The Characteristics of Soil Ammonia Volatilization Under Different Fertilizer Application Measures in Corn Field of Liaohe Plain
ZHAO XinZhou,1, ZHANG ShiChun2, LI Ying1, ZHENG YiMin1, ZHAO HongLiang,1, XIE LiYong,1通讯作者:
责任编辑: 李云霞
收稿日期:2019-11-5接受日期:2020-01-15网络出版日期:2020-09-16
基金资助: |
Received:2019-11-5Accepted:2020-01-15Online:2020-09-16
作者简介 About authors
赵欣周,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (3664KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
赵欣周, 张世春, 李颖, 郑益旻, 赵洪亮, 谢立勇. 辽河平原玉米田不同施肥下的土壤氨挥发特征[J]. 中国农业科学, 2020, 53(18): 3741-3751 doi:10.3864/j.issn.0578-1752.2020.18.010
ZHAO XinZhou, ZHANG ShiChun, LI Ying, ZHENG YiMin, ZHAO HongLiang, XIE LiYong.
0 引言
【研究意义】化肥在全球逐渐普及极大促进了农业发展。然而,近年来化肥过量施用已造成土壤和水体的环境污染[1],而农田化肥施用导致温室气体(CO2、N2O、NH3等)排放也成为全球气候变暖的原因之一[2],其中化肥施入农田后所排入大气中的氨(NH3)可与硫酸、硝酸等酸性气体成分反应生成二次无机气溶胶(SIA,主要包括(NH4)2SO4、NH4NO3、NH4Cl等)[3],从而影响空气质量、能见度和人类健康。此外,不合理的施肥也可导致农业氮肥利用率偏低,例如近年来玉米氮肥表观利用率仅为29.1%[4]。鉴于氨在大气环境、生态和农业生产方面的重要性,对其排放、沉降及其转化机制的研究已成为当前环境和生态领域的研究热点之一。【前人研究进展】近年来我国****主要参考借鉴国外的氨排放因子,对各区域及全国的氨排放量进行了大致估算,并对相关影响因素进行了分析[5,6],例如关于长三角氨排放清单的研究[7,8],关于珠三角氨排放清单的研究[9],以及关于全国和其他地区氨排放趋势的研究[10,11,12]。但由于我国区域差异大,目前仍缺乏足够的代表各典型区域的本地化氨排放数据。肥料对农田土壤氨挥发的影响比较复杂,近年来各类化肥和生物炭影响土壤氨挥发的研究越来越多。不同程度老化的生物炭对土壤氨挥发产生不同的影响,例如高温裂解制备的新鲜玉米秸秆生物炭,在经过冻融循环或高温裂解老化后添加至农田土壤中,可使氨挥发累积量减少30%,而添加自然老化或新鲜玉米秸秆生物炭和玉米秸秆粉末的氨挥发累积量只减少19%—23%[13]。不同种类生物炭对不同作物不同土壤类型氨挥发产生不同的影响,例如在施氮450 kg N·hm-2的情况下,棉花秸秆生物炭还田减少滴灌棉田氨挥发40.59%[14];生物炭添加对稻田氨挥发损失有明显的促进效应,且具有阶段性特征,氨挥发总量增加69%[15];盐渍化土壤的情况下,常规施肥+生物炭有效抑制了氨挥发,添加生物炭对滴灌和漫灌氨挥发累积损失量分别降低了57%、44%[16]。可见各种施肥和生物炭影响不同作物的土壤氨挥发有着比较明显的差异性。【本研究切入点】东北平原是我国面积最大的平原,属于世界三大黑土区之一,是中国主要的粮食产区。农田化肥的大量施用是当地大气氨的重要排放源。但目前关于东北地区氨排放因子的试验研究仍较为匮乏,更缺少详细地针对该区域的本地化氨排放清单。【拟解决的关键问题】本研究通过辽河平原地区农田试验,分析不同施肥措施影响农田氨挥发的时间特征,获得沈阳地区化肥施用本地化氨排放因子,以供大气环境和生态等领域的相关研究参考借鉴。1 材料与方法
1.1 试验场概况
试验地位于沈阳农业大学试验基地(41°82’N,123°56’E),属于温带半湿润大陆性季风气候,平均海拔为50 m,地势平坦,年均降雨量为608 mm,年均气温8.0℃,年均最高气温13.0℃,年均最低气温3.0℃。昼夜及季节气温温差较大,四季分明。试验地土壤为棕壤,0—20 cm土层基本性状为:有机质含量18.3 g·kg-1,pH 6.9,碱解氮90.6 mg·kg-1,全氮0.8 g·kg-1,速效磷151.0 mg·kg-1,速效钾123.6 mg·kg-1。1.2 试验材料
供试的作物为春玉米(品种:东单1331)。肥料为当地生产普遍采用的树脂包衣缓释化肥(N:P:K为30:10:12)、尿素(含氮量46%)和玉米秸秆生物炭(缺氧条件下450℃高温制备而成,pH 9.6,含碳量40%)。1.3 试验设计
以基肥施树脂包衣缓释化肥、拔节期追施尿素为常规施肥方式,共设置5个处理:①T0(无氮处理),不施任何肥料;②T1(常规施肥减半),基肥施入半量缓释包衣化肥,拔节期追施半量尿素;③T2(常规施肥+生物炭),基肥施缓释包衣化肥,覆盖3 000 kg·hm-2生物炭,拔节期追施尿素;④T3(常规施肥一次性施入),不追肥,一次性基施缓释包衣化肥;⑤T4(常规施肥),基肥施缓释包衣化肥,拔节期追施尿素。小区面积6 m×10.3 m=61.8 m2,随机区组排列,每个处理设置3次重复,共18个小区。各处理施氮水平见表1。Table 1
表1
表1各处理施氮水平
Table 1
处理 Treatment | 基肥量 Basal fertilizer quantity (kg N·hm-2) | 基肥种类 Basal fertilizer type | 追肥量 Top dressing quantity (kg N·hm-2) | 追肥种类 Top dressing type | 生育期施氮总量 Total nitrogen application (kg N·hm-2) | 生物炭施用量 Biochar application (kg·hm-2) | ||
---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | ||||||
T0 | 0 | 0 | 0 | - | - | - | 0 | 0 |
T1 | 45 | 15 | 18 | SRF1) | 45 | 尿素Urea | 90 | 0 |
T2 | 90 | 30 | 36 | SRF | 90 | 尿素Urea | 180 | 3000 |
T3 | 180 | 60 | 72 | SRF | - | - | 180 | 0 |
T4 | 90 | 30 | 36 | SRF | 90 | 尿素Urea | 180 | 0 |
新窗口打开|下载CSV
本试验于2018年开展,播种日期为5月10日,追肥日期为7月5日。播种的同时施用基肥,基肥和追肥均采用穴施方式。
1.4 样品采集与分析
施肥后土壤氨挥发量的测量:采用目前使用较多的通气法[17]进行采样。该法准确度高,操作简便易行,适合进行小区控制试验。将两块厚度为2 cm、直径16 cm的海绵均匀浸以15 mL的磷酸甘油溶液,置于内径15 cm、高12 cm的聚乙烯硬质塑料管中,下层海绵距土壤表面5 cm,上层海绵与管顶相平,将聚乙烯硬质塑料管随机分别放置于每个小区;24 h后将下层海绵取出,迅速装入密封袋中,同时换上另一块刚浸过磷酸甘油溶液的海绵,上层海绵视干湿情况3—7 d更换一次;将换下的海绵带回实验室,放入500 mL广口塑料瓶中;向塑料瓶中加300 mL KCl溶液(1 mol·L-1),使海绵完全浸入其中,将塑料瓶封口后振荡1 h,而后取出静置,吸取一定量清液,于24 h内用流动分析仪(AA3)氨模块(MT7)进行分析。氨挥发速率(Fi, g N·hm-2·d-1)、生长季内氨挥发损失累积量(Fcum, kg N·hm-2)分别计算为:
$F{}_{i}=\frac{{{A}_{i}}\times 10000}{S\times {{D}_{i}}\times 0.99}$
$F{}_{cum}=\sum\limits_{i=1}^{n-1}{\left( \frac{{{F}_{i}}+{{F}_{i+1}}}{2} \right)\times ({{t}_{i+1}}-{{t}_{i}})}$
式中,Ai为第i次采样收集到的NH3量(g N),Di为第i次采样的收集时间(d),S为NH3收集装置的有效横截面积(m2),ti+1-ti为两个相邻测定日期的间隔(d)[18],0.99为该收集装置的NH3回收率[17]。
在土壤氨挥发量采样的同时,对土壤铵态氮含量进行采样分析。采用5点取土法采样。每小区每次取5个采样点,分别于10 cm土层处取20 g鲜土,将其浸入200 mL KCl溶液(1 mol·L-1),振荡1 h,待悬浊液澄清后,吸取一定量上层清液,于24 h内用流动分析仪进行分析。
土壤氨挥发和土壤铵态氮含量的取样分别在施基肥和追肥后第1、2、3、5、7、10、15、20天进行一次,其余时期每10天取样一次。
1.5 数据统计分析
利用Microsoft Office Excel 2016和IBM SPSS Statistics 22软件进行数据处理、相关性分析和显著性分析。2 结果
2.1 不同施肥措施对土壤氨挥发速率的影响
如图1所示,施基肥后氨挥发速率呈现双峰趋势,各处理在分别于施肥后1—2 d 或5—7 d 达到氨挥发速率最大值。施用基肥后1 d ,T1就达到了最大单日排放量,为113.67 g N·hm-2·d-1,其余处理排放量不明显;第2天 T1排放量急剧降为59.31 g N·hm-2·d-1,T3排放量突增一倍,达95.77 g N·hm-2·d-1;第3天 T3下降至40.50 g N·hm-2·d-1,T1继续呈下降趋势;前3 d T2排放量呈逐渐增大态势,分别排放66.78、82.71、88.98 g N·hm-2·d-1;第5天 T2排放量为112.72 g N·hm-2·d-1达到峰值,其他各处理排放量均有上升;到第7天时T1排放量达82.59 g N·hm-2·d-1,T3回升至98.57 g N·hm-2·d-1且达到该处理峰值,T4为91.11 g N·hm-2达到该处理峰值,T2仍排放108.16 g N·hm-2·d-1;第10天 各处理均急剧下降,第15天 各处理出现回升,随后缓慢下降;至第40天,各处理排放量降至45—61 g N·hm-2·d-1范围内。图1
新窗口打开|下载原图ZIP|生成PPT图1施基肥后各处理氨挥发速率
Fig. 1Ammonia volatilization rate after basal fertilizer application
玉米生长季第56天各处理施用追肥。施入追肥后第1天,各处理(除T3外)氨挥发速率均达到追肥期最大,其中T1为254.16 g N·hm-2·d-1、T2为412.41 g N·hm-2·d-1、T4为447.58 g N·hm-2·d-1。T4当日排放量为T1的1.8倍,为T3的6倍,T2与T4有相似表现,二者仅差8.5%。第2天T3氨挥发速率达到最大值79.92 g N·hm-2·d-1,随后各处理氨挥发速率急剧下降,并保持轻微波动。直至第15天,T2当日氨挥发速率骤升至140.67 g N·hm-2·d-1,随后下降。第20天和第50天各处理当日氨挥发速率极其微弱。施追肥后各处理氨挥发速率如图2所示。
图2
新窗口打开|下载原图ZIP|生成PPT图2施追肥后各处理氨挥发速率
Fig. 2Ammonia volatilization rate after top dressing
整体而言,T4和T2氨挥发速率较高,T1和T3氨挥发速率较小。施入追肥后氨挥发更加迅速。施基肥后各处理氨挥发速率最大值表现为:常规施肥减半(T1)>常规施肥+生物炭(T2)>常规施肥一次性施入(T3)>常规施肥(T4)>无氮处理(T0);施追肥后各处理氨挥发速率最大值表现为:常规施肥(T4)>常规施肥+生物炭(T2)>常规施肥减半(T1)>常规施肥一次性施入(T3)>无氮处理(T0)。
2.2 不同施肥措施对氨挥发损失累积量的影响
施基肥后40 d ,T3与T2氨挥发损失累积量较其他处理大,分别为2.84、3.03 kg N·hm-2,而T4、T1分别为2.56、2.2 kg N·hm-2。氨挥发损失累积量对比:常规施肥+生物炭(T2)>常规施肥一次性施入(T3)>常规施肥(T4)>常规施肥减半(T1)>无氮处理(T0)。施追肥后50 d,T1氨挥发损失累积量为1.94 kg N·hm-2,T2为3.16 kg N·hm-2,T3为1.71 kg N·hm-2,T4为2.52 kg N·hm-2,氨挥发损失累积量大小对比:常规施肥+生物炭(T2)>常规施肥(T4)>常规施肥减半(T1)>常规施肥一次性施入(T3)>无氮处理(T0)。常规施肥一次性施入(T3)处理由于没有追肥,所以后期排放不明显。各处理的氨挥发损失累积量如图3所示。图3
新窗口打开|下载原图ZIP|生成PPT图3各处理氨挥发损失累积量
Fig. 3Cumulative ammonia volatilization loss of each treatment
整个生长季内氨挥发损失累积量表现为:常规施肥+生物炭(T2)>常规施肥(T4)>常规施肥减半(T1)>常规施肥一次性施入(T3)>无氮处理(T0)。各处理氨挥发损失率表现为:常规施肥+生物炭(T2)>常规施肥减半(T1)>常规施肥(T4)>常规施肥一次性施入(T3)。与施入缓释化肥最多的T3相比,总施氮量相同的T2和T4氨挥发损失累积量分别增加了35.7%和15.6%。与施入生物炭的T2相比,总施氮量相同的T4氨排放损失累积量降低了17.8%。虽然T4基肥和追肥施氮量为T1的2倍,但T4氨挥发损失累积量却仅为T1氨挥发损失累积量的1.22倍。土壤氨挥发损失率和氨挥发损失率如表3所示。
Table 2
表2
表2土壤氨挥发损失累积量和氨挥发损失率
Table 2
处理 Treatment | 氨挥发损失累积量 NH3 accumulation (kg N·hm-2) | 氨挥发损失率 Loss (%) |
---|---|---|
T0 | 3.12±0.10e | — |
T1 | 4.14±0.09d | 1.13±0.21b |
T3 | 4.56±0.08c | 0.80±0.06c |
T4 | 5.09±0.03b | 1.09±0.15b |
T2 | 6.19±0.17a | 1.70±0.03a |
新窗口打开|下载CSV
Table 3
表3
表3不同施肥措施下土壤氨挥发速率与土壤铵态氮含量的Pearson相关性分析
Table 3
时期 Stage | 处理 Treatment | r值 r value | P值 P value |
---|---|---|---|
施基肥后 After basal fertilization | T0 | -0.076 | >0.05 |
T1 | 0.573 | >0.05 | |
T2 | -0.105 | >0.05 | |
T3 | -0.228 | >0.05 | |
T4 | 0.353 | >0.05 | |
施追肥后 After top dressing | T0 | 0.614 | >0.05 |
T1 | 0.810** | <0.01 | |
T2 | 0.757* | <0.05 | |
T3 | 0.437 | >0.05 | |
T4 | 0.803** | <0.01 |
新窗口打开|下载CSV
2.3 不同施肥措施下土壤铵态氮含量与氨挥发速率的关系
不同施肥措施下的土壤铵态氮含量变化特征如图4所示。施入基肥后第1天 ,各处理土壤铵态氮含量显现为生长季较高水平,其中T1和T2达到施基肥后最高水平,分别为22.2、26.5 kg N·hm-2,随后第2天 各处理土壤铵态氮含量急剧下降,此处可能与降水有关。第5天各处理土壤铵态氮含量回升,其中T4达到最高水平,为16.8 kg N·hm-2,第7天各处理回落至较低水平。第10天后各处理土壤铵态氮含量开始升高,第15天时T3和T4土壤铵态氮含量达到最高水平,分别为19.5、18.1 kg N·hm-2,此时各处理土壤铵态氮含量表现为:常规施肥一次性施入(T3)>常规施肥(T4)>常规施肥+生物炭(T2)>常规施肥减半(T1)>无氮处理(T0),此高水平态势波动保持至第30天,第40天各处理下降至较低水平。图4
新窗口打开|下载原图ZIP|生成PPT图4不同施肥措施下的土壤铵态氮含量变化特征
Fig. 4Variation characteristics of ammonium nitrogen content in soil under different fertilization measures
施入追肥后第1天 T1、T4土壤铵态氮含量达到生长季最高水平,分别为:23.3、24.6 kg N·hm-2。随后10 d 土壤铵态氮含量下降,直至第10天各处理土壤铵态氮含量升到了较高水平,其中T4达17.0 kg N·hm-2,为T0同一天的1.64倍,此时各处理土壤铵态氮含量表现为:常规施肥(T4)>常规施肥+生物炭(T2)>常规施肥减半(T1)>常规施肥一次性施入(T3)>无氮处理(T0),与施入追肥量排序一致。第15天后,各处理土壤铵态氮含量下降。
整体而言,基肥期土壤铵态氮含量峰值出现的时间靠后,其中有3个处理峰值出现在第15天,而追肥期土壤铵态氮含量峰值出现的时间均为第1天。根据显著性分析,各处理间的土壤铵态氮含量差异并不显著。无氮处理(T0)仍有较高的土壤铵态氮含量,这可能与生长季雨水多且无氮处理(T0)小区大多处于农田排水口有关。
如图5所示,T1、T2、T3、T4的土壤铵态氮含量和同时期土壤氨挥发速率呈现出相似的变化趋势,施追肥后两者的变化趋势比施基肥后更加相似。如表3所示,对土壤铵态氮含量和土壤氨挥发速率之间采用Pearson相关性分析。结果显示基肥期各处理的土壤铵态氮和土壤氨挥发速率之间相关性弱或相关不显著。施追肥后T1、T4的土壤铵态氮含量和土壤氨挥发速率之间为极强正相关、T2施追肥后两者为强正相关,结果均为显著。
图5
新窗口打开|下载原图ZIP|生成PPT图5不同施肥措施下土壤铵态氮含量与土壤氨挥发速率时间变化
Fig. 5Time variation diagram of soil ammonium nitrogen content and soil ammonia volatilization rate under different fertilization measures
3 讨论
本研究基于当前东北地区普遍采用的农田施肥措施,观测玉米施入基肥期后40 d 和施入追肥后50 d 的土壤氨挥发速率及土壤铵态氮含量,探讨了不同施肥措施影响农田氨挥发的时间特征。本试验中,追肥初期比基肥初期氨挥发更为明显,可能的原因是基肥施用缓释包衣化肥,追肥除常规施肥一次性施入(T3)处理外皆用尿素,而尿素的氨挥发损失率比缓释包衣化肥更高。施基肥和追肥后土壤铵态氮峰值出现时间的差异说明尿素比缓释肥料释放铵态氮更加迅速。相比于缓释化肥,施用尿素使得土壤铵态氮含量和土壤氨挥发速率之间呈现强正相关,这说明尿素在迅速释放铵态氮的时候,也在迅速增加氨挥发,而缓释化肥释放铵态氮则更加稳定[19,20]。本研究得出的结论为生物炭促进氨挥发[21]。生物炭对氨排放的促进作用可能主要是由于水和土壤中pH和NH4+-N浓度的增加导致的[22]。对比前人研究采用生物炭肥料(经包覆酸化生物炭的尿素颗粒)显著降低了氨挥发[23],本研究所用玉米秸秆生物炭pH为9.6,呈碱性,反而导致氨挥发累积量的增加。另外,老化生物炭相较于新鲜生物炭pH更偏中性[24,25],可相对降低NH3排放量,避免有效氮的积累,可用于改良土壤[26]。玉米秸秆生物炭具有孔隙度和比表面积大、吸附效果强、碱性强的特点[27,28],虽然其促进了NH3排放,但施用生物炭同时降低了温室气体强度(GHGI)和CO2排放量[29,30],并显著降低了N2O排放量[31]。此外,不同类型生物炭影响不同农田NH3排放的内在机制研究还不完善,今后有待深入。
土壤氨挥发研究是构建精准的农业氨排放清单的重要基础。本研究采用通气法取样和流动分析仪测量了不同化肥施用措施下的土壤氨排放速率和排放通量,补充了东北地区本地化农田化肥施用氨排放因子数据。与其他的氨排放研究相比[32,33,34],本研究中获得的氨排放因子数值较小,其原因可能包括:(1)基肥期所采用的缓释化肥可显著减少氨挥发,各类研究表明各类缓释化肥(包括树脂包衣)的氨挥发累积量与尿素相比下降幅度介于21.7%—64.6%[35,36,37,38,39];(2)在氨挥发试验的106 d中,有34 d降雨,且在施肥后较集中,过多呈酸性的降水可能导致氨挥发减少。因此当地施肥种类、方式等农业耕作习惯以及各地区土壤、气候等自然特征可能导致了土壤氨挥发的显著地区差异性。今后仍需要加强开展典型区域的氨挥发研究,获得其时间、空间特征和影响因素,从而为完善构建精准的东北地区农田化肥施用本地化氨排放清单提供理论和数据支撑。
4 结论
氨挥发随着施氮量增加呈现边际递减效应。在本研究中减少50%施氮量,氨挥发损失累积量只减少了20%。生物炭促进了玉米农田氨挥发。在施氮量相同的情况下,加施碱性生物炭氨挥发损失累积量增加22%。一次性施入缓释化肥而不采取尿素追肥显著降低了氨挥发。全生长季施氮量相同的情况下,一次性施入缓释化肥而不采取尿素追肥的措施比以尿素作为追肥的措施的氨挥发累积量减少12%。与缓释化肥相比,尿素释放铵态氮更加迅速,同时氨挥发也相对较快。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1016/j.envpol.2010.08.002URL [本文引用: 1]
Nitrogen (N) deposition is an important component in the global N cycle that has induced large impacts on the health and services of terrestrial and aquatic ecosystems worldwide. Anthropogenic reactive N (N) emissions to the atmosphere have increased dramatically in China due to rapid agricultural, industrial and urban development. Therefore increasing N deposition in China and its ecological impacts are of great concern since the 1980s. This paper synthesizes the data from various published papers to assess the status of the anthropogenic N, emissions and N deposition as well as their impacts on different ecosystems, including empirical critical loads for different ecosystems. Research challenges and policy implications on atmospheric N pollution and deposition are also discussed. China urgently needs to establish national networks for N deposition monitoring and cross-site N addition experiments in grasslands, forests and aquatic ecosystems. Critical loads and modeling tools will be further used in N-r regulation. (C) 2010 Published by Elsevier Ltd.
,
URL [本文引用: 1]
气候变化是当今全球面临的重大挑战, 人类社会生产生活引起的温室气体排放是全球气候变暖的主要原因。大气中CO2、CH4 和N2O 是最重要的温室气体, 对温室效应的贡献率占了近80%。据估计, 大气中每年有5%~20%的CO2、15%~30%的CH4、80%~90%的N2O 来源于土壤, 而农田土壤是温室气体的重要排放源。本文重点阐述了农田土壤温室气体产生、排放或吸收机理及其影响因素, 指出土地利用方式和农业生产力水平等人为控制因素通过影响土壤和作物生长条件来影响农田土壤温室气体产生与排放或吸收。所以, 我们可以从人类活动对农田生态系统的影响着手, 通过改善农业生产方式和作物生长条件来探索温室气体减排措施, 达到固碳/氮增汇的目的。对国内外关于农田温室气体排放的源/汇强度及其综合温室效应评估的最新研究进展进行了综述, 指出正确估算与评价农田土壤温室气体的源/汇强度及其对大气中主要温室气体浓度变化的贡献, 有助于为温室气体减排以及减少气候变化预测的不确定性提供理论依据。
URL [本文引用: 1]
气候变化是当今全球面临的重大挑战, 人类社会生产生活引起的温室气体排放是全球气候变暖的主要原因。大气中CO2、CH4 和N2O 是最重要的温室气体, 对温室效应的贡献率占了近80%。据估计, 大气中每年有5%~20%的CO2、15%~30%的CH4、80%~90%的N2O 来源于土壤, 而农田土壤是温室气体的重要排放源。本文重点阐述了农田土壤温室气体产生、排放或吸收机理及其影响因素, 指出土地利用方式和农业生产力水平等人为控制因素通过影响土壤和作物生长条件来影响农田土壤温室气体产生与排放或吸收。所以, 我们可以从人类活动对农田生态系统的影响着手, 通过改善农业生产方式和作物生长条件来探索温室气体减排措施, 达到固碳/氮增汇的目的。对国内外关于农田温室气体排放的源/汇强度及其综合温室效应评估的最新研究进展进行了综述, 指出正确估算与评价农田土壤温室气体的源/汇强度及其对大气中主要温室气体浓度变化的贡献, 有助于为温室气体减排以及减少气候变化预测的不确定性提供理论依据。
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
在收集整理长江三角洲地区(简称"长三角")各城市人为大气污染源资料的基础上,采用以"自下而上"为主的方法建立了2007年长三角地区人为源大气污染物排放清单.清单结果显示,2007年长三角地区的SO2、NOx、CO、PM10、PM2.5、VOCs和NH3等大气污染物排放总量分别达到2391.8、2292.9、6697.1、3115.7、1510.8、2767.4和458.9 kt,单位面积污染物排放强度略高于珠三角地区.电厂和其他工业燃烧设施分别贡献了约46%和45%的SO2排放,以及59%和26%左右的NOx排放.电厂及水泥建材+钢铁冶金等工艺过程贡献了约21%和57%的PM10排放,以及28%和52%的PM2.5排放.石油加工、化工制造和工业喷涂等工艺过程的VOCs无组织排放占到总量的65%.NH3的主要排放源来自畜禽养殖和氮肥施用等农业部门,分别占到总量的48%和40%.长三角地区大气污染物的空间分布结果显示,长三角高排放地区主要集中在长江下游的沿江一带及杭州湾地区一带.现有方法测算的PM10、PM2.5、VOCs和NH3排放结果仍存在较大的不确定性,建议在未来不断加强本地大气污染源排放的基础研究,以进一步改善我国各典型区域的大气污染物排放清单,为区域大气污染联防联控提供重要的科研基础.
URL [本文引用: 1]
在收集整理长江三角洲地区(简称"长三角")各城市人为大气污染源资料的基础上,采用以"自下而上"为主的方法建立了2007年长三角地区人为源大气污染物排放清单.清单结果显示,2007年长三角地区的SO2、NOx、CO、PM10、PM2.5、VOCs和NH3等大气污染物排放总量分别达到2391.8、2292.9、6697.1、3115.7、1510.8、2767.4和458.9 kt,单位面积污染物排放强度略高于珠三角地区.电厂和其他工业燃烧设施分别贡献了约46%和45%的SO2排放,以及59%和26%左右的NOx排放.电厂及水泥建材+钢铁冶金等工艺过程贡献了约21%和57%的PM10排放,以及28%和52%的PM2.5排放.石油加工、化工制造和工业喷涂等工艺过程的VOCs无组织排放占到总量的65%.NH3的主要排放源来自畜禽养殖和氮肥施用等农业部门,分别占到总量的48%和40%.长三角地区大气污染物的空间分布结果显示,长三角高排放地区主要集中在长江下游的沿江一带及杭州湾地区一带.现有方法测算的PM10、PM2.5、VOCs和NH3排放结果仍存在较大的不确定性,建议在未来不断加强本地大气污染源排放的基础研究,以进一步改善我国各典型区域的大气污染物排放清单,为区域大气污染联防联控提供重要的科研基础.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.atmosenv.2018.08.063URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.scitotenv.2018.03.069URLPMID:29574366 [本文引用: 1]
The impacts of manure application on soil ammonia (NH3) volatilization and greenhouse gas (GHG) emissions are of interest for both agronomic and environmental reasons. However, how the swine manure addition affects greenhouse gas and N emissions in North China Plain wheat fields is still unknown. A long-term fertilization experiment was carried out on a maize-wheat rotation system in Northern China (Zea mays L-Triticum aestivum L.) from 1990 to 2017. The experiment included four treatments: (1) No fertilizer (CK), (2) single application of chemical fertilizers (NPK), (3) NPK plus 22.5t/ha swine manure (NPKM), (4) NPK plus 33.7t/ha swine manure (NPKM+). A short-term fertilization experiment was conducted from 2016 to 2017 using the same treatments in a field that had been abandoned for decades. The emissions of NH3 and GHGs were measured during the wheat season from 2016 to 2017. Results showed that after long-term fertilization the wheat yields for NPKM treatment were 7105kg/ha, which were higher than NPK (3880kg/ha) and NPKM+ treatments (5518kg/ha). The wheat yields were similar after short-term fertilization (6098-6887kg/ha). The NH3-N emission factors (EFamm) for NPKM and NPKM+ treatments (1.1 and 1.1-1.4%, respectively) were lower than NPK treatment (2.2%) in both the long and short-term fertilization treatments. In the long- and short-term experiments the nitrous oxide (N2O) emission factors (EFnit) for NPKM+ treatment were 4.2% and 3.7%, respectively, which were higher than for the NPK treatment (3.5% and 2.5%, respectively) and the NPKM treatment (3.6% and 2.2%, respectively). In addition, under long and short-term fertilization, the greenhouse gas intensities for the NPKM+ treatment were 33.7 and 27.0kg CO2-eq/kg yield, respectively, which were higher than for the NPKM treatment (22.8 and 21.1kg CO2-eq/kg yield, respectively). These results imply that excessive swine manure application does not increase yield but increases GHG emissions.
,
DOI:10.5846/stxb201711242101URL [本文引用: 1]
农业大量施用氮肥以及持续扩大的禽畜养殖业是我国氨污染的最大来源。近年来大气环境问题备受关注,氨排放研究的重要性日益凸显,如何客观、科学定量的评估我国区域氨排放的问题尤为重要。通过检索已报道的国内外氨排放估算的研究进展,对我国的氨排放研究进行梳理,比对了氨排放主要估算方法的特点,对其所使用数据类型、获取途径,参数的定量取值方法及不确定性产生等方面进行了分析。针对国内氨排放估算存在计算方法单一,排放因子本地化不足等问题,提出了进一步改善的意见和建议。研究结果以期为我国做好氨排放控制基础研究,开展控制技术试验,制定相关政策文件,加强政府引导和扶持等提供科学依据。
DOI:10.5846/stxb201711242101URL [本文引用: 1]
农业大量施用氮肥以及持续扩大的禽畜养殖业是我国氨污染的最大来源。近年来大气环境问题备受关注,氨排放研究的重要性日益凸显,如何客观、科学定量的评估我国区域氨排放的问题尤为重要。通过检索已报道的国内外氨排放估算的研究进展,对我国的氨排放研究进行梳理,比对了氨排放主要估算方法的特点,对其所使用数据类型、获取途径,参数的定量取值方法及不确定性产生等方面进行了分析。针对国内氨排放估算存在计算方法单一,排放因子本地化不足等问题,提出了进一步改善的意见和建议。研究结果以期为我国做好氨排放控制基础研究,开展控制技术试验,制定相关政策文件,加强政府引导和扶持等提供科学依据。
,
DOI:10.1016/j.scitotenv.2018.03.217URLPMID:29602116 [本文引用: 1]
Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha(-1) when its ratio of NH4(+)/NO3(-)-N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha(-1) ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha(-1)) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
DOI:10.11674/zwyf.2002.0214URL [本文引用: 2]
本研究设计了原位测定田间土壤氨挥发的一种通气法 ,并通过回收率试验和田间试验进行了验证。结果表明 ,和传统的密闭法相比 ,通气法不仅结构简单 ,操作简便 ,而且测定结果的准确度和精确度高 ,回收率为 99.51% ,变异系数仅为 0.77% ;由通气法测定的田间不同施肥小区氨挥发的平均速率和总量分别介于N 0.07~0.87kg·hm-2·d-1和N 2.93~35.69kg·hm-2,明显高于密闭法。可见 ,通气法更适于田间土壤氨挥发的原位测定。
DOI:10.11674/zwyf.2002.0214URL [本文引用: 2]
本研究设计了原位测定田间土壤氨挥发的一种通气法 ,并通过回收率试验和田间试验进行了验证。结果表明 ,和传统的密闭法相比 ,通气法不仅结构简单 ,操作简便 ,而且测定结果的准确度和精确度高 ,回收率为 99.51% ,变异系数仅为 0.77% ;由通气法测定的田间不同施肥小区氨挥发的平均速率和总量分别介于N 0.07~0.87kg·hm-2·d-1和N 2.93~35.69kg·hm-2,明显高于密闭法。可见 ,通气法更适于田间土壤氨挥发的原位测定。
,
URL [本文引用: 1]
以持续9年施用不同缓/控释尿素的水田棕壤为试验对象,以普通大颗粒尿素为对照,研究了持续施用不同缓/控释尿素条件下水田土壤NH3挥发与N2O排放特征.结果表明: 与普通大颗粒尿素(U)相比,除1% 3,4-二甲基吡唑磷酸盐(DMPP)+U处理 NH3挥发增加了25.8%外,其他缓/控释尿素肥料处理对NH3有明显的减排效果.树脂包膜尿素(PCU)对NH3减排效果最明显,为73.4%,硫包膜尿素(SCU)为〖JP2〗72.2%,0.5% N-丁基硫代磷酰三胺(NBPT)+1% DMPP+U为71.9%,1% 氢醌(HQ)+3% 双氰胺(DCD)+U为46.9%,0.5% NBPT+U为43.2%,1% HQ+U为40.2%,3% DCD+U为25.5%, 1% DMPP均与施用普通大颗粒尿素差异显著;所有缓/控释尿素处理与对照相比均可显著减少N2O排放.1% DMPP+U对N2O减排效果最明显,为74.9%,PCU为62.1%,1% HQ+3% DCD+U为54.7%,0.5% NBPT+1% DMPP+U为42.2%,3% DCD+U为35.9%,1% HQ+U为28.9%,0.5% NBPT+U为17.7%,SCU为14.5%,均与施用普通大颗粒尿素差异显著.比较0.5% NBPT+1% DMPP+U、SCU、PCU对NH3和N2O减排的综合效果,3种肥料作用相近,且均明显优于其他处理,但包膜材料的成本较抑制剂高数倍.因此,同时添加脲酶和硝化抑制剂的缓释尿素是减少水田氮素损失及环境污染的首选氮肥.
URL [本文引用: 1]
以持续9年施用不同缓/控释尿素的水田棕壤为试验对象,以普通大颗粒尿素为对照,研究了持续施用不同缓/控释尿素条件下水田土壤NH3挥发与N2O排放特征.结果表明: 与普通大颗粒尿素(U)相比,除1% 3,4-二甲基吡唑磷酸盐(DMPP)+U处理 NH3挥发增加了25.8%外,其他缓/控释尿素肥料处理对NH3有明显的减排效果.树脂包膜尿素(PCU)对NH3减排效果最明显,为73.4%,硫包膜尿素(SCU)为〖JP2〗72.2%,0.5% N-丁基硫代磷酰三胺(NBPT)+1% DMPP+U为71.9%,1% 氢醌(HQ)+3% 双氰胺(DCD)+U为46.9%,0.5% NBPT+U为43.2%,1% HQ+U为40.2%,3% DCD+U为25.5%, 1% DMPP均与施用普通大颗粒尿素差异显著;所有缓/控释尿素处理与对照相比均可显著减少N2O排放.1% DMPP+U对N2O减排效果最明显,为74.9%,PCU为62.1%,1% HQ+3% DCD+U为54.7%,0.5% NBPT+1% DMPP+U为42.2%,3% DCD+U为35.9%,1% HQ+U为28.9%,0.5% NBPT+U为17.7%,SCU为14.5%,均与施用普通大颗粒尿素差异显著.比较0.5% NBPT+1% DMPP+U、SCU、PCU对NH3和N2O减排的综合效果,3种肥料作用相近,且均明显优于其他处理,但包膜材料的成本较抑制剂高数倍.因此,同时添加脲酶和硝化抑制剂的缓释尿素是减少水田氮素损失及环境污染的首选氮肥.
,
DOI:10.5004/dwtURL [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1080/03650340.2019.1650916URL [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.soilbio.2011.04.022URL [本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.jclepro.2018.09.061URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]