删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

小麦、玉米两熟秸秆还田土壤中6种有机酸对小麦纹枯病的化感作用

本站小编 Free考研考试/2021-12-26

赵绪生,1,2, 齐永志,1,2, 闫翠梅1,2, 甄文超,2,3,41河北农业大学植物保护学院,河北保定 071001
2省部共建华北作物改良与调控国家重点实验室,河北保定 071001
3河北农业大学农学院,河北保定 071001
4河北省作物生长调控重点实验室,河北保定 071001

Allelopathy of Six Organic Acids on Wheat Sheath Blight in the Soil of Winter Wheat-Summer Maize Double Cropping Straw Returning System

ZHAO XuSheng,1,2, QI YongZhi,1,2, YAN CuiMei1,2, ZHEN WenChao,2,3,41College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
2State Key Laboratory for Crop Improvement and Control in North China, Baoding 071001, Hebei
3College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei
4Hebei Key Laboratory of Crop Growth Control, Baoding 071001, Hebei

通讯作者: 甄文超,E-mail: wenchao@hebau.edu.cn

赵绪生和齐永志为同等贡献作者。
责任编辑: 岳梅
收稿日期:2020-02-29接受日期:2020-04-2网络出版日期:2020-08-01
基金资助:国家重点研发计划.2017YFD0300906
国家科技支撑计划.2012BAD04B06
河北省教育厅项目.ZD2016162
河北省自然科学基金.C2016204211
河北省现代农业产业技术体系小麦产业技术创新团队建设项目.HBCT2018010205


Received:2020-02-29Accepted:2020-04-2Online:2020-08-01
作者简介 About authors
赵绪生,E-mail: zhaoxusheng2000@yeah.net

齐永志,E-mail: qiyongzhi1981@163.com





摘要
【目的】冬小麦、夏玉米一年两熟是中国北方最广泛的农作制度,中国北方小麦、玉米生产普遍采用秸秆还田的耕作方式,关于秸秆还田对小麦土传病害的影响一直存在争议。通过分析不同秸秆还田年限地块耕层土壤中的主要有机酸对小麦幼苗生长、禾谷丝核菌(Rhizoctonia cerealis)及纹枯病发生的化感作用,明确我国北方冬小麦、夏玉米一年两熟种植体系下秸秆还田对小麦纹枯病发生的影响。【方法】利用GC-MS技术分析玉米秸秆还田地块耕层土壤乙酸乙酯提取物中化学物质的种类与含量,并分别用氯化三苯基四氮唑(TTC)还原法、电导率法、氮蓝四唑光化(NBT)还原法和愈创木酚比色法测定含量较高的6种有机酸对小麦幼苗根系活力、根系细胞膜透性、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性的影响,用常规方法测定其对禾谷丝核菌和纹枯病发生的影响。【结果】秸秆还田地块耕层土壤中含有机酸、烷烃、醇、酰胺及醛类等化学物质,相对含量分别为45.45%、17.70%、17.08%、6.12%和5.44%;含量较高的有机酸类物质包括邻羟基苯甲酸(9.24%)、3-苯基-2-丙烯酸(4.12%)、对羟基苯甲酸(3.21%)、4-羟基-3,5-二甲氧基苯甲酸(2.26%)、二十一烷酸(1.88%)、4-甲氧基邻氨基苯甲酸(1.73%)、8-十八碳烯酸(0.76%)和3-(4-羟基-3-甲氧基苯基)-2-丙烯酸(0.52%)。0.08—10.0 μg·mL-1浓度的4-甲氧基邻氨基苯甲酸和3-(4-羟基-3-甲氧基苯基)-2-丙烯酸对禾谷丝核菌的菌丝生长(10.0 μg·mL-14-甲氧基邻氨基苯甲酸除外)、菌丝干重和菌核数量均表现明显促进作用,且2种物质在土壤中的含量均随秸秆还田年限延长呈增多趋势。0.4和0.08 μg·mL-1邻羟基苯甲酸对禾谷丝核菌的菌丝生长和菌核形成有明显促进作用;而50.0 μg·mL-1邻羟基苯甲酸和4-羟基-3-甲氧基-苯甲酸,以及0.4—50.0 μg·mL-1苯甲酸均表现为抑制作用。在2.0—50.0 μg·mL-1浓度范围内,随着6种有机酸浓度的提高,其对小麦幼苗生长的抑制作用越强,对羟基苯甲酸抑制作用最强,其次是邻羟基苯甲酸,4-甲氧基邻氨基苯甲酸最弱。0.4—50.0 μg·mL-1浓度的3-(4-羟基-3-甲氧基苯基)-2-丙烯酸、4-甲氧基邻氨基苯甲酸、邻羟基苯甲酸和对羟基苯甲酸均加重小麦纹枯病发生,其中,3-(4-羟基-3-甲氧基苯基)-2-丙烯酸助长作用最强,发病率和病情指数最高增幅分别达49.0%和46.7%;而苯甲酸和4-羟基-3-甲氧基-苯甲酸对小麦纹枯病发生无显著影响。【结论】冬小麦、夏玉米一年两熟秸秆还田土壤中含有机酸、酯、烃、酰胺及醛类等化学物质,有机酸类物质相对含量最高。3-(4-羟基-3-甲氧基苯基)-2-丙烯酸、4-甲氧基邻氨基苯甲酸、邻羟基苯甲酸和对羟基苯甲酸在一定浓度下均可助长小麦纹枯病的发生,其中3-(4-羟基-3-甲氧基苯基)-2-丙烯酸助长作用最强,而苯甲酸和4-羟基-3-甲氧基-苯甲酸对纹枯病发生无明显影响。还田秸秆在土壤中腐解产生的有机酸类物质促进病原菌生长、抑制小麦根系生理活性和生长的化感作用,可能是中国北方小麦、玉米两熟秸秆还田条件下小麦纹枯病加重发生的主要原因之一。
关键词: 秸秆还田;小麦纹枯病;禾谷丝核菌;GC-MS;化感作用;有机酸

Abstract
【Objective】Double cropping of winter wheat and summer maize is the most extensive farming system in northern China. Straw returning has been widely used in wheat and maize production. But, the effect of straw returning on the occurrence of soil borne diseases of wheat has been controversial. The objective of this study is to analyze the main chemical constituents in the cultivated-layer soil with different straw returning years and the allelopathic effects of the main organic acids on the growth of wheat seedlings, the mycelium growth and sclerotia formation of Rhizoctonia cerealis and occurrence of wheat sheath blight (WSB), and to understand the relationship between straw returning and WSB incidence.【Method】Gas chromatography-mass spectrometry (GC-MS) technique was used to analyze the types and contents of chemical substances in the extract of ethyl acetate from the cultivated soil where maize straw returning, and the effects of 6 organic acids with higher content on the root activity, root cell membrane permeability, superoxide dismutase (SOD) and peroxidase (POD) activity of wheat seedlings were determined with the TTC reduction, electrical conductivity, NBT photoreduction and guaiacol colorimetry methods, respectively. Meanwhile, the effects of these organic acids on the mycelium growth, sclerotium formation and occurrence of WSB were determined by the conventional methods.【Result】The relative contents of organic acids, alkanes, alcohols, amides, and aldehydes in the cultivated-layer soil and straw returning were 45.45%, 17.70%, 17.08%, 6.12%, and 5.44%, respectively. Organic acids mainly included o-hydroxybenzoic acid (9.24%), 3-phenyl-2-acrylic acid (4.12%), p-hydroxybenzoic acid (3.21%), 4-hydroxy-3,5- dimethoxybenzoic acid (2.26%), heneicosanoic acid (1.88%), 4-methoxy-anthranilic acid (1.73%), 8-octadecanoic acid (0.76%) and 3-(4-hydroxy-3- methoxyphenyl)-2-acrylic acid (0.52%). 4-methoxy-anthranilic acid and 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid at 0.08-10.0 μg·mL-1had significant promoting effects on mycelial growth (expect 4-methoxy-anthranilic acid at 10.0 μg·mL-1), dry weight and sclerotium formation of R. cerealis, and the relative content of the two substances increased with the extension of straw returning years. O-hydroxybenzoic acid significantly promoted mycelial growth and sclerotia formation of R. cerealis at 0.4 and 0.08 μg·mL-1. In contrast, 50.0 μg·mL-1 of o-hydroxybenzoic acid and 4-hydroxyl-3-methoxy-benzoic acid, and 0.4-50.0 μg·mL-1 of benzoic acid all showed inhibitory effects. All 6 organic acids at concentrations of 2.0-5.0 μg·mL-1 inhibited the growth of wheat seedlings in a dose-dependent manner. The inhibitory effect of p-hydroxybenzoic acid was the strongest, followed by o-hydroxybenzoic acid, and 4-methoxy-anthranilic acid was the weakest. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid, 4-methoxyanthranilic acid, o-hydroxybenzoic acid, and p-hydroxybenzoic acid at concentrations of 0.4-50.0 μg·mL-1 aggravated the occurrence of WSB. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid had the strongest enhancing effect, with the incidence and disease index increased by 49.0% and 46.7%, respectively. Benzoic acid and 4-hydroxy-3-methoxyphenyl-benzoic acid had no significant effect on the occurrence of WSB.【Conclusion】Organic acids, esters, hydrocarbons, amides, and aldehydes were found in the cultivated-layer soil in the winter wheat-summer maize double cropping straw returning system. Organic acids were the most abundant of those chemicals. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid, 4-methoxyanthranilic acid, o-hydroxybenzoic acid, and p-hydroxybenzoic acid at a certain concentration can promote the occurrence of WSB. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid has the strongest stimulatory effect, while benzoic acid and 4-hydroxy-3-methoxy-benzoic acid have no effect on the occurrence of WSB. Allelopathic effects of organic acids in the cultivated-layer soil, including the promotion on pathogen growth and inhibition on physiological activity and growth of wheat roots, may be one of the main reasons for the serious occurrence of WSB in the straw returning region in northern China.
Keywords:straw returning;wheat sheath blight;Rhizoctonia cerealis;GC-MS;allelopathy;organic acid


PDF (468KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
赵绪生, 齐永志, 闫翠梅, 甄文超. 小麦、玉米两熟秸秆还田土壤中6种有机酸对小麦纹枯病的化感作用[J]. 中国农业科学, 2020, 53(15): 3095-3107 doi:10.3864/j.issn.0578-1752.2020.15.010
ZHAO XuSheng, QI YongZhi, YAN CuiMei, ZHEN WenChao. Allelopathy of Six Organic Acids on Wheat Sheath Blight in the Soil of Winter Wheat-Summer Maize Double Cropping Straw Returning System[J]. Scientia Acricultura Sinica, 2020, 53(15): 3095-3107 doi:10.3864/j.issn.0578-1752.2020.15.010


0 引言

【研究意义】冬小麦、夏玉米一年两熟是中国北方最广泛的农作制度。自1990年以来,中国北方小麦-玉米一年两熟区普遍采用秸秆还田的耕作方式,每年秸秆还田面积约1 100万公顷。秸秆还田不仅有利于提高土壤有机质含量、调节土壤温湿度、提高生产效率,还能减少因焚烧秸秆造成的环境污染[1,2]。但近年来发现,由禾谷丝核菌(Rhizoctonia cerealis)引起的小麦纹枯病(wheat sheath blight,WSB)在长期秸秆还田地块呈加重趋势[3,4,5],已成为中国北方小麦优质、高产的重要限制因素[6,7,8,9]。据统计,近十年来,小麦纹枯病在河南、山东、河北3省麦区每年发生总面积高达150万公顷以上,一般发病地块减产5%—30%,严重地块减产超过50%[7,8,9]。关于秸秆还田对小麦土传病害的影响一直存在争议,明确秸秆还田与当前小麦纹枯病发生加重的相关性,可为小麦纹枯病综合防控提供参考。【前人研究进展】有研究者认为还田秸秆为小麦土传病原菌存活、增殖营造了适宜的生态环境条件,进而提高了病原菌基数,最终导致土传病害重发[10,11,12]。但是,秸秆还田也可提高土壤有机质含量,增加土壤中拮抗菌数量,增强作物抗病性,从而抑制病害发生[13,14]。CHOU等[15]研究表明,腐熟稻渣中检测出对羟基苯甲酸等5种有机物质,该类物质对水稻和莴苣种子的胚根生长有显著抑制作用;张玉铭等[16]研究发现,在播种后第5—10天覆盖麦秸释放出的水溶性毒素(化感物质)对玉米幼苗生长的抑制作用最强。玉米秸秆对小麦幼苗的相克作用最强,但对大豆幼苗生长的他感相生和玉米幼苗的自感相生作用次之;小麦秸秆覆盖后释放的化感物质能抑制玉米株高、干重、根干重等生物指标[17]。笔者所在实验室前期研究发现,盆栽条件下,浇灌0.12—0.48 g·mL-1的玉米秸秆腐解液,显著加重了纹枯病发病程度;GC-MS分析发现玉米秸秆腐解物中苯甲酸衍生物和邻苯二甲酸酯类物质相对含量较高[18]。【本研究切入点】基于小麦、玉米两熟秸秆还田地区小麦纹枯病呈现加重趋势的生产现实问题,以秸秆还田土壤中主要有机化学物质对小麦纹枯病的化感作用为切入点,明确秸秆还田麦区纹枯病重发机制[19,20]。【拟解决的关键问题】利用GC-MS技术分析不同秸秆还田年限地块耕层土壤中的主要化学物质成分,通过模拟试验测定相对含量较高的6种有机酸对小麦幼苗生长、禾谷丝核菌生长及纹枯病发生的化感作用,明确秸秆还田与小麦纹枯病重发的相关性,为小麦纹枯病综合防控提供科学依据。

1 材料与方法

1.1 小麦、玉米两熟秸秆还田土壤中有机化学物质的GC-MS分析

试验区在河北农业大学望都试验基地(E115°05′,N38°39′)。试验地为壤土、肥力中等。采用小麦、玉米一年两熟秸秆还田种植方式,每年收获玉米后,秸秆粉碎还田,并旋耕至0—20 cm土层;小麦收获后,秸秆粉碎还田,覆盖于土壤表面。该地块2008—2010年小麦纹枯病发病较重。2011—2018年,每年10月上旬播种小麦,品种为良星66(国审麦2008010),播量225 kg·hm-2,行距15 cm,播深4—5 cm。底肥施120 kg·hm-2 N,135 kg·hm-2 P2O5和105 kg·hm-2 K2O。12月上旬灌溉一次,次年3月下旬追肥(120 kg·hm-2 N)并第二次灌溉,灌溉量均为600 m3·hm-2。6月中旬播种玉米,品种为郑单958(国审玉20000009),密度69 000株/hm2,行距60 cm。随播种施225 kg·hm-2 N,135 kg·hm-2 P2O5和105 kg·hm-2 K2O。播后灌水600 m3·hm-2

分别于2012、2015和2018年小麦拔节期(纹枯病发生高峰期),每年随机选取12个样点,用直径5 cm土钻在小麦根系周围取0—20 cm土壤,混匀过40目筛后,用四分法取200 g土壤样品;然后用乙酸乙酯按质量体积比1:1萃取3次,合并萃取液,室温下减压浓缩至2 mL后冷干;再加入250 μL硅烷化试剂(BSTFA:吡啶=5:1),并在80℃水浴2 h,得耕层土壤提取液;提取液经0.45 μm滤膜过滤后利用质谱联机(Agilent 7890A/5975C GCMS,USA)进行分析[18]

色谱分析条件:毛细管柱(HP-5,Crosslinked 5% pH ME Siloxanle,30 m×0.25 mm×0.25 μm)进样口温度250℃;程序升温:柱温50℃(2 min),以6℃·min-1程序升温至250℃(保持15 min);载气:He;流速:1.0 mL·min-1。质谱条件:EI源(电子轰击源);轰击电压70 eV;扫描范围m/z:30—600;扫描速度0.2 s扫全程;离子源温度:200℃;四极杆温度:150℃。

1.2 6种有机酸对禾谷丝核菌的化感效应测定

根据1.1中所测主要有机酸及其含量,选取4-甲氧基邻氨基苯甲酸、3-(4-羟基-3-甲氧基苯基)-2-丙烯酸、4-羟基-3-甲氧基-苯甲酸、邻羟基苯甲酸、苯甲酸和对羟基苯甲酸6种有机酸(购自Sigma公司),分别定量称取,用无菌水充分溶解后配制成500 μg·mL-1母液;母液用无菌水依次稀释至100、20、4和0.8 μg·mL-1,再经0.22 μm滤膜过滤;取6 mL滤液加入含有54 mL 50℃ PDA培养基的三角瓶中,摇匀得含有机酸分别为50.0、10.0、2.0、0.4和0.08 μg·mL-1的培养基,并倒入直径为9 cm培养皿中,每皿15 mL,以加入等体积无菌水为对照,每种有机酸每浓度4次重复,每重复4皿。

无菌条件下,分别在已培养3 d的禾谷丝核菌(RHD1205,河北农业大学植物病害生态学研究室提供)菌落边缘打制直径0.5 cm菌饼,将菌饼转接到上述含不同有机酸、铺有无菌玻璃纸的培养基上,25℃黑暗倒置培养。在菌落未长满培养皿前,采用十字交叉法测量各处理菌落直径;黑暗培养21 d后统计每皿禾谷丝核菌形成菌核数量,并于80℃条件下烘干至恒重;用无菌镊子将菌丝从玻璃纸上刮下,称其鲜重后放入80℃鼓风干燥箱中烘至恒重称量。

1.3 6种有机酸对小麦幼苗生长及其根系生理指标的化感效应测定

采集农田土壤,类型为壤土,有机质为1.34%,全氮、速效磷和速效钾含量分别88.6、12.5和48.7 mg·kg-1,pH 6.8,自然阴凉处风干并过40目筛;再经121℃湿热灭菌3次(60 min/次),室温晾干后分别取3 kg壤土置于20 cm×20 cm×25 cm的营养钵中。每钵播种50粒表面经1% HgCl2消毒(5 min)[12]的小麦种子,品种为良星66(国审麦2008010)。分别用50.0、10.0、2.0、0.4和0.08 μg·mL-1浓度的6种有机酸稀释液均匀浇灌,每钵300 mL,以浇灌等体积无菌水为对照。每处理3次重复,每重复4钵。自然条件下培养50 d后,测定各处理小麦根数、根长和根系干鲜重,每浓度处理各测2钵,共6钵;取每浓度处理剩余6钵小麦根系,分别用2,3,5-三苯基氯化四氮唑(TTC)还原法、电导率法、氮蓝四唑光化还原法和愈创木酚比色法测定小麦幼苗根系活力、根系细胞膜透性、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性[21,22]

1.4 6种有机酸对小麦纹枯病发生的影响测定

分别将禾谷丝核菌RHD1205接种到PDA培养基上,在菌落外缘打取直径为0.5 cm菌饼,并接种至含有200 g无菌煮熟麦粒的500 mL三角瓶中,每瓶接种20个菌饼。25℃黑暗培养40 d后,摇匀得带菌的麦粒接种体。

称取90 g接菌种体接种到灭菌壤土中并充分混匀,分别播种3个小麦品种(良星66,国审麦2008010;石新828,冀审麦2013012;邯6172,国审麦2003036,均为感病品种),然后每钵浇灌不同浓度有机酸稀释液300 mL,播种、培养方法同上。以浇灌等体积无菌水为对照,每品种每浓度处理3次重复,每重复3钵。培养50 d后,调查小麦纹枯病发病率和病情指数[18]

1.5 数据统计分析

采用SPSS13.0软件的新复极差法(Duncan’s multiple range test)进行方差分析。参照WILLIAMSON等[23]的方法,采用化感效应系数(RI)进行化感效应分析,当T≥C时,RI=1-C/T;当T<C时,RI=T/C-1。式中,C为对照值,T为处理值。当RI≥0时,为促进作用;当RI<0时,为抑制作用,RI绝对值的大小与作用强度一致。

2 结果

2.1 小麦、玉米两熟秸秆还田土壤乙酸乙酯提取物中主要有机化学物质

利用GC/MS对土壤乙酸乙酯提取物中主要有机化学物质成分进行分析,2012、2015和2018年检测结果如表1表2所示,在土壤乙酸乙酯提取物中,有机酸类物质含量均相对最高,平均占总鉴定物质的45.45%;其次是烷烃类、醇类和酰胺类,分别占17.70%、17.08%和6.12%;醛类、酯类相对含量较低,各占5.44%和3.01%。2012年土壤中检测到萘类、烯烃类,但2015年和2018年未检测到。2018年检测到安自香酸盐类物质,但2012年和2015年均未检测到。

Table 1
表1
表1不同年度土壤乙酸乙酯提取物中检测出的有机物质
Table 1Organic substances detected in ethyl acetate extracts of soil collected in different years
保留时间a
Retention time (min)
化合物名称b
Compound name
峰面积cArea (%)
201220152018平均Average
6.33间二甲苯Xylene0.830.921.020.92
6.49N-乙基乙酰胺N-ethyl-acetamide7.338.049.038.13
6.72苯酚Phenol-0.250.310.28
7.34N,N-二乙基甲酰胺N,N-diethyl formamide1.310.451.611.12
7.572,3-二甲基环氮乙烷2,3-dimethyl-ring nitrogen oxide1.511.681.861.68
7.97碳酸Carbonic acid1.071.191.321.19
8.24N,N-二乙基乙酰胺N,N-diethyl acetamide4.314.785.314.80
8.78N-乙基丙胺N-ethyl-propylamine0.61-0.750.68
9.232-甲氧基苯酚2-methoxyphenol1.931.142.381.82
10.33己酸Hexanoate1.571.741.931.75
10.572-甲基-3-羟基-4-吡喃酮2-methyl-3-hydroxy-4-pyrone0.230.260.200.23
12.97苯并噻唑Benzothiazole0.250.280.310.28
13.763,5-二甲基苯甲醛3,5-dimethyl-benzaldehyde6.837.587.427.28
14.23对羟基苯甲酸P-hydroxybenzoic acid3.113.203.313.21
15.36邻羟基苯甲酸O-hydroxybenzoic acid8.299.2010.229.24
15.89十四烷Tetradecane0.230.260.080.19
16.133-羟基- 4-甲氧基-苯甲醛 3-hydroxy-4-methoxy-benzaldehyde0.130.14-0.14
17.774-羟基- 3-甲氧基-苄基醇 4-hydroxy-3-methoxy-benzyl alcohol0.150.170.180.17
19.87二十一烷酸Heneicosanoic acid1.872.141.631.88
20.204-羟基-3-甲氧基-苯甲酸4-hydroxy-3-methoxy-benzoic acid0.850.941.050.95
20.372,3,8-三甲基萘2,3,8-trimethylnaphtho0.370.410.160.31
20.922,6,10-三甲基十五烷2,6,10-trimethyl-pentadecane1.21-1.491.35
21.864-羟基-3,5-二甲氧基苯甲酸 4-hydroxy-3,5-dimethoxybenzoic acid2.032.252.502.26
22.801-(4-羟基-3,5-二甲氧基苯基)-乙酮1-(4-hydroxy-3,5-dimethoxy-phenyl)-ethanone0.730.410.900.68
23.783-苯基-2-丙烯酸3-phenyl-2-acrylic acid3.604.104.664.12
23.823-(4-羟基-3-甲氧基苯基)-2-丙烯酸3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid0.300.420.830.52
25.572-氨基-5-甲氧基苯甲酸2-amino-5-methoxybenzoic acid0.921.021.131.02
25.716-甲氧基-2-苯并恶唑酮6-methoxy-2-benzoxazolone0.710.490.870.69
26.812-甲基戊基-邻苯二甲酸异二丁酯2-methyl-pentyl-isobutylphthalate dibutyl5.776.117.116.33
27.289-十六碳烯酸Palmitoleic acid0.350.390.430.39
27.63三十一烷Hentriacontane0.470.520.580.52
28.278-十八碳烯酸8-octadecenoic acid0.650.750.870.76
29.75三十四烷Thirty-four alkyl9.3410.3711.5110.41
32.21乙酸三十酯Thirty acetate ester-0.260.280.27
32.35三十六烷Thirty-six alkyl0.14-0.160.15
32.62甲酸癸酯Carboxylic acid decyl ester8.759.418.188.78
33.79四十三烷Forty-three alkyl0.220.240.270.24
34.76十九酸Nineteen acid0.250.180.310.25
34.884-甲氧基邻氨基苯甲酸4-methoxy-anthranilic acid1.721.731.751.73
36.69邻苯二甲酸二丁酯Dibutyl phthalate6.256.447.706.80
36.87二十七醇Twenty-seven alcohol0.23-0.280.26
37.79邻苯二甲酸异戊酯Isopentyl acetate phthalate0.610.480.750.61
a:化合物在色谱柱中的保留时间Retention time of compounds in the column;b:三甲基硅衍生物Identified as a trimethylsilyation (TMS) derivative;c:色谱峰面积,以百分数表示Area of peak in the chromatogram expressed as a percentage;“-”:含量低未检测出The content was too low and couldn’t be detected

新窗口打开|下载CSV

Table 2
表2
表2不同年度土壤乙酸乙酯提取物中检测出的各类有机物质所占比例
Table 2Proportion of various organic substances detected in ethyl acetate extracts of soil collected in different years (%)

Year

Acid

Alcohol
烷烃
Alkanes
酰胺
Amide

Aldehyde

Ester

Naphthalene
烯烃
Olefins
苯酸盐
Benzoate
其他
Others
201242.8615.6510.964.765.767.630.355.38-15.61
201543.1117.9327.387.284.220.79---12.29
201850.3717.6514.756.336.330.60--3.0918.78
平均Average45.4517.0817.706.125.443.010.355.383.0915.56
“-”:含量低未检测出 The content was too low and couldn’t be detected

新窗口打开|下载CSV

检测到的有机酸类物质中,主要包含邻羟基苯甲酸(9.24%)、3-苯基-2-丙烯酸(4.12%)、对羟基苯甲酸(3.21%)、4-羟基-3,5-二甲氧基苯甲酸(2.26%)、二十一烷酸(1.88%)、4-甲氧基邻氨基苯甲酸(1.73%)、8-十八碳烯酸(0.76%)和3-(4-羟基-3-甲氧基苯基)-2-丙烯酸(0.52%)。其他类化学物质中,三十四烷、邻苯二甲酸二丁酯、甲酸癸酯、N-乙基乙酰胺、3,5-二甲基苯甲醛和2-甲基戊基-邻苯二甲酸异二丁酯等相对含量较高。对比2012、2015和2018年3次检测结果发现,随着秸秆还田时间的延长,麦田耕层土壤中邻羟基苯甲酸、4-羟基-3,5-二甲氧基苯甲酸、3-苯基-2-丙烯酸、9-十六碳烯酸和3-(4-羟基-3-甲氧基苯基)-2-丙烯酸等相对含量均呈增加趋势。

2.2 6种有机酸对禾谷丝核菌的作用

6种有机酸中除苯甲酸外,其他有机酸对禾谷丝核菌菌丝生长、菌丝干重和菌核形成均表现低浓度促进、高浓度抑制的作用,但不同种类有机酸对上述指标影响程度差异明显(表3)。其中,0.08—10.0 μg·mL-1浓度的4-甲氧基邻氨基苯甲酸和3-(4-羟基-3-甲氧基苯基)-2-丙烯酸对禾谷丝核菌的菌丝生长(10.0 μg·mL-1 4-甲氧基邻氨基苯甲酸除外)、菌丝干重和菌核数量均表现明显促进作用,RI在0.03—0.23。而50.0 μg·mL-1浓度的 4-羟基-3-甲氧基-苯甲酸能抑制禾谷丝核菌菌丝生长,降低菌丝干重、菌核干重和菌核数量,RI分别为-0.11、-0.14、-0.13和-0.17,其他浓度均无显著作用。

Table 3
表3
表36种有机酸对禾谷丝核菌菌丝生长和菌核形成的影响
Table 3Effects of 6 organic acids on mycelium growth and sclerotium formation of R. cerealis
有机酸
Organic acid
浓度
Concentration
(μg·mL-1)
菌落直径
Diameter of colony
(cm)
菌丝干重
Dry weight of mycelium
(g per dish)
菌核数
Number of sclerotium
(per dish)
菌核干重
Dry weight of sclerotium
(mg per dish)
Mean±SDRIMean±SDRIMean±SDRIMean±SDRI
邻羟基苯甲酸
O-hydroxybenzoic acid
50.03.4±0.1d-0.110.41±0.20c-0.0720.6±1.2d-0.1013.9±0.6c-0.05
10.03.8±0.1c0.000.50±0.10ab0.1221.6±1.3cd-0.0614.8±0.5ab0.01
2.03.9±0.1b0.030.51±0.10a0.1422.8±0.5c015.7±1.2a0.06
0.44.0±0.2b0.050.52±0.10a0.1525.5±0.5b0.1015.7±1.2a0.06
0.084.5±0.2a0.160.56±0.10a0.2127.7±0.5a0.1716.5±1.3a0.11
对羟基苯甲酸
P-hydroxybenzoic acid
50.03.5±0.3cd-0.080.45±0.20ab0.0219.3±1.6de-0.1613.0±0.4c-0.12
10.03.6±0.2cd-0.050.47±0.10ab0.0620.2±0.8d-0.1213.9±0.2c-0.05
2.03.6±0.1cd-0.050.47±0.10ab0.0621.4±1.5d-0.0714.6±1.2ab-0.01
0.43.7± 0.1cd-0.030.48±0.10ab0.0823.0±1.6c014.8±1.3ab0.01
0.083.9±0.2bc0.030.50±0.20a0.1226.1±2.0b0.1214.8±1.2a0.01
苯甲酸
Benzoic acid
50.03.0±0.1e-0.210.34±0.10d-0.2317.0±2.4f-0.2611.5±0.2d-0.22
10.03.1±0.2de-0.180.41±0.10c-0.0717.8±2.1ef-0.2212.2±1.3cd-0.17
2.03.2±0.2de-0.160.41±0.10c-0.0718.8±1.5e-0.1813.0±1.5c-0.12
0.43.3±0.1d-0.130.41±0.20c-0.0720.2±1.6d-0.1213.0±0.5c-0.12
0.083.4±0.1d-0.110.40±0.10c-0.0922.9±1.5c0.0013.2±0.3c-0.10
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸3-(4-hydroxy-3-
methoxyphenyl)-
2-acrylic acid
50.03.9±0.2bc0.030.44±0.10b0.0022.0±2.3d-0.0414.8±1.2ab0.01
10.04.0±0.1b0.050.53±0.20a0.1724.8±1.6b0.0815.7±2.1a0.06
2.04.0±0.3b0.050.54±0.20a0.1925.3±1.4b0.0916.8±1.5a0.13
0.44.2±0.1a0.100.55±0.10a0.2026.1±1.5b0.1216.8±1.2a0.13
0.084.5±0.1a0.160.57±0.20a0.2329.6±0.6a0.2317.1±1.0a0.14
4-羟基-3-甲氧基-苯甲酸
4-hydroxy-3-
methoxy-
benzoic acid
50.03.4±0.1d-0.110.38±0.20cd-0.1419.0±0.8d-0.1712.8±1.0cd-0.13
10.03.5±0.2cd-0.080.46±0.10b0.0420.9±1.3c-0.0913.6±0.9bc-0.10
2.03.6±0.1cd-0.050.47±0.20ab0.0621.1±2.4c-0.0814.5±0.7b-0.01
0.43.7±0.1c-0.030.48±0.10ab0.0822.6±1.6c-0.0114.5±0.5b-0.01
0.083.9±0.2bc0.030.49±0.20ab0.1025.7±1.4b0.1114.8±0.6ab0.01
4-甲氧基邻氨基苯甲酸
4-methoxy-
anthranilic acid
50.03.8±0.1c00.42±0.20b-0.0521.2±1.6d-0.0714.3±0.2b-0.03
10.03.9±0.1bc0.030.51±0.10a0.1424.9±1.7b0.0815.2±0.4a0.03
2.04.0±0.2b0.050.52±0.10a0.1525.5±1.5b0.1016.2±1.0a0.09
0.44.1±0.1b0.070.53±0.10a0.1725.2±0.3b0.0916.2±1.0a0.09
0.084.3±0.2ab0.050.55±0.10a0.2028.6±1.2a0.2016.5±1.2a0.11
CK03.8±0.1c0.44±0.10b22.9±1.6c14.7±1.1ab
表中值为每组重复的平均值;同列数据后不同字母表示处理间差异显著(P<0.05)。下同
Values in the table are the mean of each group of replicates; Different letters in the same column after the data indicate significant difference among treatments at P<0.05 level. The same as below

新窗口打开|下载CSV

0.4和0.08 μg·mL-1邻羟基苯甲酸均明显促进了禾谷丝核菌的菌丝生长,提高了菌丝干重,RI最高达0.21;而50.0 μg·mL-1浓度处理对菌落直径、菌核数量和菌核干重均表现明显抑制作用,RI分别为-0.11、-0.10和-0.05。苯甲酸在测试浓度>0.4 μg·mL-1的所有处理对禾谷丝核菌的菌丝生长、菌丝干重、菌核数量和菌核干重均表现明显抑制作用,且抑制作用随浓度增高逐渐增强,RI最高为-0.26。>2.0 μg·mL-1处理的对羟基苯甲酸对禾谷丝核菌的菌核数量、菌核干重也均表现明显抑制作用,RI在-0.16—-0.01,而≤0.4 μg·mL-1浓度的处理对羟基苯甲酸对菌丝生长无显著作用。

2.3 6种有机酸对小麦幼苗生长的影响

6种有机酸对小麦幼苗生长影响的测定结果如表4所示,除0.4和0.08 μg·mL-1 4-甲氧基邻氨基苯甲酸外,随着6种有机酸浓度的增高,其对小麦幼苗生长的抑制作用增强。对羟基苯甲酸抑制作用最强,50 μg·mL-1浓度处理的种子萌发率为0;其次是邻羟基苯甲酸,50 μg·mL-1浓度处理后小麦根系鲜重仅为0.1 g,地上部单株鲜重不足0.05 g;4-甲氧基邻氨基苯甲酸抑制作用最弱,最高浓度处理对小麦单株根数、根长、根系鲜重和地上部鲜重的RI分别为-0.28、-0.58、-0.45和-0.30。

Table 4
表4
表46种有机酸对小麦幼苗生长的作用
Table 4Effects of 6 organic acids on growth of wheat seedlings
有机酸
Organic acid
浓度
Concentration (μg·mL-1)
根数
Number of root
根长
Length of root (cm)
根鲜重
Fresh weight of root (g)
地上部鲜重
Fresh weight of shoot (g)
Mean±SDRIMean±SDRIMean±SDRIMean±SDRI
邻羟基苯甲酸
O-hydroxybenzoic acid
50.02.1±0.1e-0.603.4±0.5j-0.840.1±0g-0.980j-1.00
10.02.6±0.1d-0.516.4±0.6f-0.700.9±0.1f-0.841.9±0.1i-0.82
2.02.8±0.1d-0.4713.5±0.2d-0.372.0±0.1e-0.643.4±0.2g-0.67
0.42.9±0.1d-0.4517.7±0.3b-0.172.0±0.2e-0.645.0±0.6ef-0.52
0.083.4±0.2c-0.3619.7±0.4b-0.083.3±0.2cd-0.416.8±0.3d-0.35
对羟基苯甲酸
P-hydroxybenzoic acid
50.0--1.00--1.00--1.00--1.00
10.02.1±0.1e-0.602.1±0.1j-0.900.3±0.1g-0.951.2±0.2i-0.88
2.02.9±0.1d-0.457.8±0.4f-0.641.1±0.2f-0.802.1±0.1h-0.80
0.44.1±0.1b-0.2311.1±0.8d-0.482.5±0.3e-0.555.1±0.2f-0.51
0.084.2±0.1b-0.2118.1±0.5b-0.153.1±0.2d-0.456.4±0.3de-0.38
苯甲酸
Benzoic acid
50.03.0±0.1cd-0.439.1±1.1ef-0.571.7±0.1e-0.702.7±0.2h-0.74
10.03.0±0.1cd-0.4310.5±1.4e-0.512.1±0.1e-0.633.7±0.2g-0.64
2.03.2±0.1c-0.4015.4±0.8d-0.282.2±0.1e-0.615.4±0.1e-0.48
0.43.7±0.1c-0.3017.7±0.9c-0.173.6±0.2c-0.367.4±0.3d-0.29
0.084.7±0.1b-0.1119.7±1.1b-0.084.7±0.3b-0.169.2±0.4b-0.12
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸
3-(4-hydroxy-3-
methoxyphenyl)-
2-acrylic acid
50.02.8±0.1d-0.478.8±0.0f-0.591.0±0.0f-0.822.0±0.1h-0.81
10.03.0±0.1cd-0.4310.4±0.1e-0.512.1±0.1e-0.633.7±0.1g-0.64
2.03.2±0.1cd-0.4012.5±0.2d-0.422.2±0.1e-0.615.3±0.2e-0.49
0.43.7±0.1c-0.3013.7±0.6cd-0.363.6±0.2c-0.367.4±0.2d-0.29
0.084.6±0.1b-0.1315.5±0.7c-0.284.7±0.1b-0.169.2±0.2b-0.12
4-羟基-3-甲氧基-苯甲酸
4-hydroxy-3-
methoxy-
benzoic acid
50.02.9±0.1d-0.458.8±0.1f-0.591.0±0.1f-0.822.1±0.1h-0.80
10.03.1±0.1cd-0.4210.5±0.2e-0.512.2±0.1e-0.613.8±0.2g-0.63
2.03.3±0.1c-0.3812.7±0.4d-0.412.3±0.1e-0.595.6±0.3e-0.46
0.43.8±0.1c-0.2815.8±0.9c-0.263.8±0.2c-0.327.7±0.2c-0.26
0.084.8±0.1b-0.0918.8±0.4b-0.124.9±0.3b-0.139.6±0.2ab-0.08
4-甲氧基邻氨基苯甲酸
4-methoxy-
anthranilic acid
50.03.8±0.1c-0.288.9±0.5f-0.583.1±0.2d-0.457.3±0.1d-0.30
10.03.8±0.1c-0.2810.6±0.7e-0.503.4±0.1cd-0.397.1±0.5d-0.32
2.04.6±0.1b-0.1314.9±0.3c-0.304.5±0.1b-0.208.0±0.2c-0.23
0.45.1±0.1ab-0.0416.1±0.5c-0.255.0±0.2ab-0.119.3±0.1b-0.11
0.085.2±0.1a-0.0219.2±0.7b-0.105.3±0.3a-0.0510.6±0.3a0.02
CK05.3±0.1a21.4±0.2a5.6±0.2a10.4±0.5a
“-”:该值无法测量
The value couldn’t be measured

新窗口打开|下载CSV

2.4 6种有机酸对小麦幼苗根系生理活性的作用

6种有机酸对小麦根系生理活性的作用测定结果表明,所有供试浓度邻羟基苯甲酸和对羟基苯甲酸均显著降低了小麦根系活力,降幅分别在10.7—99.5和8.6—99.5 μg·g-1·h-1;除最低浓度外,4-甲氧基邻氨基苯甲酸、3-(4-羟基-3-甲氧基苯基)-2-丙烯酸、4-羟基-3-甲氧基-苯甲酸和苯甲酸各浓度处理的小麦根系活力也均明显降低。6种有机酸较高浓度处理均显著增大了根系相对电导率,而0.4 μg·mL-1浓度处理下根系相对电导率均无显著变化。2.0—50.0 μg·mL-1浓度的4-甲氧基邻氨基苯甲酸、3-(4-羟基-3-甲氧基苯基)-2-丙烯酸、4-羟基-3-甲氧基-苯甲酸、邻羟基苯甲酸和对羟基苯甲酸均显著抑制了小麦根系SOD和POD活性,降幅为10.8%—87.5%;而0.08和0.4 μg·mL-1浓度处理对这2种酶活性无明显作用。除0.08 μg·mL-1浓度处理外,其他浓度苯甲酸对小麦根系SOD和POD活性具有显著抑制作用(表5)。

Table 5
表5
表56种有机酸对小麦幼苗根系生理活性的影响
Table 5Effects of 6 organic acids on physiological activity of wheat seedling roots
有机酸
Organic acid
浓度
Concentration
(μg·mL-1)
根活性
Root activity
(μg·g-1·h-1)
相对电导率
Relative conductivity
(%)
SOD活性
SOD activity
(OD·g-1 FW)
POD活性
POD activity
(U·g-1 FW·min-1)
邻羟基苯甲酸
O-hydroxybenzoic acid
50.0----
10.036.9±0.8d89.1±3.1a14.4±0.9c148.7±13.3d
2.052.4±1.2c85.7±1.7a16.5±0.5b175.3±11.3c
0.481.6±0.6b74.5±2.4b18.3±0.6a226.7±10.1b
0.0888.8±2.0b64.5±3.1c20.2±2.0a260.7±8.4a
对羟基苯甲酸
P-hydroxybenzoic acid
50.0----
10.037.8±0.7d91.2±2.6a14.5±0.8c182.9±8.6c
2.053.6±0.4c87.7±3.5a16.8±0.4b228.6±5.6b
0.483.5±1.2b76.3±2.4b16.9±0.5b242.3±12.3b
0.0890.9±2.6b66.0±2.1c18.7±0.7a266.8±16.4a
苯甲酸
Benzoic acid
50.037.2±3.2d97.7±2.0a15.2±1.2c159.5±13.5d
10.039.6±2.8d95.5±3.5a17.6±0.5b191.6±12.6c
2.056.2±0.6c91.9±2.6a17.7±0.3b239.5±8.4b
0.487.5±3.5b79.9±2.7b18.6±0.4b243.8±10.3b
0.0895.2±4.5a69.2±2.4c21.7±0.2a279.6±12.3a
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸
3-(4-hydroxy-3-methoxyphenyl)-
2-acrylic acid
50.036.4±2.3d95.4±3.5a14.9±0.4c155.8±10.4d
10.038.7±2.4d93.3±2.7a17.2±0.3b187.2±8.6c
2.054.9±3.5c89.8±2.1a17.3±1.2b233.9±9.3b
0.485.5±3.7b78.1±1.8b19.2±0.2a248.0±11.2a
0.0893.0±5.4a67.6±3.7c21.2±0.6a273.1±13.2a
4-羟基-3-甲氧基-苯甲酸
4-hydroxy-3-
methoxy-
benzoic acid
50.038.1±3.5d100.0±1.2a17.6±0.4b163.2±15.4d
10.040.5±2.6d97.8±2.5a18.0±0.3b196.1±20.3c
2.057.5±3.5c94.1±3.8a18.1±0.4b245.1±12.3b
0.489.6±3.5b81.8±10.2ab20.1±0.3a259.8±15.6a
0.0897.5±5.1a70.8±2.5b22.2±0.2a286.2±17.2a
4-甲氧基邻氨基苯甲酸
4-methoxy-anthranilic
acid
50.039.0±2.7d102.3±3.0a16.0±0.1c167.1±15.4d
10.041.5±1.6d100.1±2.8a18.4±0.3b200.8±11.6c
2.058.9±1.1c96.3±2.7a18.5±0.4ab250.9±13.2b
0.491.7±2.4b83.7±3.2ab20.6±0.2a265.9±11.5b
0.0899.8±3.4a72.5±1.5b22.7±0.6a292.9±13.4a
CK099.5±2.9a71.8±1.7b21.4±0.5a291.4±11.3a
“-”:根太少或没有根
The root was too few or no root

新窗口打开|下载CSV

2.5 6种有机酸对小麦纹枯病发生的作用

室内盆栽试验表明6种有机酸对小麦纹枯病发生的影响有所不同(表6),苯甲酸和4-羟基-3-甲氧基-苯甲酸各浓度处理均未影响小麦品种良星66、石新 828和邯6172纹枯病的发生程度。除0.08 μg·mL-1处理外,其他3-(4-羟基-3-甲氧基苯基)-2-丙烯酸的浓度处理均显著增强3个小麦品种纹枯病发生程度。2.0—50.0 μg·mL-1浓度的4-甲氧基邻氨基苯甲酸也明显加重了3个小麦品种纹枯病发生程度。邻羟基苯甲酸和对羟基苯甲酸的各浓度处理均加重了纹枯病发生,3个小麦品种发病率和病情指数平均增幅均超过9.0%。

Table 6
表6
表66种有机酸对不同品种小麦纹枯病发生的影响
Table 6Effects of 6 organic acids on occurrence of WSB of different varieties
有机酸
Organic acid
浓度
Concentration
(μg·mL-1)
发病率Incidence rate (%)病情指数Disease index
良星66
Liangxing 66
石新 828
Shixin 828
邯6172
Han 6172
良星66
Liangxing 66
石新 828
Shixin 828
邯6172
Han 6172
邻羟基苯甲酸
O-hydroxybenzoic acid
0.0841.3±1.2b24.7±1.3c27.5±1.1c15.4±1.2c12.2±0.4b13.4±0.3b
0.441.8±0.3b25.8±1.4c27.9±1.3c16.0±0.9c12.3±0.5b13.5±0.4b
2.041.4±1.5b27.2±1.6bc31.5±2.3c17.7±0.9c12.6±0.3b13.4±0.5b
10.042.6±0.4b29.1±1.2b39.7±1.5b18.2±0.6bc12.4±0.5b16.9±0.3a
50.044.8±2.1ab30.1±2.1ab42.1±1.6a19.1±0.7a13.6±0.7a18.0±0.5a
对羟基苯甲酸
P-hydroxybenzoic acid
0.0839.0±1.3b26.2±1.3c27.4±1.3c14.7±0.6d12.3±0.6c13.1±0.5b
0.439.6±1.6b26.4±1.5c27.5±2.1c14.3±0.7d12.8±0.7b13.1±0.6b
2.042.4±1.3b27.8±2.1b32.2±1.5c18.1±1.1bc12.9±0.1b13.8±0.4b
10.043.6±0.8b29.8±2.3ab40.6±2.1ab18.6±0.6b12.7±0.2b17.3±0.5a
50.045.9±0.7a30.8±1.5a43.1±1.8a19.6±0.2a13.2±0.4a18.4±0.4a
苯甲酸
Benzoic acid
0.0832.8±1.0d23.8±1.4d23.6±1.2e14.0±0.4d10.2±0.3d10.1±0.5de
0.434.4±1.1d24.0±1.6d25.2±1.3d14.7±0.9cd11.5±0.3c12.0±0.6c
2.033.4±1.0d25.5±2.4c23.0±1.6de18.5±1.2b12.2±0.5b11.3±0.3c
10.034.6±0.9c24.5±1.9cd25.6±1.2d18.1±0.7b12.0±0.4b11.8±0.5c
50.036.9±1.4bc25.5±2.4c25.1±1.4d18.0±0.6b12.5±0.6b11.8±0.6c
3-(4-羟基-3-甲氧基
苯基)-2-丙烯酸3-(4-hydroxy-3-
methoxyphenyl)-
2-acrylic acid
0.0833.6±1.4d24.3±2.4d24.1±1.2d14.3±0.3d10.4±0.4cd10.3±0.4d
0.438.2±1.2b27.7±1.7b28.8±1.5c15.0±0.6c12.8±0.3b13.3±0.2b
2.044.4±1.6ab29.2±0.6b33.8±1.1bc19.0±0.4b12.9±0.2b14.4±0.3b
10.045.7±1.5a31.2±1.3a42.6±1.2a19.5±0.7a13.3±0.4a18.2±0.4a
50.048.0±1.7a32.3±1.4a45.1±1.3a20.5±0.8a13.8±0.2a19.3±0.4a
4-羟基-3-甲氧基-
苯甲酸
4-hydroxy-3-methoxy-
benzoic acid
0.0834.4±2.3cd24.9±1.2c24.7±1.8d14.7±0.6d10.6±0.5c11.5±0.2c
0.436.0±2.1bc25.3±0.7c25.5±1.4d15.4±0.7c12.1±0.5bc12.6±0.3c
2.035.4±2.0c24.9±1.3c26.6±1.3cd15.4±0.5c12.7±0.4b12.8±0.3c
10.036.8±1.8bc26.9±0.5c27.6±2.1c16.0±0.9c12.6±0.3b12.6±0.2c
50.039.2±1.9b26.0±0.8c27.2±0.9c15.5±0.5c14.1±0.4a12.7±0.6c
4-甲氧基邻氨基苯甲酸
4-methoxy-anthranilic
acid
0.0835.2±1.3c25.5±0.7c25.3±2.4d14.5±0.3d10.9±0.5c10.8±0.7d
0.436.9±2.1bc29.0±1.4b30.2±1.6c15.7±0.9c12.4±0.2b12.9±0.5bc
2.046.5±2.8a30.6±1.6a35.4±2.1b19.9±0.7a13.0±0.5a15.1±0.4b
10.047.9±1.8a32.7±1.6a44.6±1.6a20.4±0.7a14.0±0.4a19.0±0.6a
50.050.3±1.9a33.8±2.3a47.3±1.1a21.5±0.3a14.4±0.4a20.2±0.4a
CK035.4±2.4c24.4±1.3c25.2±1.6d14.4±0.9d10.5±0.2c11.6±0.3cd

新窗口打开|下载CSV

3 讨论

3.1 秸秆还田后在土壤中分解产生的化感物质种类

有研究表明,田菁不同浓度秸秆提取液对水稻幼苗地上部和根系生长均表现出明显的抑制作用[24];麦秸分解液中可分离出含量相对较高的丁香酰甘油9-O-β-D-吡喃葡萄糖甙和L-色氨酸,两者在一定浓度下均能抑制莴苣和水芹的根系生长[25];黄瓜、碗豆和草莓根系残茬在土壤中腐解产生苯甲酸、3-苯基-2-丙烯酸、对羟基苯甲酸等,对下茬植株具有较强的自毒作用[26,27]。本实验室前期研究发现,玉米秸秆腐解物对小麦幼苗具有不利的化感作用,有利于小麦纹枯病和根腐病的发生[18]。本研究在小麦、玉米秸秆还田耕层土壤中检测出有机酸类、酯类、烃类、酰胺类、醛类等化学物质,其中相对含量较高的邻羟基苯甲酸、3-苯基-2-丙烯酸、对羟基苯甲酸、9-十六碳烯酸、4-甲氧基邻氨基苯甲酸等,均已被证明是对黄瓜、豌豆和草莓等作物有显著影响的化感物质[26,27,28]。对羟基苯甲酸对小麦幼苗根系生长指标的抑制作用最强[29],各浓度抑制率在15.4%—100.0%;其次是邻羟基苯甲酸(水杨酸)。

3.2 化感物质对土传病害发生的促进作用

HE等[30,31]研究发现,西洋参根区土壤中的香豆酸、丁香酸、香草酸等有机酸类物质对立枯丝核菌(R. solani)和木贼镰孢(Fusarium equiseti)菌丝生长均表现出一定的促进作用;NICOL等[32]研究表明,人参腐解物中化感物质皂甙能促进疫霉和腐霉的增长,从而导致人参根部病害明显加重;大豆、甜瓜、西瓜和花生等作物残茬或根系腐解产物中阿魏酸、苯甲酸、肉桂酸等物质在土壤中积累,会刺激尖镰孢(Fusarium oxysporum)的菌丝生长和孢子萌发[33,34,35,36],从而加重枯萎病发生;亦有研究表明,绿原酸可显著抑制莴苣根尖细胞分裂,降低茎长及鲜重[37,38];肉桂酸、阿魏酸、香草酸等化感物质可显著降低西瓜、杉木、黄瓜、草莓和杨树根系活力,增强根系离子渗漏,降低根系SOD或POD活性,进而减弱其抗逆或抗病能力[28,34-35,39]。本研究发现,小麦、玉米秸秆还田耕层土壤中的邻羟基苯甲酸、4-羟基-3-甲氧基-苯甲酸和4-甲氧基邻氨基苯甲酸等化感物质对禾谷丝核菌具有显著促进作用,对小麦幼苗生长、根系活力和保护酶活性均表现抑制作用,可能是秸秆还田条件下小麦纹枯病发生加重的主要原因之一。

邻羟基苯甲酸、3-(4-羟基-3-甲氧基苯基)-2-丙烯酸和4-甲氧基邻氨基苯甲酸对禾谷丝核菌生长的促进作用可能为小麦纹枯病加重发生的主要因素;但是,对禾谷丝核菌生长无明显影响的对羟基苯甲酸处理后,纹枯病亦加重发生,究其原因可能与该物质对小麦幼苗生长较强的抑制作用密切相关[29]。本试验中,苯甲酸对禾谷丝核菌生长表现出明显抑制作用,可能由于其降低了小麦幼苗根系生理活性,减弱了受体抗逆性,最终导致发病程度亦未明显减轻。

3.3 利用化感物质降解菌防控土传病害

如何减轻化感物质对作物生长的抑制作用和对土传病害的促进作用,己成为许多****关注的焦点问题。据报道,鞘氨醇杆菌、柔膜菌、芽孢杆菌等均对化感物质具有很强的降解能力,能明显缓解作物土传病害的发生[40,41,42,43]。向土壤中施加优势木霉菌可调整微生物群落结构和降解土壤中残留的化感物质,提高植株抗病性,起到缓解连作障碍的作用[44]。在明确秸秆腐解产物中促进土传病害发生的化感物质种类基础上,筛选有益微生物,创制微生物菌剂,降解秸秆还田土壤中有害化感物质,克服对小麦生长的抑制作用,减缓对纹枯病的促进作用,可为我国小麦、玉米两熟区秸秆还田条件下小麦纹枯病等土传病害绿色防控提供新的思路和方法。

4 结论

冬小麦、夏玉米一年两熟秸秆还田土壤中含有机酸、酯、烃、酰胺及醛类等化学物质,有机酸类相对含量最高。相对含量较高的3-(4-羟基-3-甲氧基苯基)-2-丙烯酸、4-甲氧基邻氨基苯甲酸、邻羟基苯甲酸和对羟基苯甲酸能通过促进禾谷丝核菌菌丝生长、增加菌核产生数量、降低小麦幼苗根系细胞保护酶活性、增强细胞内养分外渗,进而产生助长小麦纹枯病发生的化感作用;其中,3-(4-羟基-3-甲氧基苯基)-2-丙烯酸对小麦纹枯病发生的助长作用最强,而苯甲酸和4-羟基-3-甲氧基-苯甲酸对纹枯病的发生无显著影响。耕层土壤中有机酸类物质产生和积累,可能是中国北方小麦、玉米两熟秸秆还田条件下小麦纹枯病加重发生的主要原因之一。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

WITT C, CASSMAN K G, OLK D C, BIKER U, LIBOON S P, SAMSON M I, OTTOW J C. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems
Plant and Soil, 2000,225(1):263-278.

[本文引用: 1]

SHARMA P, ABROL V, SHARMA R K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rainfed subhumid inceptions, India
European Journal of Agronomy, 2011,34:46-51.

[本文引用: 1]

陈延熙, 唐文华, 张敦华, 简小鹰. 我国小麦纹枯病病原学的初步研究
植物保护学报, 1986,13(1):39-44.

[本文引用: 1]

CHEN Y X, TANG W H, ZHANG D H, JIAN X Y. A preliminary study on etiology of sharp eyespot of wheat in China
Acta Phytophylacica Sinica, 1986,13(1):39-44. (in Chinese)

[本文引用: 1]

KUMAR J, SCH?FER P, HüCKELHOVEN R, LANGEN G, BALTRUSCHAT H, STEIN E, NAGARAJAN S, KOGEL K H. Bipolaris sorokiniana, a cereal pathogen of global concern: Cytological and molecular approaches towards better control
Molecular Plant Pathology, 2002,3(4):185-195.

DOI:10.1046/j.1364-3703.2002.00120.xURLPMID:20569326 [本文引用: 1]
Summary Bipolaris sorokiniana (teleomorph Cochliobolus sativus) is the causal agent of common root rot, leaf spot disease, seedling blight, head blight, and black point of wheat and barley. The fungus is one of the most serious foliar disease constraints for both crops in warmer growing areas and causes significant yield losses. High temperature and high relative humidity favour the outbreak of the disease, in particular in South Asia's intensive 'irrigated wheat-rice' production systems. In this article, we review the taxonomy and worldwide distribution, as well as strategies to counteract the disease as an emerging threat to cereal production systems. We also review the current understanding of the cytological and molecular aspects of the interaction of the fungus with its cereal hosts, which makes B. sorokiniana a model organism for studying plant defence responses to hemibiotrophic pathogens. The contrasting roles of cell death and H(2)O(2) generation in plant defence during biotrophic and necrotrophic fungal growth phases are discussed.

DAVAL S, LEBRETON L, GAZENGEL K, BOUTIN M, GUILLERM-ERCKELBOUDT A Y, SARNIGUET A. GThe biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots
Molecular Plant Pathology, 2011,12:839-854.

URLPMID:21726382 [本文引用: 1]

LU L, RONG W, ZHOU R, HUO N, ZHANG Z. TaCML36, a wheat calmodulin-like protein, positively participates in an immune response to Rhizoctonia cerealis
The Crop Journal, 2019,7(5):608-618.

DOI:10.1016/j.cj.2019.02.001URL [本文引用: 1]

HAMADA M S, YIN Y N, CHEN H G, MA Z H. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat
Pest Management Science, 2011,67(11):1411-1419.

URLPMID:21726039 [本文引用: 2]

YANG M M, MAVRODI D V, MAVRODI O V, BONSALL R F, PAREJKO J A, PAULITZ T C, THOMASHOW L S, YANG H T, WELLER D M, GUO J H. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields
Phytopathology, 2011,101(12):1481-1491.

DOI:10.1094/PHYTO-04-11-0096URLPMID:22070279 [本文引用: 2]
Take-all disease of wheat caused by the soilborne fungus Gaeumannomyces graminis var. tritici is one of the most important root diseases of wheat worldwide. Bacteria were isolated from winter wheat from irrigated and rainfed fields in Hebei and Jiangsu provinces in China, respectively. Samples from rhizosphere soil, roots, stems, and leaves were plated onto King's medium B agar and 553 isolates were selected. On the basis of in vitro tests, 105 isolates (19% of the total) inhibited G. graminis var. tritici and all were identified as Pseudomonas spp. by amplified ribosomal DNA restriction analysis. Based on biocontrol assays, 13 strains were selected for further analysis. All of them aggressively colonized the rhizosphere of wheat and suppressed take-all. Of the 13 strains, 3 (HC9-07, HC13-07, and JC14-07, all stem endophytes) had genes for the biosynthesis of phenazine-1-carboxylic acid (PCA) but none had genes for the production of 2,4-diacetylphloroglucinol, pyoluteorin, or pyrrolnitrin. High-pressure liquid chromatography (HPLC) analysis of 2-day-old cultures confirmed that HC9-07, HC13-07, and JC14-07 produced PCA but no other phenazines were detected. HPLC quantitative time-of-flight 2 mass-spectrometry analysis of extracts from roots of spring wheat colonized by HC9-07, HC13-07, or Pseudomonas fluorescens 2-79 demonstrated that all three strains produced PCA in the rhizosphere. Loss of PCA production by strain HC9-07 resulted in a loss of biocontrol activity. Analysis of DNA sequences within the key phenazine biosynthesis gene phzF and of 16S rDNA indicated that strains HC9-07, HC13-07, and JC14-07 were similar to the well-described PCA producer P. fluorescens 2-79. This is the first report of 2-79-like bacteria being isolated from Asia.

QU T L, ZHANG J L, MENG Z L, LIU X L, CAO Y S, LI J Q, HAO J J. Metabolism of fungicide 2-allylphenol in Rhizoctonia cerealis
Ecotoxicology and Environmental Safety, 2014,102:136-141.

DOI:10.1016/j.ecoenv.2014.01.025URL [本文引用: 2]
2-Allylphenol is a biomimetic synthetic fungicide that mimics the compound ginkgol found in gingko fruit (Gingko biloba L.). This systemic fungicide can effectively suppress a wide range of plant diseases, including wheat sharp eyespot (Rhizoctonia cerealis). However, its degradation in environment after application is still unknown. To understand this fungicide degradation, major metabolites of 2-allylphenol in R. cerealis were examined. The parent and metabolites of 2-allylphenol were detected and quantified in the mycelia and liquid medium. Results showed that 2-allylphenol was metabolized and bio-transformed by R. cerealis, and four metabolites were found, including 2-(2-hydroxyphenyl) acetic acid (M1), 2-(2, 3-dihydroxypropyl) phenol (M2), 2-(2-hydroxypropyl)-phenol (M3) and 2-(3-hydroxypropyl)-phenol (M4). Based on the results, we propose that the biodegradation pathway is that 2-allylphenol is rapidly oxidized into metabolite M2 and hydrolyzed into M3 and M4, which formed M2, and carboxylation of M2 to 2-hydroxy-3-(2'-hydroxyphenyl) propionic acid which undergo hydrolyzation and decarboxylation to form M1. 2-Allylphenol can be bio-transformed to new compounds by R. cerealis, suggesting the existence of microbe metabolic pathways for 2-allylphenol. (C) 2014 The Authors. Published by Elsevier Inc.

董金皋. 农业植物病理学. 2版. 北京: 中国农业出版社, 2007.
[本文引用: 1]

DONG J G. Agricultural Plant Pathology. 2nd ed. Beijing: China Agriculture Press, 2007. (in Chinese)
[本文引用: 1]

张雪松, 曹永胜, 曹克强. 保护性耕作与小麦主要土传病害问题和治理对策
西北农林科技大学学报(自然科学版), 2005,33(增刊):47-48.

[本文引用: 1]

ZHANG X S, CAO Y S, CAO K Q. Management of wheat soil-borne diseases under the conservative farming system
Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2005,33(Suppl.):47-48. (in Chinese)

[本文引用: 1]

LEMA?CZYK G, KWA?NA H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat
European Journal of Plant Pathology, 2013,135:187-200.

DOI:10.1007/s10658-012-0077-3URL [本文引用: 2]
Sharp eyespot caused by Rhizoctonia cerealis was assessed in four winter wheat crops surveyed at four locations in north-central Poland in 2006-2009. At the four locations symptoms developed on 41.9-67.7 % of shoots of all plants (average of 4 years) and on 49-73.5 % of shoots of diseased plants (average of 4 years). Slight (category 1) disease was most frequent, occurring on 24.4-41.3 % of shoots (range 14.8-51.3 %); moderate (category 2) disease was less frequent, occurring on 16.9-25.5 % of shoots (range 8.9-32.4 %); severe (category 3) disease was least frequent, occurring on 3.2-7.1 % (range 0-22.0 %) of shoots. Sharp eyespot affected wheat growth and yield, and grain quality. Disease, especially in the severe category, was associated with significant decreases in plant and ear dry weights, number of grains per ear, grain dry weight per ear and thousand-grain weight, and with increases in grain protein and wet gluten contents, Hagberg falling number and sedimentation value. There was an association between occurrence of sharp eyespot in stems and colonization of grain by fungi. Alternaria alternata and E. nigrum were the most common species.

BAILEY K L, LAZAROVITS G. Suppressing soil-borne diseases with residue management and organic amendments
Soil and Tillage Research, 2003,72(2):169-180.

DOI:10.1016/S0167-1987(03)00086-2URL [本文引用: 1]

GILL J S, SIVASITHAMPARAM K, SMETTEM K R J. Soil moisture affects disease severity and colonisation of wheat roots by Rhizoctonia solani AG-8
Soil Biology and Biochemistry, 2001,33(10):1363-1370.

DOI:10.1016/S0038-0717(01)00041-4URL [本文引用: 1]

CHOU C H, LIN H J. Autointoxication mechanism of Oryza sative. I. Phytotoxic effects of decomposing rice residues in soil
Journal of Chemical Ecology, 1976,2(3):353-367.

DOI:10.1007/BF00988282URL [本文引用: 1]

张玉铭, 马永清. 麦秸覆盖夏玉米对其苗期生长发育的生化他感作用研究初报
生态学杂志, 1994,13(3):70-72.

[本文引用: 1]

ZHANG Y M, MA Y Q. Alleopathic effect of wheat straw mulching on seedling growth and development of summer corn
Chinese Journal of Ecology, 1994,13(3):70-72. (in Chinese)

[本文引用: 1]

谢瑞芝, 李少昆, 李小君, 金亚征, 王克如, 初震东, 高世菊. 中国保护性耕作研究分析——保护性耕作与作物生产
中国农业科学, 2007,40(9):1914-1924.

URL [本文引用: 1]
【Objective】Conservation tillage (CT) also be referred to as resource-efficient / resource effective agriculture,it is primarily used as a means to protect soils from erosion and compaction, to conserve moisture and reduce production costs, have become the most important measures of sustainable agriculture development. Research advances in the conservation tillage of china on recent years were reviewed in this paper.【Method】Based on papers published, the current researches progress on conservation tillage (CT) of crop production in china were summarized and analyzed. All these aspects are reviewed but detailed information of conservation tillage is spares and disparate from China studies.【Result】It was showed that conservation tillage is a relatively new concept but widely adopted in china and had considerable benefits. Since studies have been conducted at the catchment scale, therefore some findings must be treated with caution until the can be verified at a larger scale and for a greater range of climatic, cropping and soil conditions.【Conclusion】Conservation tillage should be put forward in order to establish reasonable policy of agricultural management. It necessary using integrated system analysis methodologies, by means of long-term field and theoretical experience, and the developed modeling approaches with interdisciplinary knowledge, to enhance research strength and level for improving and promoting sustainable agricultural.
XIE R Z, LI S K, LI X J, JIN Y Z, WANG K R, CHU Z D, GAO S J. The analysis of conservation tillage in China—conservation tillage and crop production: Reviewing the evidence
Scientia Agricultura Sinica, 2007,40(9):1914-1924. (in Chinese)

URL [本文引用: 1]
【Objective】Conservation tillage (CT) also be referred to as resource-efficient / resource effective agriculture,it is primarily used as a means to protect soils from erosion and compaction, to conserve moisture and reduce production costs, have become the most important measures of sustainable agriculture development. Research advances in the conservation tillage of china on recent years were reviewed in this paper.【Method】Based on papers published, the current researches progress on conservation tillage (CT) of crop production in china were summarized and analyzed. All these aspects are reviewed but detailed information of conservation tillage is spares and disparate from China studies.【Result】It was showed that conservation tillage is a relatively new concept but widely adopted in china and had considerable benefits. Since studies have been conducted at the catchment scale, therefore some findings must be treated with caution until the can be verified at a larger scale and for a greater range of climatic, cropping and soil conditions.【Conclusion】Conservation tillage should be put forward in order to establish reasonable policy of agricultural management. It necessary using integrated system analysis methodologies, by means of long-term field and theoretical experience, and the developed modeling approaches with interdisciplinary knowledge, to enhance research strength and level for improving and promoting sustainable agricultural.

QI Y Z, ZHEN W C, LI H Y. Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS
Journal of Integrative Agriculture, 2015,14(1):88-97.

DOI:10.1016/S2095-3119(14)60795-4URL [本文引用: 4]

VILLAGRASA M, GUILLAMON M, LABANDEIRA A, TABERNER A, ELJARRAT E, BARCELO D. Benzoxazinoid allelochemicals in wheat: Distribution among foliage, roots and seeds
Journal of Agricultural and Food Chemistry, 2006,54(4):1009-1015.

URLPMID:16478210 [本文引用: 1]

QIAN H F, XU X Y, CHEN W, JIANG H, JIN Y X, LIU W P, FU Z W. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris
Chemosphere, 2009,75(3):368-375.

URLPMID:19171365 [本文引用: 1]

KHAMSSI N N, NAJAPHY A. Physiological and biochemical responses of durum wheat under mild terminal drought stress
Cellular and Molecular Biology, 2018,64(4):59-63.

URLPMID:29631684 [本文引用: 1]

TIAN X Y, HE M R, WANG Z L, ZHANG J W, SONG Y L, HE Z L, DONG Y J. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress
Plant Growth Regulation, 2015,77(3):343-356.

DOI:10.1007/s10725-015-0069-3URL [本文引用: 1]

WILLIAMSON G B, RICHARDSON D. Bioassays for allelopathy: Measuring treatment responses with independent controls
Journal of Chemical Ecology, 1988,14(1):181-187.

DOI:10.1007/BF01022540URLPMID:24277003 [本文引用: 1]
In bioassays for allelopathy, where responses to treatments are determined in conjunction with responses to independent controls, statistical comparisons among treatments require an index which measures each treatment response (T) in relation to its control response (C). The most commonly used index, the treatment-control ratio (T/C), exhibits two analytical problems. First, means ofT/C values are distorted upward when any of the individual values is greater than one, i.e., when stimulation occurs. Second, the distribution ofT/C values may not be normal and homoscedastic. We provide two alternative indices of response whose means do not exhibit the upward distortion ofT/C means. Then, the two indices are compared toT/C values in an empirical test for normality and homoscedasticity on a large bioassay data set. Results indicate that for this data set, one of the alternatives,RI, is clearly superior.RI is defined as 1 - (C/T) ifT>/=C and asT/C - 1 ifT
GONZALEZ T, RUíZ Y, PéREZ R, GARCíA Y, FRANCO I, NOGUEIRAS C. Allelopathic activity of Sesbania rostrata Brem. before black glume weedy (red) rice (Oryza sativa L)
Allelopathy Journal, 2006,18(2):134-137.

[本文引用: 1]

NAKANO H, MORITA S, SHIGEMORI H, HASEGAWA K. Plant growth inhibitory compounds from aqueous leachate of wheat straw
Plant Growth Regulation, 2006,48(3):215-219.

DOI:10.1007/s10725-006-0006-6URL [本文引用: 1]
When seedlings of lettuce, cress, rice and wheat were incubated with the leachate of wheat straw, the roots growth of lettuce and garden cress were particularly inhibited. The leachate of wheat straw (100g eq./l) showed 80.5 and 79.4% inhibition for lettuce and cress roots, respectively. The inhibitory activity was stronger as the concentration of wheat straw leachate was greater. This result indicates that allelochemical(s) inhibiting the roots growth of lettuce and cress are leached from the wheat straw into the water. Two potent compounds were isolated from the leachate of the wheat straw and identified as syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan by spectral analyses. Syringoylglycerol 9-O-β-d-glucopyranoside inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 10.0μM, respectively. On the other hand, l-tryptophan inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 1.0μM, respectively. The content of syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan in the leachate of wheat straw (100g eq./l) was 18.4 ± 0.7 and 6.2 ± 0.6μM, respectively. Syringoylglycerol 9-O-β-d-glucopyranoside (18.4μM) showed 21.5 and 13.5% inhibition in the lettuce and cress roots assay, respectively. On the other hand, 6.2μM of l-tryptophan showed 47.5 and 35.0% inhibition in the lettuce and cress roots assay, respectively. These results suggested that l-tryptophan may be a major contributor to the allelopathy in aqueous leachate of wheat straw and syringoylglycerol 9-O-β-d-glucopyranoside may be a minor contributor.

YE S F, ZHOU Y H, SUN Y, ZOU L Y, YU J Q. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt
Environmental and Experimental Botany, 2006,56:255-262.

DOI:10.1016/j.envexpbot.2005.02.010URL [本文引用: 2]

WANG X J, PETER S, LIU Z Q, ARMSTRONG R, ROCHFORT S, TANG C X. Allelopathic effects account for the inhibitory effect of field-pea (Pisum sativum L.) shoots on wheat growth in dense clay subsoils
Biology and Fertility of Soils, 2019,55(7):649-659.

DOI:10.1007/s00374-019-01384-5URL [本文引用: 2]

ZHAO X S, ZHEN W C, QI Y Z, LIU X J, YIN B Z. Coordinated effects of root autotoxic substances and Fusarium oxysporum Schl. f. sp. fragariae on the growth and replant disease of strawberry
Frontiers of Agriculture in China, 2009,3(1):34-39.

DOI:10.1007/s11703-009-0006-1URL [本文引用: 2]
Effects of hydroxybenzoic acid, an important autotoxic substance in roots, on plant growth, photosynthesis and Fusarium oxysporum occurrence in succession cropping of strawberry were evaluated in this paper. It was found that plant growth was negatively regulated by hydroxybenzoic acid or inoculation with F. oxysporum. Compared with these single factor treatments, the combination of the hydroxybenzoic acid treatment and F. oxysporum inoculation caused more severe inhibition in plant growth, greatly enhanced the occurrence of disease symptoms, and significantly decreased the chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration. In the meantime, the chlorophyll fluorescence parameters in strawberry were also significantly affected. After the application of hydroxybenzoic acid, the original chlorophyll fluorescence rapidly increased, resulting in a combined corresponding decrease in the maximum chlorophyll fluorescence and the chlorophyll fluorescence transformation efficiency. The effects of hydroxybenzoic acid treatment on the above chlorophyll fluorescence parameters from inoculation were delayed. Similarly, the coordination of hydroxybenzoic acid and F. oxysporum showed an elevated negative effect on the degree of inhibition of leaf photosynthesis more than the single factor treatments.

齐永志. 玉米秸秆还田的微生态效应及对小麦纹枯病的适应性控制技术
[D]. 保定: 河北农业大学, 2014.

[本文引用: 2]

QI Y Z. Micro-ecological effect of maize straw returning to field and the adaptive control technology on wheat sheath blight
[D]. Baoding: Hebei Agricultural University, 2014. (in Chinese)

[本文引用: 2]

HE C N, GAO W W, YANG J X, BI W, ZHANG X S, ZHAO Y J. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L
Plant and Soil, 2009,318(1/2):63-72.

DOI:10.1007/s11104-008-9817-8URL [本文引用: 1]

GOSWAMI R S, PUNJA Z K. Molecular and biochemical characterization of defense responses in ginseng (Panax quinquefolius) roots challenged with Fusarium equiseti
Physiological and Molecular Plant Pathology, 2008,72(1):10-20.

DOI:10.1016/j.pmpp.2008.04.006URL [本文引用: 1]

NICOL R W, YOUSEF L, TRAQUAIR J A, BERNARDS M A. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng
Phytochemistry, 2003,64(1):257-264.

URLPMID:12946424 [本文引用: 1]

WANG J L, LI X L, ZHANG J L, YAO T, WEI D, WANG Y F, WANG J G. Effect of root exudates on beneficial microorganisms— Evidence from a continuous soybean monoculture
Plant Ecology, 2012,213(12):1883-1892.

DOI:10.1007/s11258-012-0088-3URL [本文引用: 1]
Soybean (Glycine max) agriculture is characterized by a high proportion of mono-cropping which results in reduced crop production in the Northeast China. Among all biotic and abiotic factors, changes in soil microbial communities induced by root activities, especially root exudates, might play an important role in these effects. The aim of the present study was to investigate response of microbial biomass and two major beneficial microbial functional groups, ammonia-oxidizing bacteria (AOB), and arbuscular mycorrhizal fungi (AMF), to root exudates in an experimental field under continuous soybean monoculture for 13 years. The results showed that microbial biomass carbon changed significantly with years of mono-cropping and correlated with concentrations of genistein (r = 0.4399, P < 0.001) and daidzein (r = 0.4082, P < 0.05) in the rhizosphere. However, root exudates had little effect on the nitrifier community, but reduced nitrification in the rhizosphere. In contrast, total AMF hyphal length was significantly stimulated by genistein (r = 0.5252, P < 0.01). There was a trend that AMF spore density increased in the rhizosphere with increasing years of mono-cropping, while AMF infection was constant over time, which might be attributed to competition between AMF and soil-borne fungal pathogens, as the results of stimulatory effect of flavonoids on fungal community, especially fungal pathogens. Our results suggested that the yield reduction in the beginning of continuous soybean monoculture could be partially attributed to nitrogen availability and yield stabilization after few years to stimulatory effects on AMF. These results imply that some of plant root exudates play a crucial role in changing the soil microbial community, and that underground ecosystem functioning is also affected by interactions among microbial functional groups.

杨瑞秀, 高增贵, 姚远, 刘限, 孙淑清, 王莹. 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应
应用生态学报, 2014,25(8):2355-2360.

URLPMID:25509089 [本文引用: 2]
采用HPLC法对甜瓜根系分泌物进行分离鉴定,检测到甜瓜根系分泌物中含有没食子酸、邻苯二甲酸、丁香酸、水杨酸、阿魏酸、苯甲酸和肉桂酸7种酚酸物质,通过外源添加法研究该类物质对尖孢镰孢菌的化感效应.室内试验结果表明: 阿魏酸、苯甲酸、肉桂酸在0.1、0.25 mmol·L-1处理浓度下能够显著促进尖孢镰孢菌的孢子萌发,水杨酸则对孢子萌发具有一定的抑制作用;丁香酸、阿魏酸在菌丝培养后期表现出较强的促进作用.盆栽结果显示,在0.05、0.1和0.5 mmol·L-1处理浓度下肉桂酸、阿魏酸、苯甲酸可显著促进甜瓜枯萎病病情.



YANG R X, GAO Z G, YAO Y, LIU X, SUN S Q, WANG Y. Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f. sp. melonis
Chinese Journal of Applied Ecology, 2014,25(8):2355-2360. (in Chinese)

URLPMID:25509089 [本文引用: 2]
采用HPLC法对甜瓜根系分泌物进行分离鉴定,检测到甜瓜根系分泌物中含有没食子酸、邻苯二甲酸、丁香酸、水杨酸、阿魏酸、苯甲酸和肉桂酸7种酚酸物质,通过外源添加法研究该类物质对尖孢镰孢菌的化感效应.室内试验结果表明: 阿魏酸、苯甲酸、肉桂酸在0.1、0.25 mmol·L-1处理浓度下能够显著促进尖孢镰孢菌的孢子萌发,水杨酸则对孢子萌发具有一定的抑制作用;丁香酸、阿魏酸在菌丝培养后期表现出较强的促进作用.盆栽结果显示,在0.05、0.1和0.5 mmol·L-1处理浓度下肉桂酸、阿魏酸、苯甲酸可显著促进甜瓜枯萎病病情.



郝文雅, 冉炜, 沈其荣, 任丽轩. 西瓜、水稻根分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响
中国农业科学, 2010,43(12):2443-2452.

URL [本文引用: 2]
【Objective】 The objectives of this study were to compare influence of allelochemicals from root exudates of watermelon and rice plants on the growth of FON and to clarify the mechanism of disease suppressiveness in the intercropping system. 【Method】 Root exudates of watermelon (REW) and rice (RER) plants were collected by nutrient solution culture. The effects of REW and RER on FON were determined by culture medium method. The phenolic acids of REW and RER were identified by HPLC. Exogenous phenolic acids were also used to investigate the effect of some phenolic acids, which existed in REW and RER, on FON. 【Result】Compared with the control, addition of 1.0 mL and 5.0 mL of REW increased the numbers of germinating spores by 46.9% and 59.2%, respectively, while the spore reproduction was enhanced by 10.8% to 84.6% when REW was added in the range from 0.1 to 2.0 mL. In contrast, addition of 1.0 mL and 5.0 mL of RER decreased spore germination by 14.3% and 6.1%, respectively, while addition of REW from 0.1 mL to 2.0 mL decreased spore reproduction by 4.6% to 37.5%. Salicylic acid, p-hydroxybenzoic acid and phthalic acid were identified in both RER and REW by HPLC analysis, but ferulic and p-coumaric acid acid were detected exclusively in REW and RER, respectively. Moreover, the content of p-coumaric acid was the highest among phenolic acids in RER, accounting for 37.9% of the total amount of phenolic acids, which was 1.4-fold as high as that in REW. According to the effects of exogenous phenolic acids on spore germination, spore reproduction and mycelial growth of FON, p-coumaric acid had the most significant inhibitory effects, followed by salicylic acid. In detail, exogenous p-coumaric reduced spore germination by 9.1% to 70.5%, spore reproduction by 24.1% to 100.0% and mycelial growth by 2.5% to 47.5%, as compared with the controls. In contrast, ferulic acid, p-hydroxybenzoic acid and phthalic acid increased spore germination and spore reproduction to some extent. Among of them, ferulic acid had the obvious promoting effects and could enhance spore germination by 28.6% to 114.3% and spore reproduction by 17.7% to 54.8% when its concentration ranging from 40 to 160 mg&#8226;L-1. 【Concluion】 It was concluded that the root exudates from rice plants were fungistatic while those from watermelon were pathogen-promotive. This finding provided a scientific basis for clarifying the mechanism of disease suppressiveness of watermelon in the watermelon/aerobic rice intercropping system.


HAO W Y, RAN W, SHEN Q R, REN L X. Effects of root exudates from watermelon, rice plants and phenolic acids on Fusarium oxysporum f. sp. niveum
Scientia Agricultura Sinica, 2010,43(12):2443-2452. (in Chinese)

URL [本文引用: 2]
【Objective】 The objectives of this study were to compare influence of allelochemicals from root exudates of watermelon and rice plants on the growth of FON and to clarify the mechanism of disease suppressiveness in the intercropping system. 【Method】 Root exudates of watermelon (REW) and rice (RER) plants were collected by nutrient solution culture. The effects of REW and RER on FON were determined by culture medium method. The phenolic acids of REW and RER were identified by HPLC. Exogenous phenolic acids were also used to investigate the effect of some phenolic acids, which existed in REW and RER, on FON. 【Result】Compared with the control, addition of 1.0 mL and 5.0 mL of REW increased the numbers of germinating spores by 46.9% and 59.2%, respectively, while the spore reproduction was enhanced by 10.8% to 84.6% when REW was added in the range from 0.1 to 2.0 mL. In contrast, addition of 1.0 mL and 5.0 mL of RER decreased spore germination by 14.3% and 6.1%, respectively, while addition of REW from 0.1 mL to 2.0 mL decreased spore reproduction by 4.6% to 37.5%. Salicylic acid, p-hydroxybenzoic acid and phthalic acid were identified in both RER and REW by HPLC analysis, but ferulic and p-coumaric acid acid were detected exclusively in REW and RER, respectively. Moreover, the content of p-coumaric acid was the highest among phenolic acids in RER, accounting for 37.9% of the total amount of phenolic acids, which was 1.4-fold as high as that in REW. According to the effects of exogenous phenolic acids on spore germination, spore reproduction and mycelial growth of FON, p-coumaric acid had the most significant inhibitory effects, followed by salicylic acid. In detail, exogenous p-coumaric reduced spore germination by 9.1% to 70.5%, spore reproduction by 24.1% to 100.0% and mycelial growth by 2.5% to 47.5%, as compared with the controls. In contrast, ferulic acid, p-hydroxybenzoic acid and phthalic acid increased spore germination and spore reproduction to some extent. Among of them, ferulic acid had the obvious promoting effects and could enhance spore germination by 28.6% to 114.3% and spore reproduction by 17.7% to 54.8% when its concentration ranging from 40 to 160 mg&#8226;L-1. 【Concluion】 It was concluded that the root exudates from rice plants were fungistatic while those from watermelon were pathogen-promotive. This finding provided a scientific basis for clarifying the mechanism of disease suppressiveness of watermelon in the watermelon/aerobic rice intercropping system.


LIU P, LIU Z H, WANG C B, GUO F, WANG M, ZHANG Y F, DONG L, WAN S B. Effects of three long-chain fatty acids present in peanut (Arachis hypogaea L.) root exudates on its own growth and the soil enzymes activities
Allelopathy Journal, 2012,29(1):13-24.

URL [本文引用: 1]
We identified three long-chain fatty acids (Tetradecanoic, Hexadecanoic and Octadecanoic acids) in the root exudates of peanut (Arachis hypogaea L.) seedlings using a gas chromatograph coupled with a mass spectrometer and determined their relationship with peanut soil sickness. We studied their combined effects on peanut growth, production and soil enzyme activities in a simulation experiment in pot culture, using the field soil as the growth medium. Their low concentrations (80 mg kg(-1) soil) slightly stimulated the growth and production of peanut, but their high concentrations (160 mg kg(-1) soil and 240 mg kg(-1) soil) significantly decreased the growth and production. Chlorophyll content in peanut leaves, root activity, soil enzymes (sucrase, urease and phosphatase) activities were slightly promoted at low concentration of soil fatty acids but were suppressed at high concentrations. Decrease in photosynthates production, nutrients uptake and rhizosphere nutrients availability, probably decreased the peanut growth and production. We concluded from this study that the accumulation of three long-chain fatty acids, tetradecanoic, hexadecanoic and octadecanoic acids, in field soil has close relationship with peanut soil sickness problem. Whether they are autotoxins of peanut or not need to be further studied.

CASPERSEN S, ALSANIUS B W, SUNDIN P, JENSéN P. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.)
Soil Biology and Biochemistry, 2000,32(8/9):1063-1070.

DOI:10.1016/S0038-0717(00)00014-6URL [本文引用: 1]

CASPERSEN S, SUNDIN P, MUNRO M, ADALSTEINSSON S, HOOKER J E, JENSéN P. Interactive effects of lettuce (Lactuca sativa L.), irradiance, and ferulic acid in axenic, hydroponic culture
Plant and Soil, 1999,210(1):115-126.

DOI:10.1023/A:1004682018888URL [本文引用: 1]

CHEN L C, WANG S L, WANG P, KONG C H. Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia lanceolata ) plantations
Plant and Soil, 2014,374(1/2):793-801.

DOI:10.1007/s11104-013-1914-7URL [本文引用: 1]

SCHMIDT S K. Degradation of juglone by soil bacteria
Journal of Chemical Ecology, 1988,14(7):1561-1571.

URLPMID:24276429 [本文引用: 1]

DONG L L, XU J, LI Y, FANG H L, NIU W H, LI X W, ZHANG Y J, DING W L, CHEN S L. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in
Panax ginseng. Soil Biology and Biochemistry, 2018,125:64-74.

[本文引用: 1]

LIU S, QIN F, YU S. Eucalyptus urophylla root-associated fungi can counteract the negative influence of phenolic acid allelochemicals
Applied Soil Ecology, 2018,127:1-7.

DOI:10.1016/j.apsoil.2018.02.028URL [本文引用: 1]

CHEN S Y, GUO L Y, BAI J G, ZHANG Y, ZHANG L, WANG Z, CHEN J X, YANG H X, WANG X J. Biodegradation of p-hydroxybenzoic acid in soil by Pseudomonas putida CSY-P1 isolated from cucumber rhizosphere soil
Plant and Soil, 2014,389(1):197-210.

DOI:10.1007/s11104-014-2360-xURL [本文引用: 1]

CHEN A W, ZENG G M, CHEN G Q, FAN J Q, ZOU Z J, LI H, HU X J, LONG F. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium
Applied Microbiology and Biotechnology, 2011,91(3):811-821.

DOI:10.1007/s00253-011-3313-4URLPMID:21556917 [本文引用: 1]
Phanerochaete chrysosporium has been recognised as an effective bioremediation agent due to its unique degradation to xenobiotic and biosorption ability to heavy metals. However, few studies have focused on the simultaneous removal of heavy metals and organic pollutants. The aim of this work was to study the feasibility of simultaneous cadmium removal and 2,4-dichlorophenol (2,4-DCP) degradation in P. chrysosporium liquid cultures. The removal efficiencies were pH dependent and the maximum removal efficiencies were observed at pH 6.5 under an initial cadmium concentration of 5 mg/L and an initial 2,4-DCP concentration of 20 mg/L. The removal efficiencies for cadmium and 2,4-DCP reached 63.62% and 83.90%, respectively, under the optimum conditions. The high production levels of lignin peroxidase (7.35 U/mL) and manganese peroxidase (8.30 U/mL) resulted in an increase in 2,4-DCP degradation. The protein content decreased with increasing cadmium concentration. The surface characteristics and functional groups of the biomass were studied by scanning electron microscopy and a Fourier-transformed infrared spectrometer. The results showed that the use of P. chrysosporium is promising for the simultaneous removal of cadmium and 2,4-DCP from liquid media.
相关话题/物质 土壤 苯甲酸 培养 作物