Effects of Continuous Application of Soil Amendments on Fluvo- Aquic Soil Fertility and Active Organic Carbon Components
ZHOU JiXiang,, ZHANG He, YANG Jing, LI GuiHua,, ZHANG JianFeng,National Engineering Laboratory of Cultivated Land Cultivation Technology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081通讯作者:
责任编辑: 李云霞
收稿日期:2019-09-26接受日期:2019-12-30网络出版日期:2020-08-16
基金资助: |
Received:2019-09-26Accepted:2019-12-30Online:2020-08-16
作者简介 About authors
周吉祥,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (503KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
周吉祥, 张贺, 杨静, 李桂花, 张建峰. 连续施用土壤改良剂对沙质潮土肥力及活性有机碳组分的影响[J]. 中国农业科学, 2020, 53(16): 3307-3318 doi:10.3864/j.issn.0578-1752.2020.16.009
ZHOU JiXiang, ZHANG He, YANG Jing, LI GuiHua, ZHANG JianFeng.
0 引言
【研究意义】黄淮海平原总面积达3 000万hm2,占全国平原面积的30%,耕地占全国的18%[1],是我国重要的粮食生产核心区域,在我国粮食安全和国民经济发展中占有不可替代的战略地位。但该区域以沙质和盐碱化为主的各类中低产田约占耕地总面积的2/3,其中沙质土壤约为267万hm2。土质疏松,结构性差,有机碳含量低,土壤保肥蓄水能力弱,养分含量少是当前黄淮海平原沙质潮土现状,不利于作物生长,严重影响了当地农业经济的发展。因此改良沙质土壤、提高沙质土壤肥力是促进当地农业经济平稳发展及保障国家粮食安全的重要手段。【前人研究进展】土壤改良产品种类繁多,如松土剂、固沙剂、增肥剂、消毒剂、土壤调理剂、保水剂、土壤改良调节剂等统称为土壤改良剂[2],随着环境友好型土壤改良剂生产技术的不断完善, 其在各类障碍型土壤中的培肥改良应用逐渐发展为研究的热点,大量研究表明,施用有机改良剂能提升土壤肥力[3]、改善土壤环境[4]以及调节土壤中微生物活性[5,6],同时在一定程度上增加土壤有机质含量,进而影响土壤有机碳库各组分的相互转化。有研究指出有机碳土壤改良剂施用量与风沙土孔隙度、团聚体、持水量、有机质、速效养分、微生物数量、酶活性和玉米产量呈正相关关系[7];文星等[8]研究发现施用土壤改良剂能够在一段时间内改变土壤pH、影响速效磷和交换性Ca、Mg的含量;刘慧军等[9]认为不同土壤改良剂均能显著提高土壤中有机质、速效磷、速效钾等养分含量。有机碳作为衡量土壤质量的重要指标,在调节土壤物理化学性质,改善土壤结构,影响作物产量等方面具有重要作用[10]。根据有机碳生物稳定性和周转期的不同,可分为活性、慢性和惰性有机碳,其中,活性有机碳主要包括:易氧化有机碳(LOC)、可溶性有机碳(DOC)和微生物量碳(MBC)[11,12,13]。因活性有机碳转化周期短、易被微生物分解利用,常用作土壤碳循环和有效养分变化周转的敏感指标[14,15,16]。有研究表明,土壤活性碳对施肥措施的变化响应敏感,因此可以作为预警或者较早反映土壤碳库变化的指示指标[17];同时,土壤活性碳占总有机碳的比值对土壤碳库质量的变化非常敏感,可用来指示土壤质量的变化[18]。根据不同活性有机碳指标,LEFROY等[19]和BLAIR等[20]提出了土壤碳库管理指数(CPMI)的概念。CPMI由人为影响下土壤碳库指标和土壤碳库活度两方面的内容组成[21],既可以反映土壤有机碳储量的变化,也能反映土壤有机碳组分的变化情况,能够指示土壤肥力和土壤质量的变化[22]。因此,研究有机改良剂施用条件下土壤有机碳的动态变化,对于实现土壤有机碳库的累积储存,改善土壤质量具有重要意义[23]。【本研究切入点】周岩等[2]认为当前土壤改良剂改土应用效果明显,但缺乏长期定位试验跟踪和数据验证。近年来,有机土壤改良剂在盐碱土、酸性土等土壤类型的相关研究中已经取得了较好成果,同时,凹凸棒土作为一种储量丰富、用途多样的可利用资源,在工业、医学、农业等多种行业上具有吸附和黏结等用途,但目前关于两者配合连续多年施用于沙质潮土肥力和质量改良效应的研究鲜见报道。【拟解决的关键问题】综上,本研究采用大田连续定位试验研究手段,以廊坊市沙质潮土为研究对象,施用实验室自制土壤改良剂,通过研究土壤养分含量、活性有机碳各组分含量、各组分有效率及碳库管理指数的变化特征,为沙质潮土培肥改良、提升土壤肥力提供理论依据。1 材料与方法
1.1 试验区域概况
试验基地位于河北省廊坊市万庄镇中国农业科学院国际高新技术示范园区内(39°36′N,116°36′E),属温带大陆性季风气候区,年均气温11.9 ℃,降水量为550 mm,70%—80%降水集中在6—8月。全年平均日照时数为2 660 h,无霜期为183 d。种植制度为冬小麦-夏玉米轮作,土壤类型为沙质潮土。试验前土壤耕层基本理化性状:含水量5.87%,pH 8.83,有机碳(SOC)7.48 g·kg-1,全氮(TN)0.81 g·kg-1,速效磷(AP)17.55 mg·kg-1,速效钾(AK)153.32 mg·kg-1。1.2 土壤改良剂
试验所用有机土壤改良剂为实验室自制。选用虾头蟹壳提取甲壳素后的废弃物,粉碎后按照重量2﹕3混合加入草炭、秸秆和花生壳及其他保密材料,接入微生物菌剂(地衣芽孢杆菌、干酪乳杆菌、黑曲霉和枯草芽孢杆菌),通过好氧发酵、高温堆肥等工艺处理后制成;无机改良剂为改性凹凸棒土。两种改良剂理化性质如表1所示。Table 1
表1
表1供试改良剂基本理化性质
Table 1
含水量 Water content (%) | SOC (g·kg-1) | TN (g·kg-1) | TP (g·kg-1) | pH | TK (g·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
有机改良剂 Organic amendment | 13.2 | 73.74 | 14.7 | 21.05 | 7.75 | 22.88 | ||||||
CEC mol/100g | 吸水率 (%) | 比表面积 (m2·g-1) | TN (mg·kg-1) | TP (mg·kg-1) | pH | TK (mg·kg-1) | ||||||
无机改良剂 Inorganic amendment | 2196 | 202 | 369 | 68.5 | 82.3 | 8.40 | 10.55 |
新窗口打开|下载CSV
1.3 试验设计
试验设计4个处理,分别为:(1)单施化肥(CK);(2)CK+有机改良剂15 t·hm-2(T1);(3)CK+无机改良剂2.25 t·hm-2(T2);(4)CK+有机改良剂15 t·hm-2+无机改良剂2.25 t·hm-2(T3)。改良剂施用量参考许帆等[24]的研究。每个处理设有3次重复,按照随机区组方法设置排列重复,小区面积为30 m2。氮磷钾复混肥(20-16-9)施用0.75 t·hm-2,用量以当地农户习惯用量为依据。有机改良剂和无机改良剂随同基肥一次性施入耕作层混合均匀。试验自2015年10月开始至2018年10月,连续种植3年6季作物。不同土壤改良剂各处理养分输入量见表2。Table 2
表2
表2不同土壤改良剂各处理养分输入量
Table 2
处理 Treatment | TN (kg·hm-2) | TP (kg·hm-2) | TK (kg·hm-2) |
---|---|---|---|
CK | 150 | 52.39 | 46.68 |
T1 | 370.5 (150+220.5) | 368.14 (52.39+315.75) | 389.88 (46.68+343.2) |
T2 | 150.15 (150+0.15) | 52.58 (52.39+0.185) | 46.70 (46.68+0.024) |
T3 | 370.65 (150+220.5+0.15) | 368.33 (52.39+315.75+0.185) | 389.90 (46.68+343.2+0.024) |
新窗口打开|下载CSV
1.4 样品采集、测定项目与分析方法
1.4.1 土壤样品采集 土壤样品于2018年10月9日(第6季玉米收获期)采自耕层(0—20)cm土壤,混合均匀后将四分法保留的土样分为两份,一份置于避光处自然风干后分别过筛保存,用于测定基本理化指标;一份带回实验室存放于-20℃冰箱保存,用于土壤微生物量碳及土壤可溶性有机碳测定。1.4.2 测定项目及方法
(1)土壤理化指标均采用《土壤农化分析》[25]方法测定:pH采用水土比5﹕1梅特pH计(FE20)测定、有机碳采用重铬酸钾-浓硫酸外加热法、全氮采用凯氏定氮法、速效磷采用Olsen法、速效钾乙酸铵提取-火焰光度法。
(2)土壤活性有机碳组分[11,12,13]测定:微生物量碳(microbial biomass carbon,MBC):采用氯仿熏蒸-K2SO4提取法[26],用TOC仪测定熏蒸、未熏蒸浸提液中土壤提取碳含量,两者差值乘以转化系数0.45计算土壤微生物量碳。
易氧化有机碳(labile organic carbon,LOC)用KMnO4氧化法[27]测定:称取过0.2 mm筛的土壤样品2 g于 50 mL塑料旋盖的离心管中,加入25 mL浓度为333 mmol·L-1的KMnO4,常温下振荡1 h,然后在转速3 000 r/min下离心5 min,取上清液0.5 mL于250 mL容量瓶中,定容摇晃均匀,在分光光度计565 nm下测定稀释样品的吸光率。由不加土壤的空白与土壤样品的吸光率之差,计算出 KMnO4浓度的变化,进而计算出被氧化碳含量或有机质即活性有机质含量(氧化过程1 mmol·L-1KMnO4消耗9 mg C)。
可溶性有机碳[28](dissolved organic carbon,DOC):称取新鲜土样25.00 g于三角瓶中,同时加入50 mL高纯水,在200 r/min振荡器上振荡2 h,接着在转速为10 000 r/min高速离心机里离心15 min,用真空泵抽滤过0.45 μm薄滤膜,用TOC自动分析仪测定过滤液中水溶性有机碳含量。
1.5 数据计算
(1)土壤活性有机碳各组分碳素有效率[29]计算方法:LOC有效率(%)=LOC/TOC×100%;
MBC有效率(%)=MBC/TOC×100%;
DOC有效率(%)=DOC/TOC×100%。
(2)土壤碳库管理指数计算方法:以试验周围撂荒地土壤为参考土壤(CK0),其总有机碳含量为6.84 g·kg-1,活性有机碳含量(采用333 mmol·L-1KMn O4氧化法)[30]为2.8 g·kg-1。碳库管理指数计算方法如下:
总有机碳=活性有机碳+非活性有机碳;
碳库指数(CPI)=样本中的总有机碳含量(g·kg-1)/参考土壤总有机碳含量(g·kg-1);
碳库活度(L)=样本中的活性有机碳含量(g·kg-1)/样本中非活性有机碳含量(g·kg-1);
碳库活度指数(LI)=样本碳库活度(L)/参考土壤碳库活度(L0);
基于以上参数可以得到碳库管理指数(CPMI)=CPI×LI×100。
土壤综合肥力指数(soil integrated fertility index,IFI):采用内梅罗指数法对各处理下土壤肥力质量进行评价,本文选用土壤pH、有机质、全氮、速效磷和速效钾作为分肥力指标,计算分肥力系数,利用修正的内梅罗公式计算土壤综合肥力指数[31]。
(1)分肥力指数IFIi的计算:
$IFI_{i}=\left\{ \begin{matrix} \ \ \ \ \ & X/X_{a}& X≤X_{a} \\ & 1+(X-X_{a})/(X_{c}-X_{a}) & X_{a}<X≤X_{c} \\ & 2(X-X_{c})/(X_{p}-X_{C})) & X_{c}<X≤X_{P} \\ & 3 & X>X_{P} \end{matrix} \right.$
式中,IFIi:分肥力系数,X:该属性测定值;Xa与Xp:分级标准下、上限,Xc:介于分级标准上、下限间(表3)。
Table 3
表3
表3土壤各属性分级标准值
Table 3
分级 Grade | pH (H2O) | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 速效磷 Avail. P (mg·kg-1) | 速效钾 Avail. K (mg·kg-1) |
---|---|---|---|---|---|
Xa | 4.5 | 20 | 1.0 | 10 | 100 |
Xc | 6.5 | 30 | 1.5 | 20 | 150 |
Xp | 8.5 | 40 | 2.0 | 40 | 200 |
新窗口打开|下载CSV
(2)综合土壤肥力指数IFI的计算:
$IFI=\frac{\sqrt{(IFI_{i平均})^2+(IFI_{i最小})^2}}{2}+\frac{n-1}{n}$
式中,IFIi平均与IFIi最小为土壤各属性分肥力均值与最小值;n为评价指标个数。
1.6 数据分析
用Excel软件进行数据相关计算,试验结果用SPSS19.0进行方差齐性检验,检验通过后,采用最小显著差数法(LSD)进行显著性检验,用F统计量进行多因素方差分析,采用Person进行相关性分析;Canoco5.0做主成分分析(PCA)以及相关统计分析。2 结果
2.1 改良剂对沙质潮土化学指标及土壤综合肥力指数(IFI)的影响
施用有机改良剂(T1和T3)显著提高土壤有机碳、速效磷、速效钾含量(表4),无机改良剂(T2)与CK无显著差异。其中T1和T3处理土壤有机碳含量较CK分别显著提高了28.42%和32.89%;T1、T3处理的土壤速效磷含量较CK分别显著提高了243.76%和254.17%;T1、T2和T3处理的土壤速效钾含量较CK分别显著增加了43.83%、19.81%和74.10%。T1、T2和T3处理的土壤pH较CK分别显著降低了0.35、0.22和0.28,T1、T2、T3处理之间无显著差异。土壤综合肥力指数(IFI)T1、T3处理较CK分别显著提高了15.65%和17.39%,T2较CK无显著差异。Table 4
表4
表4土壤改良剂对土壤化学特性及肥力水平的影响
Table 4
处理Treatment | 有机碳 TOC (g·kg-1) | 全氮 TN (g·kg-1) | 速效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) | pH | 土壤综合肥力指数 IFI |
---|---|---|---|---|---|---|
CK | 7.41±0.41b | 0.92±0.15ab | 22.76±6.85b | 213.67±18.23d | 8.65±0.09a | 1.15±0.07b |
T1 | 9.51±0.34a | 1.14±0.21ab | 78.24±1.50a | 307.33±28.02b | 8.30±0.02b | 1.33±0.04a |
T2 | 7.77±0.34b | 0.84±0.21b | 24.94±3.12b | 256.00±15.10c | 8.43±0.09b | 1.17±0.04b |
T3 | 9.84±0.62a | 1.18±0.10a | 80.61±16.68a | 372.00±21.00a | 8.37±0.06b | 1.35±0.03a |
新窗口打开|下载CSV
2.2 施用不同改良剂对土壤碳库组分含量的影响
2.2.1 改良剂对土壤活性碳各组分含量的影响 由图1可知,土壤活性碳库组分含量由高到低依次为:易氧化有机碳>微生物量碳>可溶性有机碳。T1、T3处理土壤可溶性有机碳(DOC)较CK分别显著升高了16.55%和38.29%,T3较T1显著提高了18.65%,由于单施无机改良剂较CK无显著提高,说明有机无机改良剂配施存在一定的交互作用;T1、T3处理土壤易氧化有机碳含量(LOC)较CK分别显著提高了12.36%和16.74%;T3处理土壤微生物量碳(MBC)较CK显著提高了10.43%。所有T2处理较CK均无显著差异。图1
新窗口打开|下载原图ZIP|生成PPT图1不同处理下土壤活性碳库各组分含量
Fig. 1Changes of active carbon content with two soil amendments
2.2.2 改良剂对土壤活性碳组分有效率的影响 由表5可知,不同活性碳占总有机碳的比值在不同改良剂下表现不同。有机改良剂处理(T1、T3)的易氧化有机碳有效率(LOC/TOC)较CK分别显著降低了12.57%和12.02%,T1、T3较T2分别显著降低了12.84%和12.30;有机改良剂处理(T1、T3)的微生物量碳有效率(MBC/TOC)较CK分别显著降低了12.84%和12.30%,T1较T2显著降低了12.14%;T1、T2和T3处理的可溶性碳有效率(DOC/TOC)较CK均无显著性差异。
Table 5
表5
表5不同处理下土壤活性碳各组分有效率(%)
Table 5
处理Treatment | LOC/TOC | MBC/TOC | DOC/TOC |
---|---|---|---|
CK | 32.13±1.03a | 5.05±0.41a | 0.64±0.02ab |
T1 | 28.09±1.21b | 4.02±0.34c | 0.58±0.02b |
T2 | 32.23±0.83a | 4.57±0.12ab | 0.65±0.07ab |
T3 | 28.27±2.44b | 4.19±0.30bc | 0.67±0.03a |
新窗口打开|下载CSV
2.2.3 不同土壤改良剂对土壤碳库管理指数的影响 由表6可知,T1、T3处理的土壤碳库指数(CPI)较CK分别显著增加了28.70%和33.33%,T1、T3处理较T2显著增加了21.93%和26.32%;T1、T3处理土壤碳库活度(L)较CK分别显著降低了17.02%和14.89%,T1、T3处理较T2显著增加了18.75%和16.67%;T1、T3处理土壤碳库活度指数(LI)较CK分别显著增加了17.78%和16.67%,T1、T3处理较T2显著增加了17.78%和16.67%;T3处理土壤碳库管理指数(CPMI)较CK显著增加了10.64%。以上指标T2较CK均无显著差异。
2.2.4 土壤碳库各指标的主成分分析 对土壤活性碳组分、碳组分有效率及碳库管理指数进行主成分分析,结果表明(图2),第一主成分(PCA1)解释率达76.58%,主要解释指标是土壤各活性碳组分(LOC、DOC、MBC)及TOC、CPMI,DOC/TOC对PCA1解释率为几乎为零;第二主成分(PCA2)为12.52%,主要解释指标是活性碳组分在TOC中的分配(MBC/TOC、LOC/TOC);由图中各参数分布特征可知,LOC/TOC、MBC/TOC在CK处理时最高;活性有机碳各组分在T1、T3处理上具有最高载荷。PCA1主要代表不同土壤改良剂的施入,通过土壤改良剂种类的不同将各区组分开,其中,CK处理与T2处理相交,反映了施用无机改良剂处理活性有机碳各组分与CK无明显差异;T1处理与T3处理相交,且T1、T3处理点与CK处理点相距最远,反映了施用有机改良剂处理之间对提高土壤活性有机碳各组分含量无明显差异,同时说明了有机改良剂的施用提高了土壤活性有机碳各组分的含量,有利于土壤碳库的积累。
Table 6
表6
表6改良剂对土壤碳库管理指数(CPMI)的影响
Table 6
处理 Treatment | 碳库指数 CPI | 碳库活度 L | 碳库活度指数 LI | 碳库管理指数 CPMI |
---|---|---|---|---|
CK0 | 1 | 0.53 | 1 | 100 |
CK | 1.08b | 0.47a | 0.90a | 96.92b |
T1 | 1.39a | 0.39b | 0.74b | 102.84ab |
T2 | 1.14b | 0.48a | 0.90a | 102.32ab |
T3 | 1.44a | 0.40b | 0.75b | 107.23a |
新窗口打开|下载CSV
图2
新窗口打开|下载原图ZIP|生成PPT图2不同处理土壤碳库指标的主成分分析
Fig. 2Principal component analyses (PCA) of soil carbon indices under two soil amendments
2.2.5 土壤活性碳库各组分、碳库管理指数及活性碳各组分有效率之间的相关性 由表7知,活性碳库组分LOC、MBC与DOC之间存在极显著的相关关系,说明活性碳库各组分之间可以相互转化;LOC与MBC/TOC之间存在显著关系,说明MBC/TOC受LOC变化影响较大;DOC与LOC/TOC、MBC/TOC之间存在显著关系,说明LOC/TOC、MBC/TOC受DOC变化影响较大;CPMI与LOC、MBC均存在着显著关系,说明碳库管理指数是能够反映土壤碳库组分变化情况的指标。
Table 7
表7
表7土壤活性碳库各组分、碳库管理指数及活性碳各组分有效率之间的相关系数
Table 7
LOC | MBC | DOC | CPMI | LOC/TOC | MBC/TOC | DOC/TOC | |
---|---|---|---|---|---|---|---|
LOC | 1 | 0.726** | 0.738** | 0.869** | -0.562 | -0.613* | -0.132 |
MBC | 1 | 0.659* | 0.631* | -0.392 | -0.101 | 0.085 | |
DOC | 1 | 0.437 | -0.748** | -0.63* | 0.358 | ||
CPMI | 1 | -0.08 | -0.232 | -0.042 |
新窗口打开|下载CSV
3 讨论
3.1 不同土壤改良剂对土壤化学特性和肥力水平的影响
土壤肥力是物理、化学和生物等基本性质的综合表现,是土壤质量的重要组成部分,选用pH、氮、磷、钾和有机碳计算的土壤肥力指数(IFI)可综合表征改良剂对土壤肥力的影响特征[31]。有研究表明,施用有机土壤改良剂,能够提高土壤有机质、全氮、速效磷等养分含量,提高土壤综合肥力[32,33],与本文研究结果一致。本试验发现施用两种土壤改良剂均影响土壤肥力指数相关的5个参数。首先,施用有机改良剂能够显著提高土壤有机碳及速效磷含量,这是由于随着有机改良剂的连续施用,其自身向土壤中输入了大量有机物质及磷元素。其次,土壤pH均显著下降,并且施用有机改良剂的处理pH下降幅度大于无机改良剂。这是由于有机改良剂中含有机物,经土壤微生物分解后会产生各种腐殖酸物质,从而调节土壤pH。再者,施用两种土壤改良剂土壤速效钾含量均显著升高,且有机无机改良剂配施效果优于单施,由于无机改良剂本身速效钾含量很低,因此造成这种结果的原因一方面可能是本试验所用有机改良剂提高了土壤有机质含量,进而减弱了蒙脱石类矿物的膨胀性,从而降低了土壤中钾的固定;另外有机质的增加会促进土壤有机胶体的形成,从而以胶膜形式包被于黏粒表面,阻止钾离子与黏粒矿物的直接接触,减少钾的固定。另一方面原因是无机改良剂自身具有巨大的阳离子交换能力,能够促进土壤缓效钾向速效钾的转化,进而减少了土壤交换性钾的固定量。试验发现施用有机改良剂处理能显著提高土壤综合肥力指数,说明施用有机改良剂使土壤肥力提高显著,可为植物生长提供丰富的养分,而施用无机改良剂对提升土壤肥力无显著效果。另有研究表明,施用有机改良剂不仅能够增加土壤养分含量[34],还能够促进作物生长,增加产量,能够提高籽粒品质[35]。本研究得出,有机土壤改良剂施用于土壤后能显著提高土壤养分含量,提高土壤综合肥力。3.2 不同土壤改良剂对土壤活性碳组分和活性碳各组分有效率的影响
土壤易氧化有机碳、可溶性有机碳和微生物量碳比总有机碳更能灵敏地反映土壤质量和肥力变化,而活性有机碳组分的生物利用率与土壤有机碳源输入密切相关[36]。有研究发现,单施有机肥及配施有机肥-无机肥均能有效提高土壤中易氧化有机碳组分的含量,且效果较单施无机肥更为显著;连续有机无机肥料配施可提高土壤MBC、DOC含量以及CPMI[37,38]。本文施用有机改良剂也得到相似的结果,即土壤中LOC、DOC、MBC含量均显著升高,其主要原因是:有机改良剂经堆肥处理,其自身富含的好氧活性有机物分解成大量活性固体小颗粒,同时释放出大量LOC和DOC进入土壤,同时增加了微生物底物,促进微生物的生长[39]。另由于有机改良剂向土壤输送了大量速效养分,促进了植株地下部的发育和根际有机物的积累,该有机物的分解为微生物活动提供了大量能源,刺激了土壤中微生物群落的生长,同时有机改良剂由于堆肥作用自身含有大量的微生物,从而极大的促进了土壤中的MBC,同时研究发现有机无机改良剂配施处理较单施有机改良剂处理显著增加,而单施无机改良剂无显著效应,由于影响土壤可溶性有机碳因素很多,比如,季节、温度、湿度、pH,因此原因可能是两种改良剂材料配施后,通过改善土壤湿度和pH等影响微生物活性,增加可溶性有机碳的产生,具体机理还需进一步研究。有研究指出,活性碳含量在土壤总有机碳中所占的比例比活性碳的绝对含量能更好地反映土壤碳库的现状,且活性碳与总有机碳之比可以消除土壤总有机碳含量对活性碳的影响[18]。微生物熵(MBC/TOC)是评价土壤有机碳动态和质量的有效指标,它的变化反映了土壤中微生物碳的来源及转化效率[40]。本研究发现施用有机改良剂显著降低该比值,这与用绿肥、有机肥能够增加土壤微生物熵[30,31,32,33,34,35,36,37,38,39,40,41,42]的结果相反,原因可能是有机改良剂对TOC的增加效果高于绿肥、有机肥,而对MBC的增加效果低于绿肥、有机肥,所以比值降低。
土壤易氧化有机碳有效率(LOC/TOC)可以反映土壤有机碳的质量和稳定性,比例越高,有机碳越容易被微生物分解和矿化,转化时间越短或活性越高,比例越小意味着土壤有机碳稳定且不易被生物降解[41]。有****研究发现,绿肥[42]、有机肥[43,44]可以增加土壤LOC有效率。而本研究发现,施用有机土壤改良剂显著降低LOC/TOC比率,单施无机土壤改良剂无显著效果,这可能是因为虽然施入有机土壤改良剂显著提高了土壤各活性碳组分绝对含量,但同时也向土壤输入了大量稳定态有机碳,因此,间接降低了有机碳转化为活性有机碳的相对效率。说明本试验所使用有机土壤改良剂中有机碳主要以稳定碳组分形式存在,进入土壤后短期分解量较少,从而降低活性有机碳组分的有效率,这与POWLESON等[45]研究结果一致。
土壤可溶性有机碳是土壤中可以直接利用的部分,其占总有机碳的比例(DOC/TOC)大小既能直接反映土壤中碳库活跃程度,也能间接体现土壤中的生物化学反应现状。本研究发现施用土壤改良剂各处理土壤中DOC/TOC较CK无显著效果,说明DOC含量相对TOC同步提高,即转化比率要高于LOC和MBC,这有利于土壤中有机质的储存[46]。原因是有机堆肥产物在好氧堆肥过程中其有机物质转换为了更为稳定的状态,如木质素,纤维素,半纤维素等[47,48]。因此,施入有机土壤改良剂能增加土壤稳定性碳库的库容。
3.3 不同土壤改良剂对土壤碳库管理指数的影响
土壤碳库管理指数作为反映和评估土壤碳素动态变化的重要指标,可以灵敏地反应土壤肥力及碳库的变化[49],能够有效的为研究土壤活性有机碳含量及变化提供理论支撑。本研究结果表明,施用有机改良剂能显著提高土壤碳库指数(CPI),但土壤碳库活度(L)、碳库活度指数(LI)均显著降低,表明施用有机改良剂能够向土壤输送大量非活性有机碳,使土壤稳定态碳含量增加,有利于固定土壤碳,这与上述的土壤碳素有效率降低的规律一致。另外,有****研究发现仅施化肥的土壤其碳库管理指数会下降[50],这与本研究结果一致,且发现CK处理其碳库管理指数仅为96.92(低于撂荒土地100),这可能是由于该处理连续单施无机化肥,活性有机碳组分持续消耗且转化量小于消耗量导致的。4 结论
4.1
以土壤综合肥力指数(IFI)作为指标,3年田间试验表明施用有机改良剂能够有效提高沙质潮土综合肥力。4.2
施入有机改良剂能够提高土壤碳库各组分绝对含量,显著降低易氧化有机碳、微生物量碳在土壤总有机碳中的占比,表明施用有机改良剂会使土壤中微生物难利用的非活性有机碳含量增大,使得土壤稳定态碳含量增加,有利于沙质潮土有机碳的积累。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3969/j.issn.1004-3268.2010.08.041URL [本文引用: 2]
DOI:10.3969/j.issn.1004-3268.2010.08.041URL [本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URLPMID:24216415 [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URLPMID:27100005 [本文引用: 1]
,
[本文引用: 2]
[D]. ,
[本文引用: 2]
[D].
[本文引用: 2]
,
DOI:10.1016/j.agee.2012.10.001URL [本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 3]
[本文引用: 3]
,
URLPMID:12222055 [本文引用: 2]
URLPMID:12222055 [本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
URL [本文引用: 2]
In order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratioof carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg·kg-1soil, and 148 and 73 mg·kg-1 soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.0%, significantly higher than that under non-fertilization and inorganic fertilization. Biolog-ECO analysis showed that the average well color development (AWCD) value was in the order of applying organic manure plus inorganic fertilizers≈applyingorganic manure > non-fertilization > inorganic fertilization ≈ inorganic fertilization plus straw incorporation. Under the application of organic manure or of organic manure plus inorganic fertilizers, the microbial utilization rate of carbon sources, including carbohydrates, carboxylic acids, aminoacids, polymers, phenols, and amines increased; while under inorganic fertilization plus straw incorporation, the utilization rate of polymers was the highest, and that of carbohydrates was the lowest. Our results suggested that long-term application of organic manure could increase the red soil MBC, MBN, and microbial utilization rate of carbon sources, improve soil fertility, and maintain a better crop productivity.
URL [本文引用: 2]
In order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratioof carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg·kg-1soil, and 148 and 73 mg·kg-1 soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.0%, significantly higher than that under non-fertilization and inorganic fertilization. Biolog-ECO analysis showed that the average well color development (AWCD) value was in the order of applying organic manure plus inorganic fertilizers≈applyingorganic manure > non-fertilization > inorganic fertilization ≈ inorganic fertilization plus straw incorporation. Under the application of organic manure or of organic manure plus inorganic fertilizers, the microbial utilization rate of carbon sources, including carbohydrates, carboxylic acids, aminoacids, polymers, phenols, and amines increased; while under inorganic fertilization plus straw incorporation, the utilization rate of polymers was the highest, and that of carbohydrates was the lowest. Our results suggested that long-term application of organic manure could increase the red soil MBC, MBN, and microbial utilization rate of carbon sources, improve soil fertility, and maintain a better crop productivity.
,
URL [本文引用: 2]
探讨了黄土丘陵区退耕种植10~40a柠条、沙棘、刺槐林地土壤有机碳库和相关指标的变化特征.结果表明,随退耕期延长,100cm深土层总有机碳及活性有机碳均呈显著增加趋势,但退耕10a 0~40cm浅层土有机碳库既有显著增加,40~100cm深层有机碳库到退耕20~40a才显著提高.3种还林地碳库活度和活性有机碳占总有机碳比例并未随土壤有机碳库增加而持续增长,而是在各土层间分别维持在0.35~0.75和0.25~0.42;碳库管理指数不仅随退耕期延长与土壤有机碳库变化一致, 即在浅层土呈直线快速增加,在深层土以指数函数相对缓慢增长,而且与有机碳库变化呈极显著正相关关系.此外,对比其他碳库指标,到退耕40a时仅碳库管理指数与土壤总有机碳及活性有机碳在不同林地差异变化一致,均为刺槐>沙棘>柠条,说明碳库管理指数能够良好的指示退耕还林土壤有机碳库的变化.
URL [本文引用: 2]
探讨了黄土丘陵区退耕种植10~40a柠条、沙棘、刺槐林地土壤有机碳库和相关指标的变化特征.结果表明,随退耕期延长,100cm深土层总有机碳及活性有机碳均呈显著增加趋势,但退耕10a 0~40cm浅层土有机碳库既有显著增加,40~100cm深层有机碳库到退耕20~40a才显著提高.3种还林地碳库活度和活性有机碳占总有机碳比例并未随土壤有机碳库增加而持续增长,而是在各土层间分别维持在0.35~0.75和0.25~0.42;碳库管理指数不仅随退耕期延长与土壤有机碳库变化一致, 即在浅层土呈直线快速增加,在深层土以指数函数相对缓慢增长,而且与有机碳库变化呈极显著正相关关系.此外,对比其他碳库指标,到退耕40a时仅碳库管理指数与土壤总有机碳及活性有机碳在不同林地差异变化一致,均为刺槐>沙棘>柠条,说明碳库管理指数能够良好的指示退耕还林土壤有机碳库的变化.
,
URL [本文引用: 2]
Based on a copping system of “winter green manuredouble rice”, the 4× 4 twofactor test was used to study the effects of different nitrogen (N) application levels and winter green manure application on soil active organic carbon (AOC) and the C pool management index. The aim was to explore the ecological effects of winter green manure on soil improvement and determine the appropriate application levels of N fertilizer and winter green manure for improved rice yield. Results were as follows: 1) Compared with the control, the SOC and AOC contents increased by 22.2% and 26.7%, respectively, under the green manure only treatment, but the SOC contents decreased by 0.6%-3.4% under the single N fertilizer treatment. Compared with the control, the soil C pool management index increased by 24.55 and 15.17 under the green manure only and green manure plus N fertilizer treatments, respectively, and reduced by 2.59 under the single N fertilizer treatment. Compared with no fertilization, the average microbial biomass carbon (MBC) increased by 54.0%, 95.2% and 14.3% under the green manure, green manure plus N fertilizer and single N fertilizer treatments, respectively. 2) The soil AOC content was significantly positively correlated with the C pool management index (P<0.01), and had a significant correlation with dissolved organic C and MBC (P<0.05). Rice yield was significantly positively correlated with AOC contents and the C pool management index, and the correlation coefficient was significantly greater than that with the total organic C. These results suggested that application of winter green manure at proper rates with inorganic fertilizer could increase SOC contents and the soil C pool management index, improve soil quality and fertility.
URL [本文引用: 2]
Based on a copping system of “winter green manuredouble rice”, the 4× 4 twofactor test was used to study the effects of different nitrogen (N) application levels and winter green manure application on soil active organic carbon (AOC) and the C pool management index. The aim was to explore the ecological effects of winter green manure on soil improvement and determine the appropriate application levels of N fertilizer and winter green manure for improved rice yield. Results were as follows: 1) Compared with the control, the SOC and AOC contents increased by 22.2% and 26.7%, respectively, under the green manure only treatment, but the SOC contents decreased by 0.6%-3.4% under the single N fertilizer treatment. Compared with the control, the soil C pool management index increased by 24.55 and 15.17 under the green manure only and green manure plus N fertilizer treatments, respectively, and reduced by 2.59 under the single N fertilizer treatment. Compared with no fertilization, the average microbial biomass carbon (MBC) increased by 54.0%, 95.2% and 14.3% under the green manure, green manure plus N fertilizer and single N fertilizer treatments, respectively. 2) The soil AOC content was significantly positively correlated with the C pool management index (P<0.01), and had a significant correlation with dissolved organic C and MBC (P<0.05). Rice yield was significantly positively correlated with AOC contents and the C pool management index, and the correlation coefficient was significantly greater than that with the total organic C. These results suggested that application of winter green manure at proper rates with inorganic fertilizer could increase SOC contents and the soil C pool management index, improve soil quality and fertility.
,
[本文引用: 1]
[本文引用: 1]
,
URLPMID:24066542 [本文引用: 1]
采用田间定位试验,设置不施肥(CK)、单施化肥(NPK)、稻草切碎全量还田+化肥(SNPK)和稻草全部烧灰还田+化肥(SINPK)4个处理,研究不同稻草还田方式对双季稻产量和土壤碳素形态、碳库管理指数的影响.结果表明: 2010—2011年两年四季的水稻平均产量SNPK与SINPK处理基本持平,但均显著高于NPK处理,增幅为5.7%~7.3%.与NPK和SINPK相比,SNPK能显著提高早稻产量,增幅在3.8%~8.8%.与单施化肥和稻草烧灰还田相比,SNPK提高了土壤不同形态碳素含量和碳库管理指数,总有机碳、活性碳、矿化碳和碳库管理指数分别提高了1.8%~2.0%、5.9%~6.5%、16.0%~41.6%和7.3%~7.8%.土壤碳库管理指数与早、晚稻产量呈显著抛物线关系,相关系数分别为0.999和0.980.SNPK能显著提高翌年早稻产量及土壤不同形态碳素含量和碳库管理指数.
URLPMID:24066542 [本文引用: 1]
采用田间定位试验,设置不施肥(CK)、单施化肥(NPK)、稻草切碎全量还田+化肥(SNPK)和稻草全部烧灰还田+化肥(SINPK)4个处理,研究不同稻草还田方式对双季稻产量和土壤碳素形态、碳库管理指数的影响.结果表明: 2010—2011年两年四季的水稻平均产量SNPK与SINPK处理基本持平,但均显著高于NPK处理,增幅为5.7%~7.3%.与NPK和SINPK相比,SNPK能显著提高早稻产量,增幅在3.8%~8.8%.与单施化肥和稻草烧灰还田相比,SNPK提高了土壤不同形态碳素含量和碳库管理指数,总有机碳、活性碳、矿化碳和碳库管理指数分别提高了1.8%~2.0%、5.9%~6.5%、16.0%~41.6%和7.3%~7.8%.土壤碳库管理指数与早、晚稻产量呈显著抛物线关系,相关系数分别为0.999和0.980.SNPK能显著提高翌年早稻产量及土壤不同形态碳素含量和碳库管理指数.
,
DOI:10.1111/j.1365-2389.2010.01342.xURL [本文引用: 1]
The term 'carbon sequestration' is commonly used to describe any increase in soil organic carbon (SOC) content caused by a change in land management, with the implication that increased soil carbon (C) storage mitigates climate change. However, this is only true if the management practice causes an additional net transfer of C from the atmosphere to land. Limitations of C sequestration for climate change mitigation include the following constraints: (i) the quantity of C stored in soil is finite, (ii) the process is reversible and (iii) even if SOC is increased there may be changes in the fluxes of other greenhouse gases, especially nitrous oxide (N(2)O) and methane. Removing land from annual cropping and converting to forest, grassland or perennial crops will remove C from atmospheric CO(2) and genuinely contribute to climate change mitigation. However, indirect effects such as conversion of land elsewhere under native vegetation to agriculture could negate the benefit through increased CO(2) emission. Re-vegetating degraded land, of limited value for food production, avoids this problem. Adding organic materials such as crop residues or animal manure to soil, whilst increasing SOC, generally does not constitute an additional transfer of C from the atmosphere to land, depending on the alternative fate of the residue. Increases in SOC from reduced tillage now appear to be much smaller than previously claimed, at least in temperate regions, and in some situations increased N(2)O emission may negate any increase in stored C. The climate change benefit of increased SOC from enhanced crop growth (for example from the use of fertilizers) must be balanced against greenhouse gas emissions associated with manufacture and use of fertilizer. An over-emphasis on the benefits of soil C sequestration may detract from other measures that are at least as effective in combating climate change, including slowing deforestation and increasing efficiency of N use in order to decrease N(2)O emissions.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.geoderma.2013.04.025URL [本文引用: 1]
The application of organic wastes as amendments to improve soil properties has become a very common practice, especially under Mediterranean semiarid conditions. We investigated changes in soil microbial activity under field conditions over a one-year period after the application of a single high dose (160 Mg ha(-1) dry mass) of three organic amendments subjected to different stabilization processes: a municipal solid waste compost (MSWC), and aerobically (AES) and anaerobically digested (ANS) sewage sludge. Measurements were made for microbial biomass carbon (MBC), basal respiration (BR) and metabolic quotient (MQ), and enzymatic activities evaluated by assays of catalase (CA), dehydrogenase (DA), urease (UA), protease (PA), phosphatase (PhA) and beta-glucosidase (beta GA). These organic amendments produced different effects on soil microbial activity depending on the treatment and stabilization processes of the organic wastes. The application of MSWC significantly increased (p <= 0.05) the MBC, with the highest content observed in summer season (1369.1 +/- 13.2 mg C kg(-1)). Soil microbial activity (BR, CA, DA and hydrolase activity) remained stable throughout the one-year period in MSWC. In soils amended with sewage sludges the content of MBC did not increase although shortly after application a significant rise (p <= 0.05) was observed for BR and MQ. The highest BR values were 23.88 +/- 13.2 and 9.28 +/- 0.81 mu g O-2 g(-1) h(-1) for AES and ANS, respectively. While MQ was increased to 38.05 +/- 1.8 and 18.21 +/- 0.76 ng O-2 mu g(-1) MBC h(-1), in AES and ANS respectively. Moreover, AES and ANS treatments led to different patterns in soil enzyme activity. In the short-term both treatments increased the oxidoreductase enzyme activity, with maximum of CA in AES (53.6 +/- 0.82 mu mol O-2 g(-1) min(-1)) and DA in ANS (7.2 +/- 0.4 mg INTF g(-1) h(-1)). Also in the initial stage they enhanced the activity of hydrolases like PA in ANS (0.72 +/- 0.01 mu mol NH4+ g(-1) h(-1)) and PM in AES (156 +/- 6.6 mu mol PNP g(-1) h(-1)). Our results indicate that the type of stabilization of the organic amendments determines soil microbial activity, which responds differently depending on the type of organic material added. (C) 2013 Elsevier B.V.
,
DOI:10.1016/j.geoderma.2014.01.018URL [本文引用: 1]
,
URLPMID:26259466 [本文引用: 1]
A four-year (2008-2012) field experiment was conducted to investigate the effects of different straw-returning regimes on soil total organic carbon (TOC), labile organic carbon (LOC) and the ratio of LOC to TOC (LOC/TOC) as well as TOC stock (SCS) and soil carbon pool management index (CPMI) in a farmland with maize-wheat double cropping system in Guanzhong Plain area, Shaanxi Province, China. The results indicated that soil TOC and LOC contents and SCS were significantly increased when wheat or maize straw was returned to field, and the increasing extent showed the rising order as follows: double straw-returning > single straw-returning > no straw-returning. Compared to no straw returning, a significant increase of TOC and LOC contents and SCS was found in the treatment of wheat straw chopping retention combined with maize straw chopping subsoiling retention (WC-MM), and CPMI of WC-MM was significantly higher than in the other treatments in 0-20 cm soil layer. Compared to no wheat straw returning, soil CPMIs in 0-10 cm and 10-20 cm soil layer increased by 19.1% and 67.9% for the wheat straw chopping returning treatment, and by 22.6% and 32.4% for the maize straw chopping subsoiling treatment, respectively. Correlation analysis showed that soil CPMI was a more effective index reflecting the sequestration of soil organic carbon in 0-30 cm soil layer than the ratio of LOC to TOC. This study thus suggested that WC-MM regime is the best straw-returning regime for soil organic carbon sequestration.
URLPMID:26259466 [本文引用: 1]
A four-year (2008-2012) field experiment was conducted to investigate the effects of different straw-returning regimes on soil total organic carbon (TOC), labile organic carbon (LOC) and the ratio of LOC to TOC (LOC/TOC) as well as TOC stock (SCS) and soil carbon pool management index (CPMI) in a farmland with maize-wheat double cropping system in Guanzhong Plain area, Shaanxi Province, China. The results indicated that soil TOC and LOC contents and SCS were significantly increased when wheat or maize straw was returned to field, and the increasing extent showed the rising order as follows: double straw-returning > single straw-returning > no straw-returning. Compared to no straw returning, a significant increase of TOC and LOC contents and SCS was found in the treatment of wheat straw chopping retention combined with maize straw chopping subsoiling retention (WC-MM), and CPMI of WC-MM was significantly higher than in the other treatments in 0-20 cm soil layer. Compared to no wheat straw returning, soil CPMIs in 0-10 cm and 10-20 cm soil layer increased by 19.1% and 67.9% for the wheat straw chopping returning treatment, and by 22.6% and 32.4% for the maize straw chopping subsoiling treatment, respectively. Correlation analysis showed that soil CPMI was a more effective index reflecting the sequestration of soil organic carbon in 0-30 cm soil layer than the ratio of LOC to TOC. This study thus suggested that WC-MM regime is the best straw-returning regime for soil organic carbon sequestration.
,
URL [本文引用: 1]
Based on a 25-year long-term fertilization experiment, the effects of different fertilizing treatments on labile organic carbon and carbon pool management index in cinnamon soil were analyzed. The results showed that compared with no fertilizer application (CK), the treatments of different fertilizer applications increased the contents of WSOC and LFOC in cinnamon soil. The contents of WSOC in the treatments of manure combined with chemical nitrogen and phosphorus fertilizer applications (M1NP, M2NP) were 93% and 99% higher than that of CK, respectively. The effect of higherrate manure applications with chemical fertilizer (M2N, M2NP) on LFOC were more significant, increasing the content of LFOC by 240% and 360% compared to CK, respectively. After longterm application of single chemical and manure fertilizer, the content of EOC kept no significant change, while it increased significantly under the treatment of applying manure combined with chemical fertilizer. The distribution proportion of WSOC increased under the application of single manure fertilizer but decreased in the other treatments. Compared with CK, the proportion of LFOC in SOC decreased significantly under the single nitrogen fertilization but increased significantly under higherrate manure application chemical fertilizer. The distribution proportion of EOC decreased under single chemical fertilizer application. Single chemical fertilizer application had a lower soil organic carbon pool management index (CPMI) compared with CK. Longterm application of manure alone or combined with chemical fertilizer were effective measures to promote CPMI. In these treatments, M2N and M2NP had the most significant effect, and the CPMI increased by 145% and 180% compared with CK, respectively. The correlation analysis indicated that under the longterm fertilization application, the contents of WSOC, LFOC and EOC were significantly positively correlated to each other, and had a strong positive correlation with the total organic carbon content.
URL [本文引用: 1]
Based on a 25-year long-term fertilization experiment, the effects of different fertilizing treatments on labile organic carbon and carbon pool management index in cinnamon soil were analyzed. The results showed that compared with no fertilizer application (CK), the treatments of different fertilizer applications increased the contents of WSOC and LFOC in cinnamon soil. The contents of WSOC in the treatments of manure combined with chemical nitrogen and phosphorus fertilizer applications (M1NP, M2NP) were 93% and 99% higher than that of CK, respectively. The effect of higherrate manure applications with chemical fertilizer (M2N, M2NP) on LFOC were more significant, increasing the content of LFOC by 240% and 360% compared to CK, respectively. After longterm application of single chemical and manure fertilizer, the content of EOC kept no significant change, while it increased significantly under the treatment of applying manure combined with chemical fertilizer. The distribution proportion of WSOC increased under the application of single manure fertilizer but decreased in the other treatments. Compared with CK, the proportion of LFOC in SOC decreased significantly under the single nitrogen fertilization but increased significantly under higherrate manure application chemical fertilizer. The distribution proportion of EOC decreased under single chemical fertilizer application. Single chemical fertilizer application had a lower soil organic carbon pool management index (CPMI) compared with CK. Longterm application of manure alone or combined with chemical fertilizer were effective measures to promote CPMI. In these treatments, M2N and M2NP had the most significant effect, and the CPMI increased by 145% and 180% compared with CK, respectively. The correlation analysis indicated that under the longterm fertilization application, the contents of WSOC, LFOC and EOC were significantly positively correlated to each other, and had a strong positive correlation with the total organic carbon content.