Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties
HUANG ZiYue,1, LIU WenJun2, QIN RenLiu1, PANG ShiChan1, XIAO Jian1, YANG ShangDong,11Agricultural College of Guangxi University, National Experimental Teaching Demonstration Center of Plant Science, Nanning 530004 2Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
Abstract 【Objective】The aim of this study was to provide a theoretical basis for utilizing functional strains of endophytic bacteria in different varieties of pumpkins, as well as to explore new directions for pumpkin breeding. 【Method】The endophytic bacterial community composition and PICRUSt gene functions of 5 pumpkins varieties were analyzed based on MiSeq high-throughput sequencing results. The diversity and richness of endophytic bacterial community compositions in terms of 5 different pumpkin varieties were compared at phylum and genus levels.【Results】In total, 18 phyla, 30 classes, 101 orders, 199 families, 362 genera, 567 species and 863 OTUs could be obtained as the endophytic bacterial composition in 5 pumpkin varieties. There was no significant difference in endophytic bacteria diversity among pumpkin varieties. Significant differences in total numbers of endophytic bacteria were observed at different classification levels among pumpkin varieties. The proteobacteria was the dominant bacteria in terms of different 5 pumpkin varieties at the phylum level, but the abundance and proportion in every pumpkin variety were quite different. Moreover, Pseudomonas, Mycobacterium, Ensifer and Devosia were the dominant endophytic bacteria at genus level of different 5 pumpkin varieties, but their composition and abundance varied with pumpkin varieties. The composition and proportion of dominant endophytes at the phylum and genus level were similar between the hybrid and parent species. PICRUSt analysis also showed that endophytic bacteria inhabited in terms of different pumpkin varieties, mainly involved in 6 biological metabolic pathways and 46 sub-functions. However, there were no significant differences of endophytic bacterial genes in terms of different pumpkin varieties at the secondary functional layer. However, the numbers of gene functional copies varied with different varieties. The diversity and abundance of endophytic bacteria in terms of pumpkin were significantly affected by environmental factors. Moreover, the different endophytic bacterial community structures could be found in different pumpkin varieties. Meanwhile, a higher abundance of endophytic bacteria tended to enrich in terms of higher quality hybrids. Bacteria in 13 genera of bacteria, including Pseudomonas, Mycobacterium, Ensifer, and Devosia, etc, were the dominant endophytic bacterial genera in terms of 5 different pumpkin varieties. By contrast, Glycomyces, Candidatus_Rubidus, and Actinokineospora were the specific dominant endophytic bacterial genera in terms of Guifeng NO.7. In addition, 37 secondary functional layer functions were all the highest endophytic bacterial genes in terms of Guifeng NO.7 among the five pumpkin varieties, which involved the metabolisms of carbohydrate, amino acid, cofactors, and vitamins.【Conclusion】The higher dominant endophytic bacterial genus and the richer secondary functional genes were essential reasons for higher quality of Guifeng NO.7 than that of other four pumpkin varieties. Glycomyces, Candidatus_Rubidus, and Actinokineospora could be considered as the alternative benefit endophytic bacterial genera for improving pumpkin quality. Keywords:pumpkin (Cucurbita moschata Duch.);endophytic Bacteria;diversity;Miseq High-Throughput Sequencing;function rediction
PDF (1081KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 黄子粤, 刘文君, 覃仁柳, 庞师婵, 肖健, 杨尚东. 不同品种南瓜内生细菌多样性及PICRUSt基因功能预测分析. 中国农业科学, 2021, 54(18): 4018-4032 doi:10.3864/j.issn.0578-1752.2021.18.019 HUANG ZiYue, LIU WenJun, QIN RenLiu, PANG ShiChan, XIAO Jian, YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties. Scientia Acricultura Sinica, 2021, 54(18): 4018-4032 doi:10.3864/j.issn.0578-1752.2021.18.019
Illumina Miseq测序流程:将同一样本的PCR产物混合后使用2%琼脂糖凝胶回收PCR产物,利用AxyPrep DNA Gel Extraction Kit(Axygen Biosciences, Union City, CA, USA)进行回收和产物纯化,2%琼脂糖凝胶电泳检测,并用Quantus™ Fluorometer(Promega, USA)对回收产物进行定量检测。使用NEXTFLEX®Rapid DNA-Seq Kit进行建库:(1)接头链接;(2)使用磁珠筛选去除接头自连片段;(3)利用PCR扩增进行文库模板的富集;(4)磁珠回收PCR产物得到最终文库。利用Illumina公司的Miseq PE250平台进行测序(上海美吉生物医药科技有限公司)。
PICRUSt是基于比对微生物群落的丰富度与数据库,从而在不可观测的情况下推测出生物群落的功能信息[14]。基于高通量测序技术和KEGG(kyoto encyclopedia of genes and genomes)数据库比对,发现5个不同品种南瓜茎部内生细菌在一级功能层共包含6类生物代谢通路(图4),即:代谢、环境信息处理、细胞过程、遗传信息处理、人类疾病和有机系统。其中,代谢通路为5个不同南瓜品种的主要功能组成,占比分别为67.46%、65.45%、67.43%、66.44%和67.66%(表7)。
XIONG JH, LUO QS, MIN SF, ZHOU WW, SUN WG. Analysis and evaluation on the nutritional components in different parts of miben pumpkin Hubei Agricultural Sciences, 2009, 48(9): 2239-2241. (in Chinese) [本文引用: 1]
HUANGL, ZHANG RY, TAN ZQ, CHEN DQ, SONG GM. Researches on fungal endophyte in root of wild Cymbidium insigne from Wuzhi mountain Southwest China Journal of Agricultural Sciences, 2012, 25(2): 657-660. (in Chinese) [本文引用: 1]
GULINISHA∙SHAYIMU, ZHANG ZD, YANGB, ZHANG SK, TANG QY, SONG SQ, ZHUJ, GUO CM, GU MY. Endophytic bacterial community diversity and function in apple trees of different varieties Microbiology China, 2020, 47(2): 500-511. (in Chinese) [本文引用: 1]
WANG YT, YI YJ, YANG JK, ZENGJ. Progress in antimicrobial components from endophyte Academic Periodical of Farm Products Processing, 2013(2): 1-5. (in Chinese) [本文引用: 1]
ZHANG GQ, WEI WJ, BAIX, LIU TX. Advances of pharmaceutical research on plant endophytes Journal of MinZu University of China (Natural Sciences Edition), 2013, 22(2): 60-62. (in Chinese) [本文引用: 1]
AHLHOLM JU, HELANDERM, HENRIKSSONJ, METZLERM, SAIKKONEK. Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees , 2002, 56(8): 1566-1573. DOI:10.1111/evo.2002.56.issue-8URL [本文引用: 1]
ZHANGJ, ZHANG CW, YANGJ, ZHANG RJ, GAO JS, ZHAOX, ZHAO JJ, ZHAO DF, ZHANG XX. Insights into endophytic bacterial community structures of seeds among various Oryza sativa L. rice genotypes , 2019, 38(1): 93-102. DOI:10.1007/s00344-018-9812-0URL [本文引用: 1]
LAMIT LJ, LAU MK, STHULTZ CM, WOOLEY SC, WHITHAM TG, GEHRING CA. Tree genotype and genetically based growth traits structure twig endophyte communities , 2014, 101(3): 467-478. DOI:10.3732/ajb.1400034URL [本文引用: 1]
HARDOIM PR, ANDREOTE FD, REINHOLD-HUREKB, SESSITSCHA, VANOVERBEEK L S, VANELSAS J D. Rice root-associated bacteria: insights into community structures across 10 cultivars , 2011, 77:154-164. DOI:10.1111/fem.2011.77.issue-1URL [本文引用: 1]
XUN, TAN GC, WANG HY, GAIX. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure , 2016, 74:1-8. DOI:10.1016/j.ejsobi.2016.02.004URL [本文引用: 1]
XUS, LIN YC, ZHOU MJ, NI XQ, ZENGD, ZENGY. Analyzing of ileum microbial diversity of chickens by high-throughput sequencing and PICRUSt predicted Chinese Journal of Animal Nutrition, 2016(8): 2581-2588.(in Chinese) [本文引用: 1]
GUERRERO-ZÚÑIGA AL, LÓPEZ-LÓPEZE, RODRÍGUEZ- TOVAR AV, RODRÍGUEZ-DORANTESA. Functional diversity of plant endophytes and their role in assisted phytoremediation , 2019, 237-255. [本文引用: 1]
ZHANG QQ, HUANG XR, GUO XY. Advance in endophytic bacterial diversity of wetland plants Wetland Science, 2015, 13(2): 233-243. (in Chinese) [本文引用: 1]
HAMEEDA, YEH MW, HSIEH YT, CHUNG WC, LO CT, YOUNG LS. Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress , 2015, 394(1): 177-197. DOI:10.1007/s11104-015-2506-5URL [本文引用: 1]
GAO ZG, CHENJ, LIUX, XUE CS. The correlation between maize genetic polymorphisms and endophytic bacteria population in plant roots Acta Ecologica Sinica, 2006, 26(6): 1920-1925. (in Chinese) [本文引用: 1]
LIUY, ZHAOR, LIN, CAO YH, ZHANGC, BAI FR, ZHANGX, YUAN LP, WANG WP, CHENGC. Diversity of endophytic bacterial communities in seeds of super hybrid rice (Oryza sativa L.) Food and Fermentation Industries, 2016(1): 31-36. (in Chinese) [本文引用: 1]
LIUB, HU GP, ZHU YJ, ZHENG XF, SU MX. Correlation between rice endophytic bacteria and root soil bacterial community structure // Proceedings of the 2010 Annual Conference of the Chinese Society for Plant Pathology, 2010. (in Chinese) [本文引用: 1]
WU YY, XU WF, LUOQ, WANG LL, LIU YY, CHENK, XIEJ. An illumina-based analysis of the diversity of endophytic bacteria from different mulberry genotypes Newsletter of Sericultural Science, 2018, 38(3): 1-10. (in Chinese) [本文引用: 1]
MA GH, XIAO CG. Population dynamics of endophytic bacteria in symptom-free tobacco plants Journal of Microbiology, 2004, 24(4): 7-11. (in Chinese) [本文引用: 1]
CHEN ZB, XIA ZY, LEI LP, HUANG HP, ZHANG YF, MO LL, JINS. Study on population density and distribution characteristics of endophytic bacteria in tobacco in Yunnan Southwest China Journal of Agricultural Sciences, 2014, 27(2): 682-687. (in Chinese) [本文引用: 1]
BODENHAUSENN, HORTON MW, BERGELSONJ. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana , 2013, 8(2): e56329. DOI:10.1371/journal.pone.0056329URL [本文引用: 1]
SHA YX. Diversity of bacterial endophytic community in different rice tissues Acta Microbiologica Sinica, 2018, 58(12): 2216-2228. (in Chinese) [本文引用: 1]
BAKKER MG, MANTER DK, SHEFLIN AM, WEIR TL, VIVANCO JM. Harnessing the rhizosphere microbiome through plant breeding and agricultural management , 2012, 360(1): 1-13. DOI:10.1007/s11104-012-1361-xURL [本文引用: 1]
SHARMAM, DANGIP, CHOUDHARYM. Actinomycetes: Source, identification, and their applications , 2014, 3(2): 801-832. [本文引用: 1]
BÉRDYJ. Thoughts and facts about antibiotics: where we are now and where we are heading , 2012, 65(8): 385-395. DOI:10.1038/ja.2012.27URL [本文引用: 1]
QINS, XINGK, JIANG JH, XU LH, LI WJ. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria , 2011, 89(3): 457-473. DOI:10.1007/s00253-010-2923-6URL [本文引用: 1]
BARKA EA, VATSAP, SANCHEZL, GAVEAU-VAILLANTN, JACQUARDC, MEIER-KOLTHOFFJ P, KLENKH P, CLÉMENTC, OUHDOUCHY, VANWEZEL G P. Taxonomy, physiology, and natural products of actinobacteria , 2016, 80(1): 1-43. DOI:10.1128/MMBR.00019-15URL [本文引用: 1]
KOYAMAR, MATSUMOTOA, INAHASHIY, OMURAS, TAKAHASHIY. Isolation of actinomycetes from the root of the plant, Ophiopogon japonicus, and proposal of two new species, Actinoallomurus liliacearum sp. nov. and Actinoallomurus vinaceus sp. nov , 2012, 65(7): 335-340. DOI:10.1038/ja.2012.31URL [本文引用: 1]
TANVIRR, SAJIDI, HASNAINS. Larvicidal potential of Asteraceae family endophytic actinomycetes against Culex quinquefasciatus mosquito larvae , 2014, 28(22): 2048-2052. DOI:10.1080/14786419.2014.919579URL [本文引用: 1]
VERMA VC, SINGH SK, PRAKASHS. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss , 2011, 51(5): 550-556. DOI:10.1002/jobm.v51.5URL [本文引用: 1]
LIANG YP, ZONG ZF, MAQ. Inhibiting and promoting effect on plants of six strains endophytic actinomycetes isolated from wild plants Journal of Northwest a & F University (Natural Science Edition), 2007, 35(7): 131-136. (in Chinese) [本文引用: 1]
LIJ, ZHAO GZ, HUANG HY, QINS, ZHU WY, ZHAO LX, XU LH, ZHANGS, LI WJ, STROBELG. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L , 2012, 101(3): 515-527. DOI:10.1007/s10482-011-9661-3URL [本文引用: 1]
HU RP, DENG XJ, GONG GS, TANG ZY, ZHANG SR. Study on the Potential of Phosphorus-releasing and Potassium releasing by Bacillus spp.in Chengdu Suburbs Soil Journal of Sichuan Agricultural University, 2008, 26(2): 167-169.(in Chinese) [本文引用: 1]
FANG ZJ, ZHANG XX, MA LA. Research advance of endophytes Journal of Yangtze University (Natural Science Edition), 2018, 15(10): 41-45. (in Chinese) [本文引用: 1]
NASSALD, SPOHNM, ELTLBANYN, JACQUIODS, SMALLAK, MARHANS, KANDELERE. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity , 2018, 427(1): 17-37. DOI:10.1007/s11104-017-3528-yURL [本文引用: 1]
KANG SM, RADHAKRISHNANR, KHAN AL, KIM MJ, PARK JM, KIM BR, SHIN DH, LEE IJ. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions , 2014, 84:115-124. DOI:10.1016/j.plaphy.2014.09.001URL [本文引用: 1]
SANDHYAV, ALI SZ, GROVERM, REDDYG, VENKATESWARLUB. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress , 2010, 62(1): 21-30. DOI:10.1007/s10725-010-9479-4URL [本文引用: 1]
QINS, WANG HB, CHEN HH, ZHANG YQ, JIANG CL, XU LH, LI WJ. Glycomyces endophyticus sp. nov. an endophytic actinomycete isolated from the root of Carex baccans Nees , 2008, 58(11): 2525-2528. DOI:10.1099/ijs.0.2008/000398-0URL [本文引用: 1]
GUAN TW, XIA ZF, XIAOJ, WUN, CHEN ZJ, ZHANG LL, ZHANG XP. Glycomyces halotolerans sp. nov., a novel actinomycete isolated from a hypersaline habitat in Xinjiang, China , 2011, 100(1): 137-143. DOI:10.1007/s10482-011-9574-1URL [本文引用: 1]
QINS, CHEN HH, KLENK HP, ZHAO GZ, LIJ, XU LH, LI WJ. Glycomyces scopariae sp. nov. and Glycomyces mayteni sp. nov., isolated from medicinal plants in China , 2009, 59(5): 1023-1027. DOI:10.1099/ijs.0.2008/005942-0URL [本文引用: 1]
TAMURAT, HAYAKAWAM, NONOMURAH, YOKOTAA, HATANOK. Four New Species of the Genus Actinokineospora: Actinokineospora inagensis sp. nov. Actinokineospora globicatena sp. nov. Actinokineospora terrae sp. nov. and Actinokineospora diospyrosa sp. nov , 1995, 45(2): 371-378. DOI:10.1099/00207713-45-2-371URL [本文引用: 1]
SU XH, BAI YC, SHEW, YANG RF, CUI DD, LI LL, WANG JL, CUI GX. Microbial community structures and diversities in different ramie varieties rhizosphere soils Plant Fiber Sciences in China, 2019, 41(3): 114-121. (in Chinese) [本文引用: 1]
ZHANG FF, SONG XQ, ZHU GP. Diversity of culturable endophytic bacteria isolated from the root tissues of Phalaenopsis pulcherrima in two different habitats Plant Sclence Journal, 2016, 34(1): 135-142. (in Chinese) [本文引用: 1]
CHEN ZB, HUANGL, XIA ZY, ZHAO XN, XU SG, LINL, RENZ, JINS, WANG ML. Species diversity characteristics of endophytic bacteria in tobacco at different regions of Yunnan Province Southwest China Journal of Agricultural Sciences, 2015, 28(2): 857-861.(in Chinese) [本文引用: 1]
CHUM, ZHANG LJ, LIU XJ, ZHUJ, WANGW, GU MY, XIE YQ, ZHANG ZD. Diversity of the endophytes and screening of antagonistic microbes in Garlic varieties from different producing areas Xinjiang Agricultural Sciences, 2017(11): 2067-2074. (in Chinese) [本文引用: 1]
WANG YZ, ZHANG DP. Regulating effects of ethylene on carbohydrate metabolism in ‘starkrimson’ apple fruit during the ripening period Acta Horticulturae Sinica, 2000, 27(6): 391-395.(in Chinese) [本文引用: 1]
ISHIKAWAT, SHIGEOKAS. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms , 2008, 72(5): 1143-1154. DOI:10.1271/bbb.80062URL [本文引用: 1]
ISHIKAWAT, DOWDLEJ, SMIRNOFFN. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants , 2006, 126:343-355. DOI:10.1111/ppl.2006.126.issue-3URL [本文引用: 1]
PIGNOCCHIC, FOYER CH. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling , 2003, 6(4): 379-389. DOI:10.1016/S1369-5266(03)00069-4URL [本文引用: 1]
YANH, PENG XB, XUE JJ. Effects of NaCl stress on leaf photosynthesis characteristics and free amino acid metabolism of Heyedysarum scoparium Chinese Journal of Applied Ecology, 2012, 23(7): 1790-1796. (in Chinese) [本文引用: 1]
ALIS, CHARLES TC, GLICK BR. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase , 2014, 80:160-167. DOI:10.1016/j.plaphy.2014.04.003URL [本文引用: 1]
FENGH, LI YC, LIU QG. Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum , 2013, 7(15): 1311-1318. DOI:10.5897/AJMRURL [本文引用: 1]
ALIS, CHARLES TC, GLICK BR. Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase , 2012, 113(5): 1139-1144. DOI:10.1111/jam.2012.113.issue-5URL [本文引用: 1]