Analysis of Plasmid-Mediated AmpC β-lactamases Gene and Plasmid in Poultry Proteus mirabilis Strains
ZHAO ShiYu,1, JIAO JiaJie1, DONG NingNing1, PAN YuanYue2, CUI MengMei1, PAN YuShan,11College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 2College of Life Sciences, Henan Agricultural University, Zhengzhou 450002
Abstract 【Objective】 The aim of this study was to probe the genotype of AmpC β-lactamases gene and the complete nucleotide sequence of the conjugative plasmid carrying blaCMY-2 in poultry P. mirabilis strains, so as to provide a theoretical basis for the prevent spreading of multidrug-resistant poultry P. mirabilis strains. 【Method】 Twenty-one P. mirabilis strains were characterized for the confirmation of AmpC β-lactamases genes by using three-dimensional test, polymerase chain reaction (PCR) amplification and sequencing. The blaCMY-2-carrying P. mirabilis strains were further evaluated using pulse field gel electrophoresis (PFGE) and conjugation experiments. The complete nucleotide sequence of conjugative plasmid pC12 was determined by using high-throughput sequencing platform and compared with closely related plasmids. 【Result】 Six of twenty-one P. mirabilis strains produced AmpC enzymes, all of which carried the blaCMY-2 gene and the detection rate was 28.6%. Antimicrobial susceptibility testing showed that six P. mirabilis strains exhibited high resistance to ampicillin, cefoxitin, doxycycline, florfenicol and colistin, but were susceptible to ceftazidime and amikacin. Conjugation assay revealed the blaCMY-2 gene was successfully transferred from P. mirabilis C12 to E. coli C600 recipient strain, however, conjugation experiments failed to obtain transconjugants for other blaCMY-2-bearing strains, despite repeated attempts. Three PFGE patterns of six P. mirabilis strains were determined. The findings demonstrated the vertical and horizontal dissemination of blaCMY-2 gene in poultry P. mirabilis isolates. Sequence analysis revealed the P. mirabilis C12 harbored a conjugative plasmid, designated as pC12. pC12 was found to be a multi-drug resistant type 1b IncC plasmid with 161 319-bp size and an average GC content of 52.45%, and had at least 161 predicted open reading frames. The complete sequence of pC12 has been submitted to GenBank with the accession number MT320534. The pC12 harbored three antibiotic resistance regions: the first region, antibiotic resistance island ARI-B, carried floR, tet(A), strA, strB, and sul2 genes; the second region, ISEcp1-blaCMY-2-blc-sugE, was a typical structure, and the ISEcp1 was truncated by IS10R; the third region, ARI-A, was a hybrid Tn1696tnp-pDUmer module. The ARI-A contained a sul1-containing class 1 integron with cassette array (aac(6')-Ib-cr|arr3|dfrA27|aadA16), and a mercury resistance cluster merEDBAPTR, and inserted into the plasmid backbone generating 5-bp direct repeats (TTGTA). 【Conclusion】 All the AmpC-producing P. mirabilis strains carried the blaCMY-2 gene, and one of them harbored an epidemic type 1 IncC conjugative plasmid. Three PFGE patterns were identified. The findings demonstrated the vertical and horizontal dissemination of blaCMY-2 gene in poultry Proteus mirabilis isolates. IncC plasmid was one of the predominant vehicles for the dissemination of multiple resistance genes, such as blaCMY-2, tet (A), floR or class 1 integron cassette, which further increased the difficulty for the treatment of the infection caused by P. mirabilis. More attention should be paid on the epidemiology of IncC plasmid in pathogenic bacteria. Keywords:Proteus mirabilis;IncC plasmid;AmpC β-lactamases;blaCMY-2;Tn1696 transposon
PDF (1604KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 赵世玉, 焦嘉杰, 董宁宁, 潘圆月, 崔孟梅, 潘玉善. 禽源奇异变形杆菌质粒介导AmpC酶基因型检测与质粒分析. 中国农业科学, 2021, 54(17): 3780-3788 doi:10.3864/j.issn.0578-1752.2021.17.018 ZHAO ShiYu, JIAO JiaJie, DONG NingNing, PAN YuanYue, CUI MengMei, PAN YuShan. Analysis of Plasmid-Mediated AmpC β-lactamases Gene and Plasmid in Poultry Proteus mirabilis Strains. Scientia Acricultura Sinica, 2021, 54(17): 3780-3788 doi:10.3864/j.issn.0578-1752.2021.17.018
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】奇异变形杆菌(Proteus mirabilis)是一种条件性致病菌,是引起人尿路、伤口、血液等感染的重要病原之一[1,2]。兽医临床中,奇异变形杆菌可以感染鸡、猕猴、狐狸、水貂、大熊猫、断奶仔猪等多种动物[3]。近几年,动物感染奇异变形杆菌的病例屡见报道,但有关奇异变形杆菌的流行调查比较少。近几年,杨睿等[4]对腹泻仔猪、王道宁等[5]对腹泻犬、路佳琦等[6]对某鸽场、袁东芳[7]对健康肉鸡进行了奇异变形杆菌的流行性调查,分离率在10%—30%。β-内酰胺酶是肠杆菌科细菌对β-内酰胺类抗生素耐药的主要机制,AmpC酶属于β-内酰胺酶的一个重要分支。目前,人源奇异变形杆菌对β-内酰胺类抗生素耐药率明显升高[8,9],但有关产AmpC酶动物源奇异变形杆菌的研究比较少。因此,本试验对禽源奇异变形杆菌进行AmpC酶检测与质粒分析,对掌握AmpC酶基因在该菌中的传播规律具有重要意义。【前人研究进展】根据Bush-Jacoby-Medeiros的分类方法,AmpC β-内酰胺酶属第一组,是一类不被克拉维酸和乙二胺四乙酸抑制的头孢菌素酶,按分子结构类型属于C类,也称为AmpC酶[10]。按ampC的来源分为染色体编码的AmpC酶和质粒介导的AmpC酶。对于染色体介导AmpC酶来说,ampC是该酶的结构基因,另外是几个不连锁的调节基因ampR、ampD、ampG、ampE等,可被β-内酰胺类抗生素诱导,主要见于阴沟肠杆菌、弗劳地枸橼酸杆菌、鲍曼不动杆菌、粘质沙雷菌及铜绿假单胞菌[11,12]。奇异变形杆菌染色体虽也能编码AmpC酶,但ampC主要是位于整合接合元件(integrating conjugative elements,ICEs)上,能进一步在大肠杆菌、肺炎克雷伯菌、沙门菌中转移[2,13]。质粒介导的AmpC酶主要出现在肺炎克雷伯菌、大肠杆菌、沙门菌及奇异变形杆菌,这些菌株无论有无β-内酰胺类抗生素存在均能持续高水平产AmpC酶。携带ampC的质粒可以通过接合方式在同种属和不同种属菌之间传播,这是ampC快速传播的一个重要途径[11]。质粒介导的AmpC酶已在世界范围内流行,CMY-2是其最流行的酶型[12]。【本研究切入点】奇异变形杆菌是一种常见的条件性致病菌。目前,有关禽源奇异变形杆菌产AmpC酶的研究比较少。前期研究中,对临床分离的21株禽源奇异变形杆菌已完成了超广谱β-内酰胺酶的检测和blaCTX-M基因的上下游环境研究[3],但有关AmpC酶的检测、基因亚型、质粒特征还未深入研究。【拟解决的关键问题】对临床分离的21株禽源奇异变形杆菌进行AmpC β-内酰胺酶和耐药基因检测,利用接合试验和脉冲场凝胶电泳(pulsed-field gel electrophoresis,PFGE)技术研究blaCMY-2在奇异变形杆菌中垂直和水平传播规律,利用高通量测序技术获得接合质粒的全序列,解析携带blaCMY-2质粒的分子特征,为防控多重耐药禽源奇异变形杆菌的传播提供理论基础。
Table 2 表2 表212种抗菌药物对6株blaCMY-2阳性禽源奇异变形杆菌及接合子TC12的MIC值 Table 2MICs of twelve antimicrobials against six blaCMY-2-carrying Proteus mirabilis strains and the transconjugant TC12 (µg·mL-1)
奇异变形杆菌质粒pC12 (MT320534),大肠杆菌质粒pAR060302 (FJ621588)和pUMNK88 (HQ023862),沙门氏菌质粒pSN254 (CP000604),pCVM22425 (CP009560)和pSD_174 (JF267651),肺炎克雷伯氏菌质粒IncA/C-LS6(JX442976) 红色箭头代表药物或汞抗性基因;黄色箭头代表插入序列或转座酶基因;蓝绿色代表与接合转移相关的基因;橙色箭头代表与质粒维持和稳定相关的基因;灰色箭头代表编码假设蛋白的基因。灰色背景代表≥94%的相似度序列 Fig. 2Sequence comparisons of pC12 and other blaCMY-positive IncC plasmids
pAR060302 (FJ621588), pSN254 (CP000604), pCVM22425 (CP009560), pSD_174 (JF267651), pUMNK88 (HQ023862), IncA/C-LS6 (JX442976) from P. mirabilis, E. coli, S. enterica, and K. pneumoniae Red arrows represent genes coding for antibiotic resistance or mercury resistance; yellow arrows represent genes coding for insertion sequence elements or transposase; cyan arrows represent genes coding for conjugal transfer; orange arrows represent genes coding for maintenance and stability; gray arrows represent genes coding for hypothetical proteins. Homologous segments generated by a BLASTn comparison (≥94% identity of nucleotide sequence) are shown as grey boxes
RÓZALSKIA, SIDORCZYKZ, KOTEŁKOK. Potential virulence factors of Proteus bacilli Microbiology and Molecular Biology Reviews, 1997, 61(1): 65-89. [本文引用: 1]
MATAC, NAVARROF, MIRÓE, WALSHT R, MIRELISB, TOLEMANM. Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis The Journal of Antimicrobial Chemotherapy, 2011, 66(10): 2266-2270. DOI:10.1093/jac/dkr286URL [本文引用: 3]
YANGR, WANGT T, WANGX Y, YUY D, ZHANGY F, FUL Z. Isolation, identification and analysis of antibiotic resistance genes of Proteus mirabilis in piglets with diarrhea Chinese Journal of Veterinary Science, 2019(11): 2146-2151.(in Chinese) [本文引用: 4]
WANGD N, KONGL C, DONGW L, LIUS M, GAOY H, MAH X, LUANW M. Isolation identification and biological characteristics of Proteus mirabilis of canine Heilongjiang Animal Science and Veterinary Medicine, 2020(1): 72-76, 154.(in Chinese) [本文引用: 2]
LUJ Q, ZHANGR M, CHENGK, HEB, LIAOX P, SUNJ, LIUY H, FANGL X. Prevalence and dissemination of fosA3 gene in Proteus mirabilis isolates from a pigeon field Chinese Journal of Veterinary Science, 2020, 40(2): 303-310.(in Chinese) [本文引用: 2]
YUAND F. Isolation, identification and analysis of 16S rRNA of Proteus mirabilis isolated from Chicken Shandong Journal of Animal Science and Veterinary Medicine, 2020(6): 7-9.(in Chinese) [本文引用: 2]
LIUY Q. Analysis of resistance to antibiotics and detection of inducible β-lactamase produced in Proteus mirabilis Chinese Journal of Microecology, 2015, 27(10): 1195-1198.(in Chinese) [本文引用: 3]
NIANH, CHUY Z, TIANS F, GUOL J, DINGL P. Continuous monitoring of clinical distribution and drug resistance of Proteus mirabilis Chinese Journal of Public Health, 2012(8): 1130-1132.(in Chinese) [本文引用: 3]
BUSHK, JACOBYG A, MEDEIROSA A. A functional classification scheme for β-lactamases and its correlation with molecular structure Antimicrobial Agents and Chemotherapy, 1995, 39: 1211-1233. DOI:10.1128/AAC.39.6.1211URL [本文引用: 1]
PHILIPPONA, ARLETG, JACOBYG A. Plasmid-determined AmpC-type β-lactamases Antimicrobial Agents and Chemotherapy, 2002, 46(1): 1-11. DOI:10.1128/AAC.46.1.1-11.2002URL [本文引用: 3]
LEIC W, ZHANGA Y, WANGH N, LIUB H, YANGL Q, YANGY Q. Characterization of SXT/R391 integrative and conjugative elements in Proteus mirabilis isolates from food-producing animals in China Antimicrobial Agents and Chemotherapy, 2016, 60(3): 1935-1938. DOI:10.1128/AAC.02852-15URL [本文引用: 3]
COUDRONP E, MOLANDE S, THOMSONK S. Occurrence and detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center Journal of Clinical Microbiology, 2000, 38(5): 1791-1796. DOI:10.1128/JCM.38.5.1791-1796.2000URL [本文引用: 1]
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing, twenty-seventh Wayne, PA, USA, 2017, M100-S27. [本文引用: 1]
PÉREZ-PÉREZF J, HANSONN D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR Journal of Clinical Microbiology, 2002, 40(6): 2153-2162. DOI:10.1128/JCM.40.6.2153-2162.2002URL [本文引用: 1]
DENGZ A, ZHANGH B, LIX Q, ZHANGX Q, HUANGY, CHENS Y. Application of pulse-field gel electrophoresis analysis (PFGE) in the source-tracking of food-borne disease caused by Proteus mirabilis Chinese Journal of Health Laboratory Technology, 2010(8): 1938-1939, 1941.(in Chinese) [本文引用: 1]
KORENS, SCHATZM C, WALENZB P, MARTINJ, HOWARDJ T, GANAPATHYG, WANGZ, RASKOD A, MCCOMBIEW R, JARVISE D, PHILLIPPYA M. Hybrid error correction and de novo assembly of single-molecule sequencing reads Nature Biotechnology, 2012, 30(7): 693-700. DOI:10.1038/nbt.2280URL [本文引用: 1]
FENGF Y, YANGX Y, HONGY, ZHENGZ F, ZHANGW, JIANGJ C, ZENGQ. Study on distribution of drug resistance gene and integron and analysis of genetic relationship of 20 isolates of Proteus mirabilis International Journal of Laboratory Medicine, 2015, 36(17): 2461-2463.(in Chinese) [本文引用: 2]
BARLOWM, HALLB G. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii Antimicrobial Agents and Chemotherapy, 2002, 46: 1190-1198. DOI:10.1128/AAC.46.5.1190-1198.2002URL [本文引用: 2]
BAUERNFEINDA, STEMPLINGERI, JUNGWIRTHR, GIAMARELLOUH. Characterization of the plasmidic β-lactamase CMY-2, which is responsible for cephamycin resistance Antimicrobial Agents and Chemotherapy, 1996, 40: 221-224. DOI:10.1128/AAC.40.1.221URL [本文引用: 1]
FOSBERRYA P, PAYNED J, LAWLORE J, HODGSONJ E. Cloning and sequence analysis of blaBIL-1, a plasmid-mediated class C β-lactamase gene in Escherichia coli BS Antimicrobial Agents and Chemotherapy, 1994, 38: 1182-1185. DOI:10.1128/AAC.38.5.1182URL [本文引用: 1]
GUOY F, ZHANGW H, RENS Q, YANGL, LUD H, ZENGZ L, LIUY H, JIANGH X. IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistant Escherichia coli from food animals in China PLoS ONE, 2014, 9: e96738. DOI:10.1371/journal.pone.0096738URL [本文引用: 2]
MATAC, MIROE, ALVARADOA, GARCILLAN-BARCIAM P, TOLEMANM, WALSHT R, DELA CRUZ F, NAVARROF. Plasmid typing and genetic context of AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: Findings from a Spanish hospital 1999-2007 Journal of Antimicrobial Chemotherapy, 2012, 67: 115-122. DOI:10.1093/jac/dkr412URL [本文引用: 3]
ABERKANES, COMPAINF, DECRÉD, DUPONTC, LAURENSC, VITTECOQM, PANTELA, SOLASSOLJ, CARRIÈREC, RENAUDF, BRIEUN, LAVIGNEJ P, BOUZINBIN, OUÉDRAOGOA S, JEAN-PIERRE H, GODREUILS. High prevalence of SXT/R391-related integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis isolates from gulls in the south of France Antimicrobial Agents and Chemotherapy, 2016, 60(2): 1148-1152. DOI:10.1128/AAC.01654-15URL [本文引用: 1]
AMBROSES J, HARMERC J, HALLR M. Compatibility and entry exclusion of IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible Plasmid, 2018, 96-97: 7-12. DOI:10.1016/j.plasmid.2018.02.002URL [本文引用: 1]
HARMERC J, HALLR M. pRMH760, a precursor of A/C2 plasmids carrying blaCMY and blaNDM genes Microbial Drug Resistance, 2014, 20(5): 416-423. DOI:10.1089/mdr.2014.0012URL [本文引用: 1]
VILLAL, GUERRAB, SCHMOGERS, FISCHERJ, HELMUTHR, ZONGZ, GARCÍA-FERNÁNDEZA, CARATTOLIA. IncA/C plasmid carrying bla(NDM-1), bla(CMY-16), and fosA3 in a Salmonella enterica serovar corvallis strain isolated from a migratory wild bird in Germany Antimicrobial Agents and Chemotherapy, 2015, 59(10): 6597-6600. DOI:10.1128/AAC.00944-15URL [本文引用: 1]
AMBROSES J, HARMERC J, HALLR M. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria Plasmid, 2018, 99: 40-55. DOI:10.1016/j.plasmid.2018.08.001URL [本文引用: 2]
CHENGQ, JIANGX, XUY, HUL, LUOW, YINZ, GAOH, YANGW, YANGH, ZHAOY, ZHAOX, ZHOUD, DAIE. Type 1, 2, and 1/2-hybrid IncC plasmids from China Frontiers in Microbiology, 2019, 10: 2508. DOI:10.3389/fmicb.2019.02508URL [本文引用: 1]
HARMERC J, HALLR M. Evolution in situ of ARI-A in PB2-1, a type 1 IncC plasmid recovered from Klebsiella pneumoniae, and stability of Tn4352B Plasmid, 2017, 94: 7-14. DOI:10.1016/j.plasmid.2017.10.001URL [本文引用: 1]
VERDETC, GAUTIERV, CHACHATYE, RONCOE, HIDRIN, DECRÉD, ARLETG. Genetic context of plasmid-carried blaCMY-2- like genes in Enterobacteriaceae Antimicrobial Agents and Chemotherapy, 2009, 53(9): 4002-4006. DOI:10.1128/AAC.00753-08URL [本文引用: 1]