删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

利用CRISPR/Cas9基因编辑技术构建水稻ospin9突变体

本站小编 Free考研考试/2021-12-26

吴世洋,, 杨晓祎, 张艳雯, 侯典云, 胥华伟,河南科技大学农学院,河南洛阳 471000

Generation of ospin9 Mutants in Rice by CRISPR/Cas9 Genome Editing Technology

WU ShiYang,, YANG XiaoYi, ZHANG YanWen, HOU DianYun, XU HuaWei,College of Agriculture, Henan University of Science and Technology, Luoyang 471000, Henan

通讯作者: 胥华伟,E-mail: xhwcyn@163.com

责任编辑: 李莉
收稿日期:2021-02-3接受日期:2021-03-16
基金资助:国家自然科学基金(182300410012)
河南省自然科学基金(82300410012)
河南省自然科学基金(202300410151)
棉花生物学国家重点实验室开放课题(CB2020A24)


Received:2021-02-3Accepted:2021-03-16
作者简介 About authors
吴世洋,E-mail: 1773857571@qq.com







摘要
【目的】生长素输出载体蛋白(PIN-FORMED,PIN)是控制生长素极性运输的关键蛋白,水稻OsPIN9是单子叶植物特有的PIN基因,但其生物学功能仍有待研究。利用CRISPR/Cas9基因编辑技术对OsPIN9进行编辑,获得OsPIN9发生突变的基因编辑株系,对进一步深入研究OsPIN9功能提供依据。【方法】根据OsPIN9序列设计特异性编辑位点,构建OsPIN9编辑载体,以日本晴愈伤组织为受体,通过农杆菌介导法获得抗性植株,通过PCR鉴定转基因植株。转基因植株通过PCR和测序明确OsPIN9的突变类型,获得ospin9纯合突变体并分析突变蛋白与野生型蛋白的差异。qRT-PCR分析突变体幼苗根部OsPINs的表达,进一步明确突变体与野生型对照植株之间的表型差异。以0.05 μmol·L-1的萘乙酸(1-naphthaleneacetic acid,NAA)处理幼苗7 d,分析NAA对植株表型的影响。【结果】在水稻OsPIN9第1外显子处设计靶点并构建表达载体,通过遗传转化成功获得18株T0代转基因植株,测序分析发现转基因株系中有3种不同的突变方式,均为在靶位点的18位碱基处插入不同的单碱基,其中,3株插入T碱基,3株插入G碱基,1株插入C碱基,共获得基因编辑株系7株,进一步鉴定获得2种纯合突变体。序列比对分析表明,这两种类型的突变均造成移码突变和蛋白翻译提前终止,由原来的426个氨基酸缩短为172个氨基酸,跨膜螺旋结构域分析表明突变体中OsPIN9蛋白的跨膜结构完全消失。qRT-PCR分析表明,2个突变株系的OsPIN9转录水平显著降低,OsPIN1aOsPIN5b表达上调,而OsPIN5a表达受到抑制。幼苗期的表型分析表明,突变体的株高显著低于野生型,不定根数显著少于野生型,但根长没有显著变化。NAA处理下,植株的生长受到抑制,ospin9突变体的不定根数仍少于野生型,但差异已不显著。【结论】利用CRISPR/Cas9技术对水稻生长素输出载体蛋白OsPIN9进行定向编辑,可获得无转基因成分的基因编辑植株,OsPIN9的突变影响其他OsPINs的表达,ospin9突变体的地上部和地下部的发育都受到抑制,NAA处理能部分恢复突变体不定根的发育。
关键词: 水稻;OsPIN9;生长素极性运输;CRISPR/Cas9

Abstract
【Objective】Auxin efflux protein family PIN-FORMED (PIN) is a key protein family in controlling polar auxin transport (PAT). OsPIN9 is one of the monocot-specific PIN genes in rice, while its biological function still needs to be further elucidated. In this study, OsPIN9 was edited and ospin9 homozygous mutants were obtained using CRISPR/Cas9 genome editing technology. The resultant ospin9 mutant lines could provide a basis for further research on the function of OsPIN9.【Method】The specific target sequence was designed according to OsPIN9 genome sequence and OsPIN9 genome editing vector was constructed. Nippobare (Oryza sativa japonica) was used as the material and the hygromycin-resistant rice was obtained by Agrobacterium-mediated transformation. The positive transgenic lines were screened by PCR. The mutation sites were confirmed by the combination of PCR and subsequent analysis of sequencing results, the homozygous mutants were obtained and the difference of amino acid sequence and tertiary structure of OsPIN9 protein was analyzed between WT and ospin9 mutants. The expression of OsPINs genes in mutant roots was performed by quantitative real-time PCR (qRT-PCR), and the phenotype of ospin9 mutants was analyzed at the seedling stage. The effects of 1-naphthaleneacetic acid (NAA) treatment on seedling development were also analyzed under 0.05 μmol·L -1 NAA for 7 d.【Result】The target site sequence was designed based on the sequence of exon1 of OsPIN9 and, subsequently, the OsPIN9 genome editing recombinant vector was constructed. A total of 18 independent transgenic lines were obtained by transformation. Sequencing analysis revealed that three different mutation types were present in 7 T0 generation lines, including 3 lines with T insertion, 3 lines with G insertion and 1 line with C insertion, and all the mutation sites happened at the 18 th base of the target sequence. Two homozygous mutation lines were further identified in the T1 generation. BLAST analysis showed that the two types of OsPIN9 mutations caused frame-shift mutation and premature termination of translation, and the mutation protein was shortened from 426 aa in WT to 172 aa, thus leading to the complete disappearance of the transmembrane helices. qPCR analysis indicated that the transcription abundance of OsPIN9 significantly decreased in ospin9 mutants compared with WT, OsPIN1a and OsPIN5b were up-regulated, while OsPIN5a was down-regulated in ospin9 mutants. Both the shoot height and the number of adventitious roots of ospin9 mutants were reduced significantly than that of WT, while its root length was comparable to that of WT. The plant growth was inhibited and the adventitious root number was still less than that of WT under NAA treatment, but no significant difference was found between ospin9 mutants and WT plants. 【Conclusion】 Auxin efflux carrier OsPIN9 was directionally edited by using CRISPR/Cas9 technology, and two transgene-free homozygous ospin9 mutants were obtained. The mutation of OsPIN9 affected the expression level of other OsPINs genes, the shoot and root development were inhibited in ospin9 mutants at the seedling stage and NAA treatment partially rescued the development of adventitious roots in ospin9 mutants.
Keywords:rice;OsPIN9;polar auxin transport;CRISPR/Cas9


PDF (2333KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
吴世洋, 杨晓祎, 张艳雯, 侯典云, 胥华伟. 利用CRISPR/Cas9基因编辑技术构建水稻ospin9突变体. 中国农业科学, 2021, 54(18): 3805-3817 doi:10.3864/j.issn.0578-1752.2021.18.002
WU ShiYang, YANG XiaoYi, ZHANG YanWen, HOU DianYun, XU HuaWei. Generation of ospin9 Mutants in Rice by CRISPR/Cas9 Genome Editing Technology. Scientia Acricultura Sinica, 2021, 54(18): 3805-3817 doi:10.3864/j.issn.0578-1752.2021.18.002


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】水稻(Oryza sativa L.)为世界一半以上人口提供粮食,是世界重要的粮食作物[1]。生长素极性运输影响植物生长发育的多个方面,PIN基因是控制生长素极性运输的关键基因[2,3]。因此,深入发掘OsPINs的功能可为水稻重要农艺性状的遗传改良奠定基础,为进一步通过CRISPR/Cas9等分子生物学技术调控生长素的运输及分布并创制优质水稻种质资源奠定基础。【前人研究进展】生长素是最早发现并被深入研究的植物激素[4],生长素的不均匀分布影响植物生长发育的多个方面,如胚胎发育、维管组织分化及根的发育等[5,6,7]。生长素的定向运输也参与调控植物对环境刺激的响应,如光[8,9]及重力[10,11,12,13,14]等。生长素的不均匀分布由2种不同的运输系统完成,一种是通过维管系统的快速运输,一种是较慢的生长素极性运输(polar auxin transport,PAT)。生长素的极性运输至少由3类不同的蛋白家族协同完成:生长素输入载体AUXIN RESISTANT/LIKE RESISTANT(AUX1/ LAX)[15]、生长素输出载体蛋白家族PIN-FORMED(PIN)[3]以及多重抗药性/磷酸糖蛋白家族MDR/PGP(multidrug resistance-like/P-glycoproteins)[16,17],其中,PIN蛋白在调控生长素的极性运输中起着关键作用[3],其在质膜上的极性定位在很大程度上决定了生长素的极性流向和梯度分布[18,19]。水稻中有12个PIN基因,包括4个OsPIN1、1个OsPIN2、3个OsPIN5、1个OsPIN8、1个OsPIN9和2个OsPIN10,其中OsPIN9OsPIN10aOsPIN10b为单子叶植物所特有[20],OsPINs在不同组织和不同发育阶段的差异表达共同调控生长素的不均匀分布[20,21]。目前对PIN基因功能的研究主要来自拟南芥[22],根据PIN蛋白中间亲水环及定位的不同,可将其分为定位于质膜的长PIN(long PIN)和主要定位于内质网的短PIN(short PIN)[22],其中,长PIN的功能主要是将生长素运出细胞[23],而短PIN的功能主要是与类PIN蛋白(PIN-LIKE)协同调控胞内生长素的动态平衡[7,24-28]。与玉米(Zea mays)、高粱(Sorghum bicolor)及棉花(Gossypium hirsutum)等单子叶植物类似,OsPIN蛋白也主要分为长OsPIN、短OsPIN及OsPIN9[29,30]。近年来,部分OsPINs功能逐渐被阐明,如OsPIN1aOsPIN1b是一对冗余基因,共同参与调控根的发育,影响幼苗及花的发育;而OsPIN1cOsPIN1d是另一对功能冗余基因,共同参与调控稻穗的发育[31]OsPIN2参与调控分蘖角度、分蘖数以及不定根数[32],同时还通过调控生长素的分布参与根的向重性反应[33,34],过表达OsPIN2可减轻铝毒对细胞的伤害[35,36]。OsPIN5b定位于内质网,通过影响生长素的平衡、转运和分布参与调控植物的构型及产量[37]OsPIN10b(也被称为OsPIN3t)参与调控水稻的抗旱性,同时也影响水稻不定根的正常发育[38]OsPIN9作为单子叶植物特有的PIN基因,其功能直到最近才有报道。OsPIN9定位于质膜,主要在茎基部及分蘖芽中表达,受到铵的诱导表达,过表达OsPIN9可以提高水稻的分蘖数及产量[39]。研究表明,低氮也会诱导OsPIN9的表达,可能是低氮增加生长素的含量,而生长素又进一步激活了生长素信号途径所导致[40]。这些结果均表明,OsPINs基因家族对水稻的正常发育及重要农艺性状等都有重要影响,但相比拟南芥中的研究,OsPINs的研究仍有待深入。近年来,随着基因编辑技术的日益成熟,利用基因编辑技术定点突变基因,研究基因功能,改良目标性状基因,创制新的种质资源逐渐成为一条有效的途径,其中成簇规律间隔短回文重复(clustered regulatory interspaced short palindromic repeat,CRISPR)是目前公认的最简易高效的基因编辑工具[41,42]。【本研究切入点】HOU等[39]研究表明水稻OsPIN9主要介导生长素的向下运输,并参与调控水稻的分蘖数。但OsPIN9突变对水稻生长发育的影响,尤其是对幼苗期水稻生长发育的影响以及对其他OsPINs表达的影响尚不明确。【拟解决的关键问题】本研究以日本晴(Nipponbare)为材料,利用CRISPR/Cas9基因编辑技术获得不同的转基因株系,通过PCR鉴定及测序获得OsPIN9发生突变的纯合株系,基因编辑株系的OsPIN9表达量显著低于野生型植株,突变体中OsPIN1aOsPIN5b表达上调,而OsPIN5a的表达下调,突变体的株高及不定根数量均受到显著抑制。为进一步发掘OsPIN9的基因功能,利用OsPIN9创制新的种质资源奠定基础。

1 材料与方法

1.1 材料

试验于2018—2020年在河南科技大学农学院进行。以水稻粳稻品种日本晴为材料,利用农杆菌介导法将植物表达载体T-DNA片段整合到水稻基因组。

大肠杆菌DH10B感受态细胞及农杆菌(Agrobacterium tumefaciens)EHA105感受态细胞由资源植物评价与创新利用实验室自制。CRISPR/Cas9载体CRISPR-RICE由中国科学院上海植物逆境生物学研究中心朱健康院士实验室提供,具体载体信息如图1所示。

图1

新窗口打开|下载原图ZIP|生成PPT
图1CRISPR-RICE载体示意图

Fig. 1Schematic diagram of CRISPR-RICE



限制性内切酶BsaⅠ购自NEB公司,T4连接酶及高保真Taq酶PrimeSTAR等购自TaKaRa,质粒提取试剂盒、琼脂糖凝胶回收试剂盒等购自OMEGA。引物由上海生工生物工程有限公司合成。

1.2 基因编辑载体的构建

利用华南农业大学刘耀光院士团队开发的CRISPR- GE进行靶位点的设计[43]。在CRISPR-GE网站(http://skl.scau.edu.cn/)输入OsPIN9基因组序列,获得多个CRISPR/Ca9前间隔序列临近基序(protospacer adjacent motif,PAM)上游20个碱基的序列,选择预测的编辑效率较高且位于编码区的序列作为靶位点,进一步通过水稻全基因组BLAST比对分析验证靶位点的特异性。在上下游引物的5′端分别添加接头序列TGTGT和AAAC,用于将目的片段连入CRISPR- RICE载体。

通过引物退火合成目的片段,反应体系为10 μmol·L-1上下游引物PIN9-CRISPR-F和PIN9-CRISPR-R各1 μL和8 μL ddH2O。退火条件为95℃ 10 min,然后以0.1℃·s-1降温至20℃,产物-20℃保存备用。配制10 μL的连接体系:经BsaⅠ酶切的CRISPR-RICE载体约50 ng、T4连接酶缓冲液1 μL、T4连接酶1 μL、退火产物3 μL,加水补至10 μL。16℃连接过夜后转化大肠杆菌感受态细胞DH10B。通过M13-F和PIN9-CRISPR-R扩增OsU6启动子筛选阳性克隆(图1)。通过冻融法将重组载体转入农杆菌EHA105用于水稻遗传转化。

1.3 基因编辑株系的靶位点分析

通过农杆菌介导法获得T0抗性植株,进一步通过PCR利用特异引物(HPT-F和HPT-R,表1)扩增HPT片段筛选获得转基因阳性植株。参考OsPIN9基因组序列,在靶位点两侧设计引物PIN9- Assay-F和PIN9-Assay-R(表1),通过高保真Taq酶PrimeSTAR扩增OsPIN9片段,PCR产物送上海生工生物工程有限公司测序,通过CRISPR-GE分析测序结果的突变类型[44]。T1水稻筛选鉴定方法同上。

Table 1
表1
表1引物及序列
Table 1The primers and sequence in this study
引物名称 Primer name引物序列 Primer sequence (5′-3′)用途 Usage
PIN9-CRISPR-FTGTGTTTCTCCAACGAGCAGTGCGCCRISPR/Cas9载体构建
CRISPR/Cas9 vector construction
PIN9-CRISPR-RAAACGCGCACTGCTCGTTGGAGAA
M13-FGTTGTAAAACGACGGCCAGTGCC筛选阳性克隆 Screening for positive clones
HPT-FCTGAACTCACCGCGACGTCTGTC筛选阳性植株
Screening for positive transgenic plants
HPT-RTAGCGCGTCTGCTGCTCCATACA
PIN9-Assay-FCGACCTGGCTTACGAACGAA扩增OsPIN9基因组片段
Amplification of OsPIN9 genome fragment
PIN9-Assay-RCCATGTCGAAGATGAGCACC
PIN1a-qFCCTGAAATCCATCTCCATCCTCOsPIN1a表达分析
Expression analysis of OsPIN1a
PIN1a-qRAACGTCGCCACCTTGTT
PIN1b-qFGAATCGTGCCCTTTGTGTTTGOsPIN1b表达分析
Expression analysis of OsPIN1b
PIN1b-qRTGTAGTAGACGAGGGTGATAGG
PIN1c-qFGAGCAATCAGCATCCCGAATAOsPIN1c表达分析
Expression analysis of OsPIN1c
PIN1c-qRGAGCAATCAGCATCCCGAATA
PIN2-qFCGTCTCCTTCAGGTGGAATATCOsPIN2表达分析
Expression analysis of OsPIN2
PIN2-qRAGAGCCATGAACAAGCCTAAG
PIN5a-qFCCCTACCTCAATCCATCACATCOsPIN5a表达分析
Expression analysis of OsPIN5a
PIN5a-qRGTAGGGAGACAAGCATTCCAA
PIN5b-qFGCAAAGGAGTATGGGCTTCAOsPIN5b表达分析
Expression analysis of OsPIN5b
PIN5b-qRGCAATCAGAATCGGCAGAGA
PIN9-qFGAGGACTCTCTGTTCACCATTCOsPIN9表达分析
Expression analysis of OsPIN9
PIN9-qRGAGAACGACGCTATCTTGTATCC
OsACTIN1-qFCTTCATAGGAATGGAAGCTGCGqRT-PCR内参基因
Internal control for qRT-PCR
OsACTIN1-qFCACCTTGATCTTCATGCTGCTA

新窗口打开|下载CSV

1.4 生物信息学分析及OsPIN基因表达分析

以MEGA7进行蛋白序列比对[45],比对结果进一步通过Jalview进行修饰[46]。通过在线网站(TMHMM Server v. 2.0: http://www.cbs.dtu.dk/services/TMHMM/)分析蛋白的跨膜螺旋结构域[47]。通过SWISS MODEL网站(https://swissmodel.expasy.org/)预测蛋白三级结构[48]

OsPIN9主要在根及根茎结合部表达,此外,水稻根中还检测到OsPIN1aOsPIN1bOsPIN1cOsPIN2OsPIN5aOsPIN5b的表达[20],以14 d幼苗根为材料对目的基因及根中OsPINs进行qRT-PCR表达分析。用RNAiso Plus(TaKaRa BIO INC)提取总RNA,运用HiScript III RT SuperMix for qPCR(+gDNA wiper)(南京诺唯赞生物科技股份有限公司)反转录得到cDNA。使用AceQ Universal SYBR qPCR Master Mix(南京诺唯赞生物科技股份有限公司)在Lightcycle® 96 qPCR仪上进行qRT-PCR分析,以水稻OsACTIN1(Os03g0718100)作为内参,以2-ΔΔCT法计算基因的相对表达量。试验进行3次生物学重复,每次3个技术重复。所用引物见表1

1.5 ospin9突变体表型分析

挑选饱满一致的水稻种子浸种2 d,然后将稻种放在铺有两层湿润滤纸的培养皿中,放置于30℃培养箱中暗处理催芽,其间注意保持滤纸的湿润。待稻种催芽露白后,将稻种点播到96孔板中,以木村B营养液培养[49],每3天更换一次营养液,培养至14 d时,统计其株高、根长及不定根数。

NAA处理试验:种子浸种2 d,然后在含有0.05 μmol·L-1 NAA的木村B营养液中继续培养7 d,统计株高和不定根数。数据以GraphPad Prism 8.0进行单因素方差分析及Tukey法进行多重比较,显著性水平为P<0.05。

2 结果

2.1 基因编辑表达载体的构建

以日本晴基因组序列为模板序列,以水稻OsPIN9(Os01g0802700)的第1外显子为靶点,利用CRISPR- GE在线分析工具设计20 bp的靶位点序列(图2-A),通过退火形成Oligo二聚体,将其与CRISPR-RICE连接,通过引物M13-F和PIN9-CRISPR-R扩增OsU6启动子筛选获得阳性克隆,目的片段长度为291 bp(图2-B),进一步提取质粒通过测序确认获得重组CRISPR/Cas9载体,将其转化至农杆菌感受态EHA105后进行遗传转化。

图2

新窗口打开|下载原图ZIP|生成PPT
图2OsPIN9 gRNA靶位点示意图及阳性克隆筛选

A:OsPIN9靶位点示意图;B:PCR扩增OsU6启动子筛选阳性克隆
Fig. 2Schematic diagram of OsPIN9 target site and screening for positive clones

A: Schematic diagram of OsPIN9 target site; B: Screening for positive clones by PCR amplification of OsU6 promoter


2.2 转基因株系的突变类型分析

通过农杆菌介导法获得18株独立的转化植株。通过HPT-F和HPT-R扩增HPT片段确认获得转基因植株(图3-A)。为鉴定目的基因是否发生突变,提取转化植株叶片基因组DNA,以引物对PIN9-Assay-F和PIN9-Assay-R利用高保真Taq酶PrimeSTAR扩增OsPIN9靶位点相邻序列并测序。结果表明,18株T0转基因株系中有3种不同的突变方式,均为不同单碱基插入突变,插入位置均为靶位点的18位碱基处。其中,插入T碱基的共有3株,插入C碱基的共有1株,插入G碱基的共有3株,共获得基因编辑株系7株。为排除Cas9的潜在干扰,进一步提取T1转基因植株基因组DNA,筛选无转基因片段的突变体。结果表明,在插入T和G碱基的突变体中,分别筛选到5株和3株不含HPT的植株,进一步扩增OsPIN9片段并测序,确认突变特性与T0一致,因此,获得纯合突变植株ospin9-1ospin9-2图3-B)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3OsPIN9转基因植株的鉴定及纯合突变体的筛选

A:PCR扩增HPT片段鉴定OsPIN9编辑植株;B:纯合突变体的筛选
Fig. 3Identification of the transgenic lines and screening of ospin9 homozygous mutants by sequencing

A: Identification of the transgenic lines by PCR amplification of HPT; B: Screening of the homozygous ospin9 mutants by sequencing


2.3 ospin9纯合突变体氨基酸序列及蛋白跨膜结构域和三级结构分析

利用CRISPR/Cas9基因编辑系统,对OsPIN9进行靶位点特异性编辑,并筛选鉴定到2个纯合突变株系。蛋白序列比对结果表明,ospin9-1突变体由于在OsPIN9编码区第117位碱基处插入一个碱基对T,引起了移码突变并使翻译提前终止,突变基因开放阅读框为519 bp,共编码172个氨基酸,其中,前39个氨基酸与野生型OsPIN9一致。ospin9-2突变体同样也是在编码区117位碱基处插入一个碱基对G,引起移码突变和翻译提前终止,其突变基因的开放阅读框也是519 bp,但其前38个氨基酸与野生型一致。PIN蛋白为典型的跨膜蛋白,其生物学功能依赖于其跨膜螺旋结构域(transmembrane helices,TMH)[50]。跨膜螺旋结构域分析表明野生型OsPIN9蛋白含有10个跨膜螺旋结构域,ospin9突变体中除了第一个跨膜螺旋对应的氨基酸序列与野生型OsPIN9蛋白一致外,其余跨膜螺旋对应的氨基酸序列都发生了改变甚至完全消失(图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4OsPIN9突变蛋白的氨基酸变化

红色为突变碱基位置;红线对应的氨基酸残基为预测的跨膜螺旋
Fig. 4Schematic representations of amino acid sequence changes of OsPIN9 mutant proteins

The base inserted is shown in red color; The amino acids below the red lines represent the predicted transmembrane helices


虽然蛋白质序列比对分析表明突变体中OsPIN9蛋白第一个跨膜螺旋结构域对应的氨基酸序列与野生型OsPIN9蛋白一致(图4),但跨膜螺旋结构域分析表明OsPIN9突变蛋白的跨膜螺旋结构域完全消失(图5-A)。蛋白质三级结构预测表明,突变体OsPIN9蛋白的三级结构更加简单,与野生型的完全不同(图5-B)。综上,一系列分析表明OsPIN9在核酸及蛋白水平都发生了突变,很可能影响了OsPIN9的功能。

图5

新窗口打开|下载原图ZIP|生成PPT
图5OsPIN9突变蛋白的跨膜螺旋结构域及三级结构分析

A:跨膜螺旋结构域分析;B:三级结构分析
Fig. 5Transmembrane helices (TMH) and tertiary structure analysis of OsPIN9 mutant proteins

A: Transmembrane helices (TMH) analysis; B: Tertiary structure analysis


2.4 ospin9突变体中OsPIN基因的表达分析

以幼苗根为材料进行目的基因表达分析,结果表明,2种ospin9突变体中OsPIN9的表达量都明显低于野生型,分别降低了64%和79%(图6)。同时,ospin9突变体中OsPIN5a的表达明显降低,尤其是ospin9-2突变体中,OsPIN5a的表达降低了99%;而OsPIN1aOsPIN5b的表达在2种ospin9突变体中则不同程度地上调(图6),其他几个OsPINsOsPIN1bOsPIN1cOsPIN2)的表达未见显著变化(结果未显示)。

图6

新窗口打开|下载原图ZIP|生成PPT
图6ospin9突变体根中OsPINs表达分析

Fig. 6Expression analysis of OsPINs genes in seedling roots of ospin9 mutants



2.5 ospin9突变体的表型分析

14 d幼苗的表型分析结果表明,ospin9突变体的株高显著低于野生型,2个突变株系的株高比野生型分别降低16%和14%,不定根数目也显著少于野生型,分别比野生型减少10%和11%(图7),但根长和野生型没有显著差异,表明OsPIN9对于水稻幼苗地上部和地下部的正常生长发育都起着重要作用。

图7

新窗口打开|下载原图ZIP|生成PPT
图7幼苗期ospin9突变体表型

A:幼苗期ospin9突变体照片;B:表型数据统计分析(n≥14)。黑色圆点表示测量值;**表示P<0.01水平差异;***表示P<0.001水平差异。下同
Fig. 7Phenotype of ospin9 mutants at the seedling stage

A: Photograph of ospin9 mutants at the seedling stage; B: Statistical analysis of the phenotypic data (n≥14). Black dot indicates measured data; * indicates difference at the P<0.01 level; *** indicates difference at the P<0.001 level. The same as below


前期研究表明OsPIN9突变导致水稻地上部生长素含量提高而地下部生长素含量降低[39],这有可能是导致突变体与野生型表型差异的主要原因之一,进一步以NAA处理野生型和ospin9突变体进行表型分析。结果表明,NAA处理抑制了野生型植株地上部的生长(图8-A和图8-C)而促进了不定根的发生(图8-B和图8-D)。NAA处理后,ospin9突变体株高仍显著低于野生型植株(图8-C),而不定根数虽仍少于野生型植株,但差异已不显著(图8-D)。

图8

新窗口打开|下载原图ZIP|生成PPT
图8NAA处理对幼苗株高和不定根数的影响

A、B:对照植株株高及不定根数统计(n=12);C:0.05 μmol·L-1 NAA处理7 d株高和不定根数统计(n=12)。*表示P<0.05水平差异
Fig. 8Effects of NAA treatment on seedling shoot height and adventitious root number

A, B: Statistical analysis of shoot height and adventitious root number in untreated plants (n=12); C: Statistical analysis of shoot height and adventitious root number under 0.05 μmol·L-1 NAA treated for 7 d (n=12). * indicates difference at the P<0.05 level


3 讨论

随着CRISPR/Cas9基因编辑技术的飞速发展,其易于构建,成本低廉,具有较高特异性及编辑效率等优点日益突出[42]。近年来,中国科学家在重要农作物基因编辑领域取得了长足进展,如华南农业大学刘耀光院士团队开发的多基因编辑系统可用于单子叶和双子叶植物基因编辑[51],中国科学院上海植物逆境生物学研究中心朱健康院士团队开发的用于水稻多基因编辑的CRISPR-Cpf1系统[52]以及中国科学院遗传与发育生物学研究所高彩霞研究员团队开发的用于小麦基因编辑的无转基因成分的基因编辑系统等[53,54]。尤其是CRISPR/CaS9基因编辑系统,在基因功能研究及作物品质改良等方面的应用越来越广泛,如利用CRISPR/Cas9技术成功编辑水稻香味基因Badh2[41]、水稻温敏不育基因TMS5[55,56]、水稻ROP基因OsRac5[57],同时CRISPR/Cas9在定向改良水稻稻瘟病抗性[58]、创制低镉籼稻[59]、创制长粒香型水稻[60]以及提高水稻耐逆性[61]等方面都取得了成功。

PIN基因属于多基因家族,且PIN基因之间存在功能冗余[31],对于这种多基因家族的功能研究,以前多采用RNA干涉的方法,如XU等[62]以过表达和RNA干涉的方法研究了OsPIN1b的功能,结果表明,RNA干涉植株不定根的发育受到严重抑制,同时其分蘖角度显著增大,而以CRISPR-Cas9技术定点突变OsPIN1b所得到的ospin1b突变体却无明显表型[31],这可能是由于OsPIN家族成员之间核苷酸水平具有较高的相似性,而RNA干涉不特异造成的,说明对于研究核苷酸水平相似性较高的家族基因,CRISPR/ Cas9技术可能更加适合。OsPIN9是单子叶植物特有的PIN基因,单子叶植物PIN基因功能的研究仍远落后于双子叶植物尤其是拟南芥PIN基因功能的研究。最近的研究表明,OsPIN9蛋白定位于细胞质膜,主要在控制水稻不定根发育及分蘖数目方面发挥作用[39]。但OsPIN9既不属于长PIN,也不属于短PIN[29,30],说明其蛋白结构与这两类PIN有较大的不同,除了介导生长素的极性运输外,很可能具有其他的未知功能[50]。本研究中通过CRISPR/Cas9基因编辑技术定点突变OsPIN9,获得ospin9纯合突变体,蛋白质序列分析表明突变体中OsPIN9蛋白长度小于野生型OsPIN9,其跨膜螺旋结构域消失,三级结构也更为简单,同时OsPIN9表达量也显著低于野生型植株,说明OsPIN9在核酸水平和蛋白水平均发生了突变。PIN基因之间存在功能冗余,故很多PIN基因突变体没有明显的表型[31],OsPIN9的突变导致OsPIN1aOsPIN5b的表达量上调,说明OsPIN1aOsPIN5b很可能与OsPIN9之间存在冗余关系,共同调控根的发育;而OsPIN9的突变导致OsPIN5a表达受到抑制,说明OsPIN5aOsPIN9之间很可能是以协同表达的模式调控植物的生长发育。前期研究表明OsPIN9主要在根及根茎结合部表达,GUS染色进一步表明OsPIN9主要在不定根原基以及根茎结合部的中柱细胞中表达,暗示OsPIN9很可能在不定根的发育中发挥作用[20]。本研究表明,OsPIN9的突变不仅影响了水稻不定根的发育,也影响了幼苗地上部的发育。OsPIN9的突变影响了生长素由地上部向地下部的运输,导致根部生长素含量下降[39],NAA处理能促进野生型植株不定根的发生,同时可以部分恢复ospin9突变体中不定根数的减少,表明根部生长素的含量会影响不定根的发生,ospin9突变体不定根数的减少很可能是由于生长素含量的降低引起的;同时OsPIN9的突变很可能也会影响生长素的不均匀分布,这也有可能影响不定根的发育。而地上部生长受阻很可能是由于地上部生长素的积累以及不定根减少这两方面的原因共同引起的。除了影响不定根的发育外,OsPIN9很可能也参与其他植物激素调控的根的发育,如ABA可以促进水稻根毛生长,同时ABA又可以显著诱导OsPIN9的表达,暗示OsPIN9可能在ABA介导的根毛发育中起着重要作用[63]。此外,OsPIN9很可能还参与调控植物的非生物逆境胁迫,如高温胁迫可以诱导稻穗中OsPIN9的表达,说明OsPIN9可能参与调控水稻的高温抗性[64]。砷和一氧化氮供体硝普化钠(sodium nitroprusside,SNP)的共同处理可以显著诱导OsPIN9的表达[65],说明OsPIN9可能在介导NO缓解植物砷胁迫中发挥作用。

综上,OsPIN9参与调控水稻不定根及地上部的发育,但其内在的调控机理及OsPIN9是否参与调控其他生长发育进程等仍有待进一步研究。ospin9纯合突变体的获得为进一步研究OsPIN9在响应环境信号、逆境胁迫、参与激素网络调控等方面的作用奠定了基础,也为进一步利用杂交技术获得OsPINs的双突等突变体,克服OsPINs的功能冗余,更全面地研究OsPINs功能提供了材料。

4 结论

利用CRISPR/Cas9基因编辑技术,对水稻生长素输出载体基因OsPIN9进行定点突变,获得无转基因成分的纯合株系,突变蛋白的跨膜螺旋结构域完全消失,利用CRISPR/Cas9技术可以特异性定点突变多基因家族基因。OsPIN9突变影响其他OsPINs的表达,且OsPIN9在水稻幼苗的生长发育中起着重要作用。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

KARKI S, RIZAL G, QUICK W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway
Rice, 2013, 6:28.

DOI:10.1186/1939-8433-6-28URL [本文引用: 1]

FRIML J, VIETEN A, SAUER M, WEIJERS D, SCHWARZ H, HAMANN T, OFFRINGA R, JURGENS G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis
Nature, 2003, 426(6963): 147-153.

DOI:10.1038/nature02085URL [本文引用: 1]

PETRASEK J, MRAVEC J, BOUCHARD R, BLAKESLEE J J, ABAS M, SEIFERTOVA D, WISNIEWSKA J, TADELE Z, KUBES M, COVANOVA M, DHONUKSHE P, SKUPA P, BENKOVA E, PERRY L, KRECEK P, LEE O R, FINK G R, GEISLER M, MURPHY A S, LUSCHNIG C, ZAZIMALOVA E, FRIML J. PIN proteins perform a rate-limiting function in cellular auxin efflux
Science, 2006, 312(5775): 914-918.

DOI:10.1126/science.1123542URL [本文引用: 3]

TUSKAN G A, DIFAZIO S, JANSSON S, BOHLMANN J, GRIGORIEV I, HELLSTEN U, PUTNAM N, RALPH S, ROMBAUTS S, SALAMOV A, SCHEIN J, STERCK L, AERTS A, BHALERAO R R, BHALERAO R P, BLAUDEZ D, BOERJAN W, BRUN A, BRUNNER A, BUSOV V, CAMPBELL M, CARLSON J, CHALOT M, CHAPMAN J, CHEN G L, COOPER D, COUTINHO P M, COUTURIER J, COVERT S, CRONK Q, CUNNINGHAM R, DAVIS J, DEGROEVE S, DEJARDIN A, DEPAMPHILIS C, DETTER J, DIRKS B, DUBCHAK I, DUPLESSIS S, EHLTING J, ELLIS B, GENDLER K, GOODSTEIN D, GRIBSKOV M, GRIMWOOD J, GROOVER A, GUNTER L, HAMBERGER B, HEINZE B, HELARIUTTA Y, HENRISSAT B, HOLLIGAN D, HOLT R, HUANG W, ISLAM-FARIDI N, JONES S, JONES-RHOADES M, JORGENSEN R, JOSHI C, KANGASJARVI J, KARLSSON J, KELLEHER C, KIRKPATRICK R, KIRST M, KOHLER A, KALLURI U, LARIMER F, LEEBENS-MACK J, LEPLE J C, LOCASCIO P, LOU Y, LUCAS S, MARTIN F, MONTANINI B, NAPOLI C, NELSON D R, NELSON C, NIEMINEN K, NILSSON O, PEREDA V, PETER G, PHILIPPE R, PILATE G, POLIAKOV A, RAZUMOVSKAYA J, RICHARDSON P, RINALDI C, RITLAND K, ROUZE P, RYABOY D, SCHMUTZ J, SCHRADER J, SEGERMAN B, SHIN H, SIDDIQUI A, STERKY F, TERRY A, TSAI C J, UBERBACHER E, UNNEBERG P, VAHALA J, WALL K, WESSLER S, YANG G, YIN T, DOUGLAS C, MARRA M, SANDBERG G, VAN DE PEER Y, ROKHSAR D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)
Science, 2006, 313(5793): 1596-1604.

DOI:10.1126/science.1128691URL [本文引用: 1]

BENJAMINS R, SCHERES B. Auxin: the looping star in plant development
Annual Review of Plant Biology, 2008, 59:443-465.

DOI:10.1146/annurev.arplant.58.032806.103805URL [本文引用: 1]

DUBROVSKY J G, SAUER M, NAPSUCIALY-MENDIVIL S, IVANCHENKO M G, FRIML J, SHISHKOVA S, CELENZA J, BENKOVA E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells
Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(25): 8790-8794.

[本文引用: 1]

MRAVEC J, SKUPA P, BAILLY A, HOYEROVA K, KRECEK P, BIELACH A, PETRASEK J, ZHANG J, GAYKOVA V, STIERHOF Y D, DOBREV P I, SCHWARZEROVA K, ROLCIK J, SEIFERTOVA D, LUSCHNIG C, BENKOVA E, ZAZIMALOVA E, GEISLER M, FRIML J. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter
Nature, 2009, 459(7250): 1136-1140.

DOI:10.1038/nature08066URL [本文引用: 2]

HAGA K, SAKAI T. Differential roles of auxin efflux carrier PIN proteins in hypocotyl phototropism of etiolated Arabidopsis seedlings depend on the direction of light stimulus
Plant Signalling & Behavior, 2013, 8(1): e22556.

[本文引用: 1]

ZHANG K X, XU H H, YUAN T T, ZHANG L, LU Y T. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis
The Plant Journal, 2013, 76(2): 308-321.

[本文引用: 1]

CHEN R, HILSON P, SEDBROOK J, ROSEN E, CASPAR T, MASSON P H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier
Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 15112-15117.

[本文引用: 1]

KLEINE-VEHN J, LEITNER J, ZWIEWKA M, SAUER M, ABAS L, LUSCHNIG C, FRIML J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting
Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17812-17817.

[本文引用: 1]

RAHMAN A, TAKAHASHI M, SHIBASAKI K, WU S, INABA T, TSURUMI S, BASKIN T I. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells
The Plant Cell, 2010, 22(6): 1762-1776.

DOI:10.1105/tpc.110.075317URL [本文引用: 1]

SINGH P K, INDOLIYA Y, CHAUHAN A S, SINGH S P, SINGH A P, DWIVEDI S, TRIPATHI R D, CHAKRABARTY D. Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress
Scientific Reports, 2017, 7:3592.

DOI:10.1038/s41598-017-03923-2URL [本文引用: 1]

RAKUSOVA H, GALLEGO-BARTOLOME J, VANSTRAELEN M, ROBERT H S, ALABADI D, BLAZQUEZ M A, BENKOVA E, FRIML J. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana
The Plant Journal, 2011, 67(5): 817-826.

DOI:10.1111/j.1365-313X.2011.04636.xURL [本文引用: 1]

LEITNER J, RETZER K, KORBEI B, LUSCHNIG C. Dynamics in PIN2 auxin carrier ubiquitylation in gravity-responding Arabidopsis roots
Plant Signaling & Behavior, 2012, 7(10): 1271-1273.

[本文引用: 1]

YANG Y, HAMMES U Z, TAYLOR C G, SCHACHTMAN D P, NIELSEN E. High-affinity auxin transport by the AUX1 influx carrier protein
Current Biology, 2006, 16(11): 1123-1127.

DOI:10.1016/j.cub.2006.04.029URL [本文引用: 1]

NOH B, MURPHY A S, SPALDING E P. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development
The Plant Cell, 2001, 13(11): 2441-2454.

[本文引用: 1]

GEISLER M, MURPHY A S. The ABC of auxin transport: the role of p-glycoproteins in plant development
FEBS Letters, 2006, 580(4): 1094-1102.

DOI:10.1016/j.febslet.2005.11.054URL [本文引用: 1]

WISNIEWSKA J, XU J, SEIFERTOVA D, BREWER P B, RUZICKA K, BLILOU I, ROUQUIE D, BENKOVA E, SCHERES B, FRIML J. Polar PIN localization directs auxin flow in plants
Science, 2006, 312(5775): 883.

DOI:10.1126/science.1121356URL [本文引用: 1]

GRIENEISEN V A, XU J, MAREE A F, HOGEWEG P, SCHERES B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth
Nature, 2007, 449(7165): 1008-1013.

DOI:10.1038/nature06215URL [本文引用: 1]

WANG J, HU H, WANG G, LI J, CHEN J, WU P. Expression of PIN genes in rice (Oryza sativa L.): Tissue specificity and regulation by hormones
Molecular Plant, 2009, 2(4): 823-831.

DOI:10.1093/mp/ssp023URL [本文引用: 4]

MIYASHITA Y, TAKASUGI T, ITO Y. Identification and expression analysis of PIN genes in rice
Plant Science, 2010, 178(5): 424-428.

DOI:10.1016/j.plantsci.2010.02.018URL [本文引用: 1]

KRECEK P, SKUPA P, LIBUS J, NARAMOTO S, TEJOS R, FRIML J, ZAZIMALOVA E. The PIN-FORMED (PIN) protein family of auxin transporters
Genome Biology, 2009, 10(12): 249.

DOI:10.1186/gb-2009-10-12-249URL [本文引用: 2]

ADAMOWSKI M, FRIML J. PIN-dependent auxin transport: action, regulation, and evolution
The Plant Cell, 2015, 27(1): 20-32.

DOI:10.1105/tpc.114.134874URL [本文引用: 1]

DAL BOSCO C, DOVZHENKO A, LIU X, WOERNER N, RENSCH T, EISMANN M, EIMER S, HEGERMANN J, PAPONOV I A, RUPERTI B, HEBERLE-BORS E, TOURAEV A, COHEN J D, PALME K. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis
The Plant Journal, 2012, 71(5): 860-870.

DOI:10.1111/tpj.2012.71.issue-5URL [本文引用: 1]

DING Z, WANG B, MORENO I, DUPLAKOVA N, SIMON S, CARRARO N, REEMMER J, PENCIK A, CHEN X, TEJOS R, SKUPA P, POLLMANN S, MRAVEC J, PETRASEK J, ZAZIMALOVA E, HONYS D, ROLCIK J, MURPHY A, ORELLANA A, GEISLER M, FRIML J. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis
Nature Communications, 2012, 3:941.

DOI:10.1038/ncomms1941URL

BARBEZ E, KUBES M, ROLCIK J, BEZIAT C, PENCIK A, WANG B, ROSQUETE M R, ZHU J, DOBREV P I, LEE Y, ZAZIMALOVA E, PETRASEK J, GEISLER M, FRIML J, KLEINE-VEHN J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants
Nature, 2012, 485(7396): 119-122.

DOI:10.1038/nature11001URL

FERARU E, VOSOLSOBE S, FERARU M I, PETRASEK J, KLEINE-VEHN J. Evolution and structural diversification of PILS putative auxin carriers in plants
Frontiers in Plant Science, 2012, 3:227.



ABDOLLAHI S N, RUZICKA K. ER-localized PIN carriers: Regulators of intracellular auxin homeostasis
Plants, 2020, 9(11): 1527.

DOI:10.3390/plants9111527URL [本文引用: 1]

WANG Y, CHAI C, VALLIYODAN B, MAUPIN C, ANNEN B, NGUYEN H T. Genome-wide analysis and expression profiling of the PIN auxin transporter gene family in soybean (Glycine max)
BMC Genomics, 2015, 16:951.

DOI:10.1186/s12864-015-2149-1URL [本文引用: 2]

ZHANG Y, HE P, YANG Z, HUANG G, WANG L, PANG C, XIAO H, ZHAO P, YU J, XIAO G. A genome-scale analysis of the PIN gene family reveals its functions in cotton fiber development
Frontiers in Plant Science, 2017, 8:461.

[本文引用: 2]

LI Y, ZHU J, WU L, SHAO Y, WU Y, MAO C. Functional divergence of PIN1 paralogous genes in rice
Plant and Cell Physiology, 2019, 60(12): 2720-2732.

DOI:10.1093/pcp/pcz159URL [本文引用: 4]

CHEN Y, FAN X, SONG W, ZHANG Y, XU G. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1
Plant Biotechnology Journal, 2012, 10(2): 139-149.

DOI:10.1111/pbi.2011.10.issue-2URL [本文引用: 1]

WANG L, GUO M, LI Y, RUAN W, MO X, WU Z, STURROCK C J, YU H, LU C, PENG J, MAO C. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice
Journal of Experimental Botany, 2018, 69(3): 385-397.

DOI:10.1093/jxb/erx427URL [本文引用: 1]

INAHASHI H, SHELLEY I J, YAMAUCHI T, NISHIUCHI S, TAKAHASHI NOSAKA M, MATSUNAMI M, OGAWA A, NODA Y, INUKAI Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice
Physiologia Plantarum, 2018, 164(2): 216-225.

DOI:10.1111/ppl.2018.164.issue-2URL [本文引用: 1]

WU D, SHEN H, YOKAWA K, BALUSKA F. Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots
Journal of Experimental Botany, 2014, 65(18): 5305-5315.

DOI:10.1093/jxb/eru292URL [本文引用: 1]

WU D, SHEN H, YOKAWA K, BALUŠKA F. Overexpressing OsPIN2 enhances aluminium internalization by elevating vesicular trafficking in rice root apex
Journal of Experimental Botany, 2015, 66(21): 6791-6801.

DOI:10.1093/jxb/erv385URL [本文引用: 1]

LU G, CONEVA V, CASARETTO J A, YING S, MAHMOOD K, LIU F, NAMBARA E, BI Y M, ROTHSTEIN S J. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution
The Plant Journal, 2015, 83(5): 913-925.

DOI:10.1111/tpj.2015.83.issue-5URL [本文引用: 1]

ZHANG Q, LI J, ZHANG W, YAN S, WANG R, ZHAO J, LI Y, QI Z, SUN Z, ZHU Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance
The Plant Journal, 2012, 72(5): 805-816.

DOI:10.1111/tpj.2012.72.issue-5URL [本文引用: 1]

HOU M M, LUO F F, WU D X, ZHANG X H, LOU M M, SHEN D F, YAN M, MAO C Z, FAN X R, XU G H, ZHANG Y L. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium
New Phytologist, 2021, 229:935-949.

DOI:10.1111/nph.v229.2URL [本文引用: 5]

HSIEH P H, KAN C C, WU H Y, YANG H C, HSIEH M H. Early molecular events associated with nitrogen deficiency in rice seedling roots
Scientific Reports, 2018, 8(1): 12207.

DOI:10.1038/s41598-018-30632-1URL [本文引用: 1]

祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2
中国农业科学, 2020, 53(8): 1501-1509.

[本文引用: 2]

QI Y B, ZHANG L X, WANG L Y, SONG J, WANG J J. CRISPR/Cas9 targeted editing for the fragrant gene Badh2 in rice
Scientia Agricultura Sinica, 2020, 53(8): 1501-1509. (in Chinese)

[本文引用: 2]

刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas植物基因组编辑技术研究进展
华南农业大学学报, 2019, 40(5): 38-49.

[本文引用: 2]

LIU Y G, LI G S, ZHANG Y L, CHEN L T. Current advances on CRISPR/Cas genome editing technologies in plants
Journal of South China Agricultural University, 2019, 40(5): 38-49. (in Chinese)

[本文引用: 2]

LIU W Z, XIE X R, MA X L, LI J, CHEN J H, LIU Y G. DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations
Molecular Plant, 2015, 8(9): 1431-1433.

DOI:10.1016/j.molp.2015.05.009URL [本文引用: 1]

MA X L, CHEN L T, ZHU Q L, CHEN Y L, LIU Y G. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products
Molecular Plant, 2015, 8(8): 1285-1287.

DOI:10.1016/j.molp.2015.02.012URL [本文引用: 1]

KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets
Molecular Biology and Evolution, 2016, 33(7): 1870-1874.

DOI:10.1093/molbev/msw054URL [本文引用: 1]

WATERHOUSE A M, PROCTER J B, MARTIN D M A, CLAMP M, BARTON G J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench
Bioinformatics, 2009, 25(9): 1189-1191.

DOI:10.1093/bioinformatics/btp033URL [本文引用: 1]

KROGH A, LARSSON B, VON HEIJNE G, SONNHAMMER E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes
Journal of Molecular Biology, 2001, 305(3): 567-580.

DOI:10.1006/jmbi.2000.4315URL [本文引用: 1]

MADEIRA F, PARK Y M, LEE J, BUSO N, GUR T, MADHUSOODANAN N, BASUTKAR P, TIVEY A, POTTER S C, FINN R D, LOPEZ R. The EMBL-EBI search and sequence analysis tools APIs in 2019
Nucleic Acids Research, 2019, 47(W1): W636-W641.

DOI:10.1093/nar/gkz268URL [本文引用: 1]

YOSHIDA S, FORNO D A, COCK J H, GOMEZ K A. Laboratory Manual for Physiological Studies of Rice
Manila: International Rice Research Institute, 1976.

[本文引用: 1]

BENNETT T, BROCKINGTON S F, ROTHFELS C, GRAHAM S W, STEVENSON D, KUTCHAN T, ROLF M, THOMAS P, WONG G K, LEYSER O, GLOVER B J, HARRISON C J. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure
Molecular Biology and Evolution, 2014, 31(8): 2042-2060.

DOI:10.1093/molbev/msu147URL [本文引用: 2]

MA X L, ZHANG Q Y, ZHU Q L, LIU W, CHEN Y, QIU R, WANG B, YANG Z F, LI H Y, LIN Y Y, XIE Y Y, SHEN R X, CHEN S F, WANG Z, CHEN Y L, GUO J X, CHEN L T, ZHAO X C, DONG Z C, LIU Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants
Molecular Plant, 2015, 8(8): 1274-1284.

DOI:10.1016/j.molp.2015.04.007URL [本文引用: 1]

WANG M G, MAO Y F, LU Y M, TAO X P, ZHU J K. Multiplex gene editing in rice using the CRISPR-Cpf1 system
Molecular Plant, 2017, 10(7): 1011-1013.

DOI:10.1016/j.molp.2017.03.001URL [本文引用: 1]

ZHANG Y, LIANG Z, ZONG Y, WANG Y P, LIU J X, CHEN K L, QIU J L, GAO C X. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA
Nature Communications, 2016, 7(1): 12617-12617.

DOI:10.1038/ncomms12617URL [本文引用: 1]

LIANG Z, CHEN K L, LI T D, ZHANG Y, WANG Y P, ZHAO Q, LIU J X, ZHANG H W, LIU C M, RAN Y D, GAO C X. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes
Nature Communications, 2017, 8:14261.

DOI:10.1038/ncomms14261URL [本文引用: 1]

陈日荣, 周延彪, 王黛君, 赵新辉, 唐晓丹, 许世冲, 唐倩莹, 符星学, 王凯, 刘选明, 杨远柱. 利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5
作物学报, 2020, 46(8): 1157-1165.

DOI:10.3724/SP.J.1006.2020.92059URL [本文引用: 1]

CHEN R R, ZHOU Y B, WANG D J, ZHAO X H, TANG X D, XU S C, TANG Q Y, FU X X, WANG K, LIU X M, YANG Y Z. CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice
Acta Agronomica Sinica, 2020, 46(8): 1157-1165. (in Chinese)

DOI:10.3724/SP.J.1006.2020.92059URL [本文引用: 1]

黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建
作物学报, 2018, 44(6): 844-851.

DOI:10.3724/SP.J.1006.2018.00844URL [本文引用: 1]

HUANG Z M, ZHOU Y B, TANG X D, ZHAO X H, ZHOU Z W, FU X X, WANG K, SHI J W, LI Y F, FU C J, YANG Y Z. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology
Acta Agronomica Sinica, 2018, 44(6): 844-851. (in Chinese)

DOI:10.3724/SP.J.1006.2018.00844URL [本文引用: 1]

王美娜, 彭静静, 王凯婕, 安文静, 刘亚菲, 李珂嘉, 梁卫红. 利用CRISPR/Cas9技术编辑水稻ROP基因OsRac5
中国生物化学与分子生物学报, 2018, 34(12): 1350-1357.

[本文引用: 1]

WANG M N, PENG J J, WANG K J, AN W J, LIU Y F, LI K J, LIANG W H. Editing ROP gene OsRac5 of rice by CRISPR/Cas9 technique
Chinese Journal of Biochemistry and Molecular Biology, 2018, 34(12): 1350-1357. (in Chinese)

[本文引用: 1]

徐鹏, 王宏, 涂燃冉, 刘群恩, 吴玮勋, 傅秀民, 曹立勇, 沈希宏. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性
中国水稻科学, 2019, 33(4): 313-322.

[本文引用: 1]

XU P, WANG H, TU R R, LIU Q E, WU W X, FU X M, CAO L Y, SHEN X H. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system
Chinese Journal of Rice Science, 2019, 33(4): 313-322. (in Chinese)

[本文引用: 1]

龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻
中国水稻科学, 2019, 33(5): 407-420.

[本文引用: 1]

LONG Q Z, HUANG Y L, TANG X Y, WANG H M, LU M, YUAN L F, WAN J L. Creation of low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9
Chinese Journal of Rice Science, 2019, 33(5): 407-420. (in Chinese)

[本文引用: 1]

徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻
中国水稻科学, 2020, 34(5): 406-412.

[本文引用: 1]

XU S B, ZHENG H L, LIU L F, BU Q Y, LI X F, ZOU D T. Improvement of grain shape and fragrance by using CRISPR/Cas9 system
Chinese Journal of Rice Science, 2020, 34(5): 406-412. (in Chinese)

[本文引用: 1]

周天顺, 余东, 刘玲, 欧阳宁, 袁贵龙, 段美娟, 袁定阳. 利用CRISPR/Cas9技术编辑AFP1基因提高水稻耐逆性
中国水稻科学, 2021, 35(1): 11-18.

[本文引用: 1]

ZHOU T S, YU D, LIU L, OU Y N, YUAN G L, DUAN M J, YUAN D Y. CRISPR/Cas9-mediated editing of AFP1 improves rice stress tolerance
Chinese Journal of Rice Science, 2021, 35(1): 11-18. (in Chinese)

[本文引用: 1]

XU M, ZHU L, SHOU H X, WU P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice
Plant and Cell Physiology, 2005, 46(10): 1674-1681.

DOI:10.1093/pcp/pci183URL [本文引用: 1]

WANG T, LI C X, WU Z H, JIA Y C, WANG H, SUN S Y, MAO C Z, WANG X L. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation
Frontiers in Plant Science, 2017, 8:1121.

DOI:10.3389/fpls.2017.01121URL [本文引用: 1]

ZHANG X W, LI J P, LIU A L, ZOU J, ZHOU X Y, XIANG J H, RERKSIRI W, PENG Y, XIONG X Y, CHEN X B. Expression profile in rice panicle: Insights into heat response mechanism at reproductive stage
PLoS ONE, 2012, 7(11): e49652.

DOI:10.1371/journal.pone.0049652URL [本文引用: 1]

相关话题/基因 序列 技术 结构 植物