Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice
XU ZiYi,, CHENG Xing, SHEN Qi, ZHAO YaNan, TANG JiaYu, LIU Xi,Huaiyin Normal University/Jiangsu Key Laboratory for Eco-agriculture Biotechnology Around Hongze Lake/Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaian 223300, Jiangsu
Abstract 【Objective】 To enrich and deepen people’s understanding of the molecular mechanism of plant leaf color, the phenotype identification and gene cloning of the yellow green leaf mutant ygl3 (yellow green leaf 3) were carried out to clarify the molecular function of YGL3 and lay the foundation for elucidating the molecular mechanism of YGL3 regulating rice leaf color.【Method】 Two stable genetic allelic yellow green leaf mutants, ygl3-1 and ygl3-2, were isolated from the CRISPR-Cas9 knockout mutant library of Zhonghua 11. The phenotype of the mutant was identified, and the chlorophyll contents of the wild-type and ygl3 were determined. The chloroplast structure of the wild-type and ygl3 was observed by transmission electron microscope. qRT-PCR was used to analyze the tissue expression of YGL3, and BioXM2.6 software was used for sequence alignment of YGL3 and its homologs. Yeast two hybrid was used to screen the interacting proteins of YGL3.【Result】 Compared with the wild type, the leaves of ygl3 were yellowing, and the contents of chlorophyll, carotenoid and total photosynthetic pigment at seedling stage in ygl3 were significantly decreased. Transmission electron microscopy showed that the chloroplast morphology of ygl3 was abnormal, and the thylakoid lamellar structure was less, whereas the chloroplast morphology of the wild type was normal and the thylakoid lamellar structure was orderly arranged. CRISPR-Cas9 knock-out site identification showed that the LOC_Os01g73450 gene had a single base insertion, which resulted in the early termination of protein translation. The gene encoding 351 amino acids was mutated into a truncated protein with 55 amino acids. Compared with the wild type, the expression level of LOC_Os01g73450 was significantly down-regulated in the mutants. qRT-PCR showed that YGL3 was expressed in roots, panicles, seeds, leaf sheaths and leaves. YGL3 was highly expressed in leaves. YGL3 encodes a plastid localized UMP kinase. The YGL3 protein was conserved in Zea mays, Sorghum bicolor and Arabidopsis thaliana. YGL3 shared the high sequence homology (59.4% amino acid identity) to Arabidopsis. qRT-PCR showed that chlorophyll synthesis genes, including HEMC, HEMC and URO-D, were significantly down-regulated in ygl3, whereas the expression levels of HEMB, HEMF and HEML were no significant difference between the wild type and ygl3. Yeast two hybrid screen showed that YGL3 interacted with RNA editing factor MORF8.【Conclusion】 The phenotype of the yellow leaf mutant ygl3 resulted from the LOC_Os01g73450 mutation. YGL3 was an allele of the yellow green leave gene YL2/YGL8. YGL3 was highly expressed in leaves, and YGL3 interacted with MORF8 in yeasts. Keywords:rice (Oryza sativa L.);yellow green leaf;YGL3;CRISPR-Cas9;chloroplast development
PDF (1886KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 许子怡, 程行, 沈奇, 赵亚男, 汤佳玉, 刘喜. 水稻黄绿叶突变体ygl3的鉴定与基因功能分析[J]. 中国农业科学, 2021, 54(15): 3149-3157 doi:10.3864/j.issn.0578-1752.2021.15.001 XU ZiYi, CHENG Xing, SHEN Qi, ZHAO YaNan, TANG JiaYu, LIU Xi. Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice[J]. Scientia Acricultura Sinica, 2021, 54(15): 3149-3157 doi:10.3864/j.issn.0578-1752.2021.15.001
A:苗期野生型和突变体ygl3的表型;B:苗期野生型和突变体ygl3光合色素含量测定;C:CRISPR-Cas9敲除位点的鉴定;D:野生型和突变体氨基酸序列比对;E:LOC_Os01g73450表达分析 Fig. 1Regulation of rice leaf color formation by YGL3
A: Phenotype of the wild-type and ygl3 at seedling stage; B: Determination of photosynthetic pigment content of the wild-type and ygl3 at seedling stage; C: Identification of CRISPR-Cas9 knockout sites; D: Amino acid sequence alignment of wild type and the mutants; E: Expression analysis of LOC_Os01g73450
NP_188498.1:拟南芥;NP_001137013.1:玉米;OEL23965.1:渐尖二型花;XP_002456998.1:高粱;XP_015693434.1:野生稻;YGL3:水稻。完全或部分保守的氨基酸分别是蓝色和粉色标示 Fig. 4Sequence alignment of multiple amino acids from YGL3 and its homologs
NP_188498.1: Arabidopsis; NP_001137013.1: Zea mays; OEL23965.1: Dichanthelium oligosanthes; XP_002456998.1: Sorghum bicolor; XP_015693434.1: Oryza brachyantha; YGL3: Oryza sativa. Amino acids that were fully or partially conserved are shaded blue and pink, respectively
HEMA:编码谷氨酰-tRNA合成酶;HEME:编码尿卟啉原脱羧酶;HEML:编码谷氨酰-1-半醛转氨酶;HEMB:编码胆色素原合酶;HEMC:编码羟甲基后胆色素原合酶;HEMF:编码粪卟啉Ⅲ氧化酶;URO-D:编码尿卟啉原氧化脱羧酶。**:在0.01水平差异极显著 Fig. 5Transcript levels of genes associated with chlorophyll biosynthesis in wide type and ygl3 at the seedling stage
FAMBRINIM, CASTAGNAA, DALLAVECCHIA F, DEGL'INNOCENTIE, RANIERIP, GUIDIL, RASCION, PUGLIESIC. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PSII activity and low endogenous level of abscisic acid , 2004, 167(1):79-89. DOI:10.1016/j.plantsci.2004.03.002URL [本文引用: 1]
YOOS C, CHOS H, SUGIMOTOH, LIJ, KUSUMIK, KOHH J, IBAK, PAEKN C. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development , 2009, 150(1):388-401. DOI:10.1104/pp.109.136648URL [本文引用: 1]
DONGH, FEIG L, WUC Y, WUF Q, SUNY Y, CHENM J, RENY L, ZHOUK N, CHENGZ J, WANGJ L, JIANGL, ZHANGX, GUOX P, LEIC L, SUN, WANGH Y, WANJ M. A rice virescent- yellow leaf mutant reveals new insights into the role and sssembly of plastid caseinolytic protease in higher plants , 2013, 162(4):1867-1880. DOI:10.1104/pp.113.217604URL [本文引用: 1]
ZENGZ Q, LINT Z, ZHAOJ Y, ZHENGT H, XUL F, WANGY H, LIUL L, JIANGL, CHENS H, WANJ M. OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa) , 2020, 19(3):612-623. DOI:10.1016/S2095-3119(19)62710-3URL [本文引用: 2]
WUZ, ZHANGX, HEB, DIAOL, SHENGS, WANGJ, GUOX, SUN, WANGL, JIANGL, WANGC, ZHAIH Q, WANJ M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis , 2007, 145(1):29-40. DOI:10.1104/pp.107.100321URL [本文引用: 3]
KONGW Y, YUX W, CHENH Y, LIUL L, XIAOY J, WANGY L, CHAOLONGWANG C L, YUNLIN Y, YUY, WANGC M, JIANGL, ZHAIH Q, ZHAOZ G, WANJ M. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice , 2016, 92(1):177-191. DOI:10.1007/s11103-016-0513-4URL [本文引用: 2]
YANGY Y, HUANGQ Q, ZHAOY N, TANGJ Y, LIUX. Advances on gene isolation and molecular mechanism of rice leaf color genes Journal of Plant Genetic Resources, 2020, 21(4):794-803. (in Chinese) [本文引用: 1]
ZHAOS L, LIUK, WANB J, ZHUJ W, LIUY Y, TANGH S, YANG H, SUNM F. Advances on mutation of rice leaf color Barley and Cereal Sciences, 2018, 35(6):1-6. (in Chinese) [本文引用: 1]
SUNX, FENGP, XUX, GUOH, MAJ, CHIW, LINR, LUC, ZHANGL. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus , 2011, 2:477. DOI:10.1038/ncomms1486URL [本文引用: 1]
TANJ, TANZ, WUF, SHENGP, HENGY, WANGX, RENY, WANGJ, GUOX, ZHANGX, CHENGZ, JIANGL, LIUX, WANGH, WANJ M. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice , 2014, 7(8):1329-1349. DOI:10.1093/mp/ssu054URL [本文引用: 1]
LIND Z, ZHENGK L, LIUZ H, LIZ K, TENGS, XUJ L, DONGY J. Rice TCM1 encoding a component of the TAC complex is required for chloroplast development under cold stress , 2018, 11(1):160065 DOI:10.3835/plantgenome2016.07.0065URL [本文引用: 1]
ADAMZ, RUDELLAA, VANWIJK K J. Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts , 2006, 9(3):234-240. DOI:10.1016/j.pbi.2006.03.010URL [本文引用: 1]
SJÖGRENL L, CLARKEA K. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins , 2011, 23(1):322-332. DOI:10.1105/tpc.110.082321URL [本文引用: 1]
CHENY L, CHENL J, CHUC C, HUANGP K, WENJ R, LIH M. TIC236 links the outer and inner membrane translocons of the chloroplast , 2018, 564(7734):125-129. DOI:10.1038/s41586-018-0713-yURL [本文引用: 1]
HEY, SHIY, ZHANGX, XUX, WANGH, LIL, ZHANGZ, SHANGH, WANGZ, WUJ L. The OsABCI7 transporter interacts with OsHCF222 to stabilize the thylakoid membrane in rice , 2020, 184(1):283-299. DOI:10.1104/pp.20.00445URL [本文引用: 1]
NAKAMURAH, MURAMATSUM, HAKATAM, UENOO, NAGAMURAY, HIROCHIKAH, TAKANOM, ICHIKAWAH. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells , 2009, 50(11):1933-1949. DOI:10.1093/pcp/pcp138URL [本文引用: 1]
ZHAOC, XUJ, CHENY, MAOC, ZHANGS, BAIY, JIANGD, WUP. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll , 2012, 236(4):1165-1176. DOI:10.1007/s00425-012-1667-1URL [本文引用: 1]
PORRAR J, THOMPSONW A, KRIEDEMANNP E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy , 1989, 975(3):384-394. DOI:10.1016/S0005-2728(89)80347-0URL [本文引用: 1]
LIUX, ZHOUC L, RENY K, YANGC Y, HEN Q, LIUZ, JIANGL, WANJ M. Genetic analysis and gene mapping of virescent albino leaf mutant WGL in rice. Journal of Nanjing Agricultural University, 2015, 38(5):712-719. (in Chinese) [本文引用: 1]
STERND B, HANSONM R, BARKANA. Genetics and genomics of chloroplast biogenesis: Maize as a model system , 2004, 9(6):293-301. DOI:10.1016/j.tplants.2004.04.001URL [本文引用: 1]
JUNGK H, HURJ, RYUC H, CHOIY, CHUNGY Y, MIYAOA, HIROCHIKAH, ANG. Characterization of a rice chlorophyll- deficient mutant using the T-DNA gene-trap system , 2003, 44(5):463-472. DOI:10.1093/pcp/pcg064URL [本文引用: 1]
YANGY L, XUJ, HUANGL C, LENGY J, DAIL P, RAOY C, CHENL, WANGY Q, TUZ J, HUJ, REND Y, ZHANGG H, ZHUL, GUOL B, QIANQ, ZENGD L. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice , 2016, 67(5):1297-1310. DOI:10.1093/jxb/erv529URL [本文引用: 1]
KUSABAM, ITOH, MORITAR, IIDAS, SATOY, FUJIMOTOM, KAWASAKIS, TANAKAR, HIROCHIKAH, NISHIMURAM, TANAKAA. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence , 2007, 19(4):1362-1375. DOI:10.1105/tpc.106.042911URL [本文引用: 1]
KUSUMIK, SAKATAC, NAKAMURAT, KAWASAKIS, YOSHIMURAA, IBAK. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions , 2011, 68(6):1039-1050. DOI:10.1111/tpj.2011.68.issue-6URL [本文引用: 1]
HUANGW, ZHANGY, SHENL, FANGQ, LIUQ, GONGC, ZHANGC, ZHOUY, MAOC, ZHUY, ZHANGJ, CHENH, ZHANGY, LINY, BOCKR, ZHOUF. Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice , 2020, 228(4):1401-1416. DOI:10.1111/nph.v228.4URL [本文引用: 1]
DENGX J, ZHANGH Q, WANGY, HEF, LIUJ L, XIAOX, SHUZ F, LIW, WANGG H, WANGG L. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica) , 2014, 9(6):e99564. DOI:10.1371/journal.pone.0099564URL [本文引用: 1]
ZHUX, GUOS, WANGZ, DUQ, XINGY, ZHANGT, SHENW, SANGX, LINGY, HEG. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa) , 2016, 16(1):134. DOI:10.1186/s12870-016-0821-5URL [本文引用: 1]
CHENF, DONGG, MAX, WANGF, ZHANGY, XIONGE, WUJ, WANGH, QIANQ, WUL, YUY. UMP kinase activity is involved in proper chloroplast development in rice , 2018, 137(1):53-67. DOI:10.1007/s11120-017-0477-5URL [本文引用: 1]
SCHMIDL M, OHLERL, MÖHLMANNT, BRACHMANNA, MUIÑOJ M, LEISTERD, MEURERJ, MANAVSKIN. PUMPKIN, the sole plastid UMP kinase, associates with group II introns and alters their metabolism , 2019, 179(1):248-264. DOI:10.1104/pp.18.00687URL [本文引用: 1]
TANGJ P, ZHANGW W, WENK, CHENG M, SUNJ, TIANY L, TANGW J, YUJ, ANH Z, WUT T, KONGF, TERZAGHIW, WANGC M, WANJ M. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice , 2017, 95(4/5):345-357. DOI:10.1007/s11103-017-0654-0URL [本文引用: 1]
CUIX A, WANGY W, WUJ X, HANX, GUX F, LUT G, ZHANGZ G. The RNA editing factor DUA1 is crucial to chloroplast development at low temperature in rice , 2019, 221(2):834-849. DOI:10.1111/nph.2019.221.issue-2URL [本文引用: 1]
WANGY, RENY L, ZHOUK N, LIUL L, WANGJ L, XUY, ZHANGH, ZHANGL, FENGZ M, WANGL W, MAW W, WANGY L, GUOX P, ZHANGX, LEIC L, CHENGZ J, WANJ M. WHITE STRIPE LEAF4 encodes a novel p-Type PPR protein required for chloroplast biogenesis during early leaf development , 2017, 8:1116. DOI:10.3389/fpls.2017.01116URL [本文引用: 1]
LIUC H, ZHUH T, XINGY, TANJ J, CHENX H, ZHANGJ J, PENGH F, XIEQ J, ZHANGZ M. Albino leaf 2 is involved in the splicing of chloroplast group I and II introns in rice , 2016, 67(18):5339-5347. DOI:10.1093/jxb/erw296URL [本文引用: 1]
GLASSF, HARTELB, ZEHRMANNA, VERBITSKIYD, TAKENAKAM. MEF13 requires MORF3 and MORF8 for RNA editing at eight targets in mitochondrial mRNAs in Arabidopsis thaliana , 2015, 8(10):1466-1477. DOI:10.1016/j.molp.2015.05.008URL [本文引用: 1]
TAKENAKAM, ZEHRMANNA, VERBITSKIYD, KUGELMANNM, HARTELB, BRENNICKEA. Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants , 2012, 109(13):5104-5109. [本文引用: 1]
ZHANGZ, CUIX, WANGY, WUJ, GUX, LUT. The RNA editing factor WSP1 is essential for chloroplast development in rice , 2017, 10(1):86-98. DOI:10.1016/j.molp.2016.08.009URL [本文引用: 1]