Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance
KONG YaLi,1, ZHU ChunQuan1, CAO XiaoChuang1, ZHU LianFeng1, JIN QianYu1, HONG XiaoZhi2, ZHANG JunHua,11China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 310006 2Bengbu Yifeng Bio-Organic Fertilizer Co. Ltd., Bengbu 233000, Anhui
Abstract Soil salinization has seriously hindered the sustainable agricultural production. Remediation of salt affected areas with efficient, low cost and adaptable method is a challenging goal for scientists. Soil microorganisms play important roles in regulating rhizosphere environment of plants, enhancing plant development and productivity. Adaptation of plants to stress driven by soil microbes has been attracted extensive attention. The identification and exploitation of soil microorganisms that interact with plants in alleviating salt stress provides a new strategy for the improvement of saline area, as well as new approaches to discover mechanisms involved in stress tolerance. Knowledge of the underlying physiological mechanisms by which diverse microbes mediate stress tolerance, is critical to the effective use of these microbes to assure sustained agricultural production. This paper reviewed the recent studies about the mechanisms of soil microorganisms mediated in plant salt stress tolerance from the aspects of plant nutrient absorption, osmosis balance, hormone levels and antioxidant function. The beneficial effects and lack of current researches related to soil microorganism in the regulation of plant salt tolerance were evaluated, and the directions of the future research were also proposed. At present, improving nutrient and water uptake efficiency to maintain plant ion homeostasis under salt stress, increasing auxin synthesis and reducing ethylene release to regulate plant hormone levels seem to be promising target processes for soil biota-improved plant salt tolerance. However, limited success has been obtained in application of microorganism to large-scale agricultural production, due to the competition of introduced single microbial strains with native soil microbial communities which resulted in many bacterial strains has little colonization efficiency. The researches related to microbial mediated plant salinity tolerance should break through the single microbial inoculation, further clarify the mechanism of plant-microbial interaction at the community level, and solve the key problems of microbial utilization in agricultural production. Keywords:salt stress;soil microorganisms;plant growth promoting rhizobacteria;arbuscular mycorrhizal fungi;endophytes;synthetic community;plant salt-tolerance
PDF (464KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 孔亚丽, 朱春权, 曹小闯, 朱练峰, 金千瑜, 洪小智, 张均华. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2073-2083 doi:10.3864/j.issn.0578-1752.2021.10.004 KONG YaLi, ZHU ChunQuan, CAO XiaoChuang, ZHU LianFeng, JIN QianYu, HONG XiaoZhi, ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance[J]. Scientia Acricultura Sinica, 2021, 54(10): 2073-2083 doi:10.3864/j.issn.0578-1752.2021.10.004
LI JG, PU LJ, ZHUM, ZHANG RS. The present situation and hot issues in the salt-affected soil research Acta Geographica Sinica, 2012,67(9):1233-1245. (in Chinese) [本文引用: 1]
CARILLOP, ANNUNZIATA MG, PONTECORVOG, FUGGIA, WOODROWP. Salinity stress and salt tolerance//SHANKER A, VENKATESWARLU B. Abiotic stress in plants-mechanisms and adaptations , 2011: 21-38. [本文引用: 1]
MEENA MD, YADAV RK, NARJARYB, YADAVG, JATH, SHEORANP, MEENA MK, ANTILR, MEENAB, SINGHH. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review , 2018,84:38-53. DOI:10.1016/j.wasman.2018.11.020URL [本文引用: 1]
YANG XH, JIANG WJ, WEIM, YU HJ. The technial approaches of improving the plant salt-resistant ability Chinese Agricultural Science Bulletin, 2006,22(1):88-91. (in Chinese) [本文引用: 1]
GONGJ, LüN, RU SB, HOU ZA. Effects of soil salinity on nutrients and ions uptake in cotton with drip irrigation under film Journal of Plant Nutrition and Fertilizers, 2009,15(3):670-676. (in Chinese) [本文引用: 1]
CHANDRASEKARANM, BOUGHATTASS, HU SJ, OH SH, SAT. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress , 2014,24(8):611-625. DOI:10.1007/s00572-014-0582-7URL [本文引用: 2]
WENP, CHEN XB, ZHANG LL, LI YL, QI MJ, JIANG SX, ZHANG LB. Effects of salt and drought on winter wheat in seedling stage under different nitrogen rates Soils, 2019,51(2):324-329. (in Chinese) [本文引用: 1]
AUGE RM, TOLER HD, SAXTON AM. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: A meta-analysis , 2014,5:562. [本文引用: 2]
PANJ, PENGF, XUEX, YOU QG, ZHANG WJ, WANGT, HUANG CH. The growth promotion of two salt-tolerant plant groups with PGPR inoculation: A meta-analysis , 2019,11(2):378. DOI:10.3390/su11020378URL [本文引用: 1]
UPADHYAY SK, SINGH DP. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment , 2015,17(1):288-293. DOI:10.1111/plb.12173URL [本文引用: 1]
HE ZQ, HE CX. Effect of arbuscular mycorrhizal fungi on nutrition absorbing and ion damage in tomato under salt stress Acta Agriculturae Boreali-Sinica, 2013,28(1):181-186. (in Chinese) [本文引用: 1]
WANG YH, WANG MQ, LIY, WU AP, HUANG JY. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress , 2018,13(4):e0196408. DOI:10.1371/journal.pone.0196408URL [本文引用: 1]
ZHANG JH, HUSSAINS, ZHAO FT, ZHU LF, CAO XC. Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere , 2018,18(4):1453-1465. [本文引用: 1]
WANG QR, LI JY, LI ZS. Advance and prospect of insoluble phosphorus utilization efficient of plant Journal of Plant Nutrition and Fertilizers, 1998,4(2):107-116. (in Chinese) [本文引用: 1]
HUANG CC, LIU JH, YANG YM. Effect of the compound microbial fertilizer on the physiological characteristics of oats and soil available nutrients in saline-alkali land Journal of Northern Agriculture, 2018,46(5):57-61. (in Chinese) [本文引用: 1]
FENGG, LI XL, ZHANG FS, LI SX. Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment Journal of Plant Resources and Environment, 2000,9(2):22-26. (in Chinese) [本文引用: 1]
YANG HX, LIU XM, PAN YC, ZHAO XL, HUANG HD. Isolation, identification and characterization of salt-alkali-tolerant and phosphorus-dissolving Bacterium Y2R2 Biotechnology Bulletin, 2020,36(10):127-134. (in Chinese) [本文引用: 1]
WANGD, ZHAO YG, ZHANG FH. Screening and identification of salt-tolerant plant growth-promoting bacteria and its promotion effect on wheat seedling under salt stress Journal of Triticeae Crops, 2020,40(1):110-117. (in Chinese) [本文引用: 2]
XU FF, YUAN LM, SHAO YF, FAN GH, ZHOU XA, ZHENG WL, LI DM, FENG FY. Effect of Enterobacter sp. FYP1101 on wheat seedling growth under salt stress Microbiology China, 2018,45(1):102-110. (in Chinese) [本文引用: 1]
LIY, ZHANG YP, SUNM, GAO BM. Research advance in the effects of salt stress on plant and the mechanism of plant resistance Chinese Agricultural Science Bulletin, 2008,24(1):258-265. (in Chinese) [本文引用: 2]
GIRIB, KAPOORR, MUKERJI KG. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues , 2007,54(4):753-760. DOI:10.1007/s00248-007-9239-9URL [本文引用: 1]
LAURIES, FEENEY KA, MAATHUISF J M, HEARDP J, BROWNS J, LEIGH RA. A role for HKT1 in sodium uptake by wheat roots , 2002,32:139-149. DOI:10.1046/j.1365-313X.2002.01410.xURL [本文引用: 1]
WANGQ, GUANC, WANGP, LV ML, MAQ, WU GQ, BAO AK, ZHANG JL, WANG SM. AtHKT1; 1 and AtHAK5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress , 2015,75(3):615-623. DOI:10.1007/s10725-014-9964-2URL [本文引用: 1]
ZHANG HM, KIM MS, SUNY, DOWD SE, SHI HZ, PAR PW. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1 , 2008,21(6):737-744. DOI:10.1094/MPMI-21-6-0737URL [本文引用: 2]
CHENL, LIU YP, WU GW, NJERI KV, SHEN QR, ZHANGN, ZHANG RF. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9 , 2016,158(1):34-44. DOI:10.1111/ppl.2016.158.issue-1URL [本文引用: 1]
ASHRAFM, HASNAINS, BERGEO, MAHMOODT. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress , 2004,40(3):157-162. [本文引用: 1]
CHEN MQ, WEI HB, CAO JW, LIU RJ, WANG YL, ZHENG CY. Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis , 2007,40(3):396-403. [本文引用: 1]
QURASHI AW, SABRI AN. Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea , 2013,45(3):1011-1016. [本文引用: 1]
SZIDERICS AH, RASCHEF, TROGNITZF, SESSITSCHA, WILHELME. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.) , 2007,53(11):1195-1202. DOI:10.1139/W07-082URL [本文引用: 2]
XU YJ, ZHAO LF, XING HF, LUO YX, WEI ZX. Effects of endophytic bacteria on proline and malondialdehyde of wheat seedlings under salt stress Acta Ecologica Sinica, 2020,40(11):3726-3737. (in Chinese) [本文引用: 1]
JHAY, SUBRAMANIAN RB, PATELS. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress , 2011,33(3):797-802. DOI:10.1007/s11738-010-0604-9URL [本文引用: 1]
LUJ, MA QJ, KANGH, LI WH, LIU YJ, HAO YJ, YOU CX. Ectopic expressing MdSWEET1 in tomato enhanced salt tolerance Acta Horticulturae Sinica, 2019,46(3):433-443. (in Chinese) [本文引用: 1]
ZHANG YZ, GAO WJ, GUO YN, HAO XJ. The effects of arbuscular mycorrhizal fungi on physiological responses of Medicago sativa under NaCl stress Grassland and Turf, 2018,38(4):26-34. (in Chinese) [本文引用: 1]
KIMK, JANG YJ, LEE SM, OH BT, CHAE JC, LEE KJ. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants , 2014,37(2):109-117. DOI:10.14348/molcells.2014.2239URL [本文引用: 1]
ZAWOZNIK MS, AMENEIROSM, BENAVIDES MP, V ZQUEZS, GROPPA MD. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings , 2011,90(4):1389-1397. DOI:10.1007/s00253-011-3162-1URL [本文引用: 2]
GOND SK, TORRES MS, BERGEN MS, HELSELZ, WHITE JF. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans , 2015,60(4):392-399. DOI:10.1111/lam.12385URL [本文引用: 1]
MARULANDAA, AZC NR, CHAUMONTF, RUIZ-LOZANO JM, AROCAR. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions , 2010,232(2):533-543. DOI:10.1007/s00425-010-1196-8URL [本文引用: 1]
MUHSIN TM, ZWIAZEK JJ. Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings , 2002,153:153-158. DOI:10.1046/j.0028-646X.2001.00297.xURL [本文引用: 1]
HE ZQ, HE CX, YANY, ZHANG ZB, WANG HS, LI HX, TANG HR. Regulative effect of arbuscular mycorrhizal fungi on water absorption and expression of aquaporin genes in tomato under salt stress Acta Horticulturae Sinica, 2011,38(2):273-280. (in Chinese) [本文引用: 1]
AROCAR, PORCELR, RUIZ-LOZANO JM. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? , 2007,173(4):808-816. DOI:10.1111/nph.2007.173.issue-4URL [本文引用: 1]
BROTMANY, LANDAUU, CUADROS-INOSTROZAá, TAKAYUKIT, FERNIE AR, CHETL, VITERBOA, WILLMITZERL. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance , 2013,9(3):e1003221. DOI:10.1371/journal.ppat.1003221URL [本文引用: 2]
BHARTIN, PANDEY SS, BARNAWALD, PATEL VK, KALRAA. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress , 2016,6(1):34768. DOI:10.1038/srep34768URL [本文引用: 2]
JHAY, SUBRAMANIAN RB. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity , 2014,20(2):201-207. DOI:10.1007/s12298-014-0224-8URL [本文引用: 1]
BALTRUSCHATH, FODORJ, HARRACH BD, NIEMCZYKE, BARNAB, GULLNERG, JANECZKOA, KOGEL KH, SCH FERP, SCHWARCZINGERI. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants , 2008,180(2):501-510. DOI:10.1111/nph.2008.180.issue-2URL [本文引用: 1]
CHEN XJ, LIU KM, XUAN MG, SHAO JH, ZHANG RF. Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment Journal of Nanjing Agricultural University, 2020,43(3):452-459. (in Chinese) [本文引用: 1]
EGAMBERDIEVAD, KUCHAROVAZ, DAVRANOVK, BERGG, MAKAROVAN, AZAROVAT, CHEBOTARV, TIKHONOVICHI, KAMILOVAF, VALIDOV SZ, LUGTENBERGB. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils , 2011,47(2):197-205. DOI:10.1007/s00374-010-0523-3URL [本文引用: 1]
EGAMBERDIEVAD, BERGG, LINDSTR MK, RASANEN LA. Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas , 2013,369(1):453-465. DOI:10.1007/s11104-013-1586-3URL [本文引用: 1]
HASHEMA, ABD ALLAH EF, ALQARAWI AA , AL-HUQAIL AA, WIRTHS, EGAMBERDIEVAD. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress , 2016,7:1089. [本文引用: 1]
BIANCOC, DEFEZR. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain , 2009,60(11):3097-3107. DOI:10.1093/jxb/erp140URL [本文引用: 1]
LIU SF, HAO HT, LUX, ZHAOX, WANGY, ZHANG YB, XIE ZK, WANG RY. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana , 2017,7(1):10795. DOI:10.1038/s41598-017-11308-8URL [本文引用: 2]
EGAMBERDIEVAD, WIRTHS, ABD ALLAH EF. Plant hormones as key regulators in plant-microbe interactions under salt stress //ARORA N, EGAMBERDIEVA D, AHMAD P. Plant Microbiome: Stress Response , 2018: 165-182. [本文引用: 1]
GAO YS, WANG SM, ZHANG CL. Plant adaptive and regulatory mechanism under salt stress Acta Prataculturae Sinica, 2003,12(2):1-6. (in Chinese) [本文引用: 1]
KANG SM, KHAN AL, WAQASM, YOU YH, KIM JH, KIM JG, HAMAYUNM, LEE IJ. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus , 2014,9(1):673-682. DOI:10.1080/17429145.2014.894587URL [本文引用: 1]
SHAHZADR, KHAN AL, BILALS, WAQASM, KANG SM, LEE IJ. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa , 2017,136:68-77. DOI:10.1016/j.envexpbot.2017.01.010URL [本文引用: 1]
YAO LX, WU ZS, ZHENG YY, KALEEMI, LIC. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton , 2010,46(1):49-54. DOI:10.1016/j.ejsobi.2009.11.002URL [本文引用: 1]
PENROSE DM, MOFFATT BA, GLICK BR. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings , 2001,47(1):77-80. DOI:10.1139/w00-128URL [本文引用: 1]
PENROSE DM, GLICK BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria , 2003,118(1):10-15. DOI:10.1034/j.1399-3054.2003.00086.xURL [本文引用: 1]
BLAHAD, PRIGENT-COMBARETC, MIRZA MS, MOENNE- LOCCOZY. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography , 2006,56(3):455-470. DOI:10.1111/fem.2006.56.issue-3URL [本文引用: 1]
GLICK BR, CHENGZ, CZARNYJ, DUANJ. Promotion of plant growth by ACC deaminase-producing soil bacteria , 2007,119(3):329-339. DOI:10.1007/s10658-007-9162-4URL [本文引用: 1]
HARDOIM PR, VAN OVERBEEK LS, ELSAS J DV. Properties of bacterial endophytes and their proposed role in plant growth , 2008,16(10):463-471. DOI:10.1016/j.tim.2008.07.008URL [本文引用: 1]
LIU XM, ZHANGH. The effects of bacterial volatile emissions on plant abiotic stress tolerance , 2015,6:774. [本文引用: 1]
LEDGERT, ROJASS, TIMMERMANNT, PINEDOI, POUPIN MJ, GARRIDOT, RICHTERP, TAMAYOJ, DONOSOR. Volatile- mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana , 2016,7:1838. [本文引用: 1]
VAISHNAVA, KUMARIS, JAINS, VARMAA, CHOUDHARY DK. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress , 2015,119(2):539-551. DOI:10.1111/jam.12866URL [本文引用: 1]
BHATTACHARYYAD, YU SM, LEE YH. Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues , 2015,75(1):297-306. DOI:10.1007/s10725-014-9953-5URL [本文引用: 1]
KWON YS, RYU CM, LEES, PARK HB, HAN KS, LEE JH, LEEK, CHUNG WS, JEONG MJ, KIM HK, BAE DW. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles , 2010,232(6):1355-1370. DOI:10.1007/s00425-010-1259-xURL [本文引用: 1]
ZHENGY, LIANGJ, ZHAO DL, MENGC, ZHANG CS. The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in Yellow River Delta saline soils , 2020,8(2):207. DOI:10.3390/microorganisms8020207URL [本文引用: 1]
KWAK MJ, KONG HG, CHOIK, KWON SK, SONG JY, LEEJ, LEE PA, CHOI SY, SEOM, LEE HJ, JUNG EJ, PARKH, ROYN, KIMH, LEE MM, RUBIN EM, LEE SW, KIM JF. Rhizosphere microbiome structure alters to enable wilt resistance in tomato , 2018,36(11):1100-1109. DOI:10.1038/nbt.4232URL [本文引用: 1]
ROY KD, MARZORATIM, ABBEELE P VD, WIELE T VD, BOONN. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities , 2014,16(6):1472-1481. DOI:10.1111/emi.2014.16.issue-6URL [本文引用: 1]
NIUB, PAULSON JN, ZHENG XQ, KOLTERR. Simplified and representative bacterial community of maize roots , 2017,114(12):E2450-E2459. [本文引用: 1]
ZHANG JY, LIU YX, ZHANGN, HUB, JINT, XU HR, QINY, YAN PX, ZHANG XN, GUO XX, HUIJ, CAO SY, WANGX, WANGC, WANGH, QU BY, FANG, YUAN LX, GARRIDO- OTERR, CHU CC, BAIY. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice , 2019,37(6):676-684. DOI:10.1038/s41587-019-0104-4URL [本文引用: 1]