interactions in the rhizosphere , 2019,9(1):19899. DOI:10.1038/s41598-019-56493-wURL [本文引用: 1]
ZHOU XH, LIUJ, BAO SY, YANGY, ZHUANGY. Molecular cloning and characterization of a wild eggplant Solanum aculeatissimum NBS-LRR gene, involved in plant resistance to meloidogyne incognita , 2018,19(2):583. DOI:10.3390/ijms19020583URL [本文引用: 1]
LIN JH, DANG FF, CHEN YP, GUAN DY, HE SL. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper , 2019,145(12):43-51. DOI:10.1016/j.plaphy.2019.08.013URL [本文引用: 1]
LIUT, DU QJ, LI SZ, YANG JY, LI XJ, XU JJ, CHEN PX, LI JM, HU XH. GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature , 2019,19(1):323. DOI:10.1186/s12870-019-1929-1URL [本文引用: 1]
LIM JS, LIM CW, LEE SC. Functional analysis of pepper F-box protein CaDIF1 and its interacting partner CaDIS1: Modulation of ABA signaling and drought stress response , 2019,10:1365. DOI:10.3389/fpls.2019.01365URL [本文引用: 1]
CHEN XH, DUAN XF, WANGS, WU WY, ZHANG XC. Virus-induced gene silencing (VIGS) for functional analysis of MYB80 gene involved in Solanum lycopersicum cold tolerance , 2019,256(2):409-418. DOI:10.1007/s00709-018-1302-5URL [本文引用: 1]
ZHU MZ, ZHAO JJ. Comparison of SCIE-covered international cooperation papers on gene editing technology between people's republic of China and Japan Chinese Journal of Medical Library and Information Science, 2019,28(3):32-41. (in Chinese) [本文引用: 1]
WANG HY, YANGH, SHIVALILA CS, DAWLATY MM, CHENG AW, ZHANGF, JAENISCHR. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering , 2013,153(4):910-918. DOI:10.1016/j.cell.2013.04.025URL [本文引用: 1]
XU ZR, LIUT, CUI GX, LI CL, MAJ, LI YH. Cloning and function identification of dihydroflavonol 4-reductase genes in turnip Acta Horticulturae Sinica, 2014,41(4):687-700. (in Chinese) [本文引用: 1]
YIN YL, QIN KZ, SONG XW, ZHANG QH, ZHOU YH, XIA XJ, YU JQ. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinases-mediated reactive oxygen species signaling in tomato , 2018,59(11):2239-2254. [本文引用: 1]
BU RF, WANG RH, WEI QC, HU HY, SUN HL, SONG PW, YU YG, LIU QL, ZHENG ZC, LIT, LI DX, WANGL, CHEN SJ, WU LL, WU JY, LI CW. Silencing of glycerol-3-phosphate acyltransferase 6 (GPAT6) gene using a newly established virus induced gene silencing (VIGS) system in cucumber alleviates autotoxicity mimicked by cinnamic acid (CA) , 2019,438:329-346. DOI:10.1007/s11104-019-03996-0URL [本文引用: 1]
LIAO JJ, WANG CH, XING QJ, LI YP, LIU XF, QI HY. Overexpression and vigs system for functional gene validation in oriental melon (Cucumis melo var. makuwa makino) , 2019,137:275-284. DOI:10.1007/s11240-019-01568-9URL [本文引用: 1]
WEST NW, GOLENBERG EM. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea , 2018,217(3):1322-1334. DOI:10.1111/nph.14919URL [本文引用: 1]
LI YB, LIP, HAN YY, FAN SX. Cloning and function analysis of heat-shock-protein LsHsp70-2711 gene under high temperature stress in leaf lettuce (Lactuca sativa L.) Scientia Agricultura Sinica, 2017,50(8):1486-1494. (in Chinese) [本文引用: 1]
YUJ, GAO LW, LIU WS, SONG LX, XIAOD, LIU TK, HOUXILIN, ZHANG CW. Transcription coactivator ANGUSTIFOLIA3 (AN3) regulates leafy head formation in Chinese cabbage , 2019,10:520. DOI:10.3389/fpls.2019.00520URL [本文引用: 1]
LUOS, LUOT, PENGP, LI YP, LI XG. Disturbance of chlorophyll biosynthesis at Mg branch affects the chloroplast ROS homeostasis and Ca2+ signaling in Pisum sativum , 2016,127(3):729-737. DOI:10.1007/s11240-016-1008-3URL [本文引用: 1]
SONG JJ, YE GL, QIANZ, YEQ. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum , 2016,57(1):15. DOI:10.1186/s40529-016-0135-9URL [本文引用: 1]
AKII, KOUSUKEY, TOMOKAZUS, YUKARIT, EMIKOS, AKIHIROT, HAJIMEY, NORIKOY, TSUBASAT, MASAMICHII, HIDEKIT, NOBUYUKIY. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits and legumes 2009,386(2):407-416. [本文引用: 1]
MA CF, LIU MC, LI QF, SIJ, REN XS, SONG HY. Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system , 2019,5(4):164-169. DOI:10.1016/j.hpj.2019.04.001URL [本文引用: 1]
CONSTANTIN GD, KRATH BN, MACFARLANE SA, NICOLAISENM, JOHANSEN IE, LUND OS. Virus-induced gene silencing as a tool for functional genomics in a legume species , 2004,40(4):622-631. DOI:10.1111/tpj.2004.40.issue-4URL [本文引用: 1]
ZHANG CQ, BRADSHAW JD, WHITHAM SA, HILL JH. The Development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing , 2010,153(1):52-65. DOI:10.1104/pp.109.151639URL [本文引用: 1]
LIU TB, CAI HL, TENGK, ZENG WA, MAOH, WEI RJ, ZHOU ZC, ZHOU XP, DAI LY, TANG QJ. Control of tobacco potato virus Y by virus-induced gene silencing Acta Tabacaria Sinica, 2020,26(5):82-89. (in Chinese) [本文引用: 1]
LIJ, YU ZX, FENG BM. Advances in research and application of virus induced gene silencing in plants Molecular Plant Breeding, 2019,17(5):1537-1542. (in Chinese) [本文引用: 1]
NEENAM, ELIZABETH AW, KARL ER, PENGL, RITESH GJ, CHRISTELLE TA, STEPHEN JF, BERNARD JC, LU GQ, XU ZP. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses , 2017,3(2):16207. DOI:10.1038/nplants.2016.207URL [本文引用: 1]
JAMES AB, THIERRYB, WILLIAMC, GREGORY RH, PASCALEF, OLIVER, SCOTTJ, GEERTP, TICHAFAM, MICHAELP, TYV, JAMESR. Control of coleopteran insect pests through RNA interference , 2007,25(11):1322-1326. DOI:10.1038/nbt1359URL [本文引用: 1]
WANGD, CHEN YQ, LI DL, ZHU WB, TAN WM, DU TS, TIAN JH, KANG SZ. Foresight of disruptive technologies in agricultural engineering Engineering Science, 2018,20(6):57-63. (in Chinese) [本文引用: 1]
ZHANG SL, RAO LQ, WANG QM. Advances in research and development of genetically modified crops based on RNAi XianDai NongYe KeJi, 2018(21):3-4, 6. (in Chinese) [本文引用: 1]
ZHOU YL, HOUS, ZHENG ZQ, GAO YH, TONG ZK. Study on LsMYBs gene function in Lycoris sprengeri based on VIGS gene silencing system Journal of Agricultural Biotechnology, 2020,28(6):974-983. (in Chinese) [本文引用: 1]
CAIQ, QIAO LL, WANGM, HE BY, LIN FM, PALMQUISTJ, HUANG HD, JIN HL. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes , 2018,360(6393):1126-1129. DOI:10.1126/science.aar4142URL [本文引用: 1]