删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

油菜轮作对后茬作物产量的影响

本站小编 Free考研考试/2021-12-26

张顺涛,1, 鲁剑巍,1, 丛日环1, 任涛1, 李小坤1, 廖世鹏1, 张跃强2, 郭世伟3, 周明华4, 黄益国5, 程辉61华中农业大学资源与环境学院,武汉 430070
2西南大学资源环境学院,重庆 400716
3南京农业大学资源与环境科学学院,南京 210095
4中国科学院成都山地灾害与环境研究所,成都 610041
5衡阳市农业科学研究所,湖南衡阳 421001
6信阳市农业科学院,河南信阳 464000

Effect of Rapeseed Rotation on the Yield of Next-Stubble Crops

ZHANG ShunTao,1, LU JianWei,1, CONG RiHuan1, REN Tao1, LI XiaoKun1, LIAO ShiPeng1, ZHANG YueQiang2, GUO ShiWei3, ZHOU MingHua4, HUANG YiGuo5, CHENG Hui6 1 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070
2 College of Resources and Environment, Southwest University, Chongqing 400716
3 College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing 210095
4 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041
5 Hengyang Institute of Agricultural Sciences, Hengyang 421001, Hunan
6 Xinyang Institute of Agricultural Sciences, Xinyang 464000, Henan

通讯作者: 鲁剑巍,E-mail:lunm@mail.hzau.edu.cn

责任编辑: 杨鑫浩
收稿日期:2019-10-22接受日期:2019-12-18网络出版日期:2020-07-16
基金资助:国家油菜产业技术体系建设专项.CARS-12


Received:2019-10-22Accepted:2019-12-18Online:2020-07-16
作者简介 About authors
张顺涛,E-mail:zhangst@webmail.hzau.edu.cn













摘要
【目的】明确长江流域多熟制轮作区油菜轮作对后茬作物产量的影响,验证油菜种植提高后茬作物产量是一种普遍现象,为油菜作为换茬作物促进粮油兼丰、周年丰产稳产提供依据。【方法】在长江流域不同地区开展不同轮作模式的同田对比试验,选取长江上游重庆北碚油菜-水稻和小麦-水稻轮作、四川盐亭油菜-玉米和小麦-玉米轮作,中游湖北沙洋油菜-水稻和小麦-水稻轮作、油菜-玉米和小麦-玉米轮作、湖南衡阳油菜-早稻-晚稻和冬闲-早稻-晚稻轮作、河南信阳油菜-水稻和小麦-水稻轮作,下游江苏如皋油菜-水稻和小麦-水稻轮作。比较冬季作物小麦(或冬闲)和油菜在相同施肥水平下对后茬作物水稻或玉米产量及产量构成因子、养分吸收量的差异。【结果】北碚、沙洋、信阳和如皋油-稻轮作的稻谷产量较麦-稻轮作分别提高323、483、1 569和569 kg·hm-2,相应增产4.6%、6.6%、17.3%和6.0%;盐亭和沙洋油-玉轮作的玉米产量较麦-玉轮作分别提高487和579 kg·hm-2,分别增产7.0%和14.8%;衡阳油-稻-稻轮作的早稻和晚稻的稻谷产量较闲-稻-稻轮作分别提高718和726 kg·hm-2,分别增产11.1%和10.5%。沙洋和信阳油-稻轮作水稻的有效穗数和每穗粒数较麦-稻轮作分别增加7.0、27.7万穗/hm2和18.1、20.2粒/穗。沙洋和北碚试验点油-稻轮作的水稻生物量较麦-稻轮作分别提高1 711和2 625 kg·hm-2,氮素累积量分别较麦-稻轮作增加23.9和23.2 kg·hm-2。【结论】在长江流域不同种植区域内,油菜在不同轮作模式中均可提高后茬作物的产量及养分累积量,是一种良好的轮作换茬作物。
关键词: 油菜;轮作;后效;土壤生产力;粮油兼丰

Abstract
【Objective】 The aim of this study was to clarify the impact of rapeseed rotation on the yield of the next-stubble crops in the multiple cropping rotation area of the Yangtze River Basin, and to verify that it was a common phenomenon that rapeseed cultivation increased crop yield in the subsequent season, so as to provide a basis for rapeseed as an alternate husbandry crops to promote both yield of grain and oil, and yield stability. 【Method】 Field experiments with different crop rotation patterns were carried out in different areas of the Yangtze River Basin: in the upper Yangtze River, rapeseed-rice and wheat-rice rotation in Beibei (Chongqing), and rapeseed-maize and wheat-maize rotation in Yanting (Sichuan province) were selected; in the middle Yangtze River, rapeseed-rice and wheat-rice rotations, rapeseed-maize and wheat-maize rotations in Shayang (Hubei province), rapeseed-early rice and winter fallow-early rice-late rice rotations in Hengyang (Hunan province), rapeseed-rice and wheat-rice rotations in Xinyang (Henan province) were selected; in the lower Yangtze River, rapeseed-rice and wheat-rice rotations in Rugao (Jiangsu province) were selected. The differences in yield, yield components and nutrient uptake of rice or maize in the subsequent season of winter crop wheat (or winter fallow) and rapeseed at the same fertilization level were analyzed. 【Result】 Compared with that in wheat-rice rotation, the rice yield of rapeseed-rice rotation in Beibei, Shayang, Xinyang and Rugao increased by 323, 483, 1 569 and 569 kg·hm-2, respectively, with increase rate of 4.6%, 6.6%, 17.3% and 6.0%, respectively. Compared with that in wheat-maize rotation, the maize yield of rapeseed-maize rotation in Yanting and Shayang increased by 487 and 579 kg·hm-2, respectively, with increase rate of 7.0% and 14.8%, respectively. Compared with that in winter fallow-rice-rice rotation, the early rice and late rice yields of rapeseed-rice-rice rotation in Hengyang increased by 718 and 726 kg·hm-2, respectively, with increase rate of 11.1% and 10.5%, respectively. Compared with the wheat-rice rotation, the rice panicle number and grains per panicle of rapeseed-rice rotation in Shayang and Xinyang increased by 7.0×104, 27.7×104 spikes/hm2 and 18.1, 20.2 grains. Compared with the wheat-rice rotation, the rice biomass of the rapeseed-rice rotation in Shayang and Beibei increased by 1 711 and 2 625 kg·hm-2, respectively, and the nitrogen accumulation increased by 23.9 and 23.2 kg·hm-2, respectively. 【Conclusion】 In different planting areas in the Yangtze River Basin, rapeseed rotation could increase the yield and nutrient accumulation of next-stubble crops in different rotation patterns in varying planting areas in Yangtze River Basin, being a good alternate husbandry crop in a rotation.
Keywords:rapeseed;rotation;aftereffect;soil productivity;high yield of grain and oil


PDF (385KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张顺涛, 鲁剑巍, 丛日环, 任涛, 李小坤, 廖世鹏, 张跃强, 郭世伟, 周明华, 黄益国, 程辉. 油菜轮作对后茬作物产量的影响[J]. 中国农业科学, 2020, 53(14): 2852-2858 doi:10.3864/j.issn.0578-1752.2020.14.009
ZHANG ShunTao, LU JianWei, CONG RiHuan, REN Tao, LI XiaoKun, LIAO ShiPeng, ZHANG YueQiang, GUO ShiWei, ZHOU MingHua, HUANG YiGuo, CHENG Hui. Effect of Rapeseed Rotation on the Yield of Next-Stubble Crops[J]. Scientia Acricultura Sinica, 2020, 53(14): 2852-2858 doi:10.3864/j.issn.0578-1752.2020.14.009


0 引言

【研究意义】我国人口众多、资源不足,在有条件的区域进行周年轮作是保障粮食安全的重要措施[1]。长江流域是我国重要的粮油生产基地,生产了全国35%左右的粮食和80%左右的油菜,水田主要以水稻-小麦、水稻-油菜、水稻-水稻-油菜轮作为主,旱地主要以玉米(或其他杂粮)-小麦、玉米(或其他杂粮)-油菜轮作为主[2,3,4]。近年来,由于率先取消了油菜种植的政府补贴,加上油菜种植的机械化程度较低和劳动成本偏高,油菜种植的收益较低,导致种植面积出现严重的下滑[5],原来种植油菜的田块改种机械化程度较高的小麦或弃耕冬闲。长江流域冬小麦种植由于受气候的影响易受赤霉病和锈病的危害,小麦的品质安全受到极大威胁[6],尤其是长江沿线及以南地区并不适宜种植小麦。同时有研究表明,小麦-水稻和小麦-玉米等粮粮轮作模式忽略了“用养结合”的土地利用原则,通常会导致土壤质量下降、土壤生物遭到破坏,进而威胁粮食安全[7,8]。因此建立“用养结合”的可持续发展轮作模式非常重要。我国是世界油料消费进口大国,食用植物油目前的自给率仅为30%[5],保证中国油料作物的生产对于维护国家食物安全具有重要意义[9]。油菜是我国第一大油料作物,也是唯一的冬季油料作物,与其他粮食作物实行复种轮作,便于利用土地,合理安排作物布局,发展粮食和油料生产[10,11]。【前人研究进展】大量研究表明,通过合理的轮作制度可以提高作物产量和土壤质量[12,13,14]。蔡艳等[15]研究表明,粮草和粮豆轮作较小麦连作可显著提高小麦籽粒产量和土壤养分含量。VRGINIA等[16]研究认为蔬菜与豆科作物轮作提高了土壤有机碳和全氮含量进而提高了蔬菜产量。蔡常被[17]早期对水田油菜养地进行调查研究发现,种植油菜对土壤养分和物理性状有良好的改善作用,并认为油菜是用地与养地相结合的作物。张维乐等[18]的研究发现稻-油轮作体系的稻谷产量均高于麦-稻轮作,证实了“油菜是一种养地作物”的说法。【本研究切入点】油菜合理轮作对于维持国家粮食的增产,提高油料作物的自给率具有重要意义。前人关于油菜轮作对后茬作物产量的影响已有研究。但是,受研究条件等影响,大多数研究局限于油菜对单个轮作的影响,且轮作周期相对较短。【拟解决的关键问题】本研究通过长江流域7个不同轮作模式的同田对比定位试验,探究油菜在不同生态区域、不同的轮作模式、经过不同的轮作周期后对后茬作物产量的影响,从而为油菜轮作促进粮油兼丰、周年丰产稳产提供理论依据。

1 材料与方法

1.1 试验地概况

研究区域主要分布在长江流域。田间试验分别位于长江上游的重庆市北碚区和四川省盐亭县,种植模式为一年两熟制,分别为水旱轮作和旱地轮作,土壤类型分别为中性紫色土发育的水稻土和石灰性紫色土;长江中游的湖北省沙洋县和湖南省衡阳市,种植模式为一年两熟制和一年三熟制的水旱轮作,土壤类型分别为黄壤发育的水稻土和红壤发育的水稻土;黄淮流域的河南省信阳市,种植模式为一年两熟制水旱轮作,土壤类型为灰潮土发育的水稻土;长江下游的江苏省如皋市,种植模式为一年两熟制的水旱轮作,土壤类型为灰潮土发育的水稻土。

1.2 试验设计

重庆北碚:试验始于1991年水稻季,在国家紫色土肥力与肥料效益监测基地进行,位于重庆市北碚区西南大学试验农场。试验处理为油菜-水稻和小麦-水稻轮作,2种轮作模式的化肥施用量相同,两季作物秸秆还田。试验采用大区试验,大区面积为120 m2

四川盐亭:试验始于2008年玉米季,在中国科学院盐亭紫色土农业生态试验站进行,试验站位于四川省盐亭县林山乡。试验处理为油菜-玉米和小麦-玉米轮作,2种轮作模式化肥施用量相同,两季作物秸秆均半量还田。试验采用小区试验,小区面积50 m2,3次重复。

湖北沙洋:试验始于2015年油菜/小麦季,在长江流域耕地培肥与养分管理定位试验基地进行,基地位于湖北省沙洋县曾集镇。试验处理为油菜-水稻与小麦-水稻、油菜-玉米与小麦-玉米轮作,4种轮作模式的化肥施用量相同,秸秆不还田。试验采用小区试验,小区面积25 m2,3次重复。

湖南衡阳:试验始于2015年油菜季,试验在湖南衡阳市农业科学研究所国家油菜产业体系衡阳综合试验站试验基地进行。试验处理为油菜-早稻-晚稻轮作和冬闲-早稻-晚稻轮作。2种轮作模式中早稻和晚稻的施肥量相同,油菜季基肥施用复合肥(15-15-15)450 kg·hm-2,追施尿素50 kg·hm-2,冬闲田不施用任何肥料;秸秆不还田。试验采用大区试验,大区面积100 m2

河南信阳:试验始于2016年油菜季,在河南省信阳市农业科学院国家油菜产业体系衡阳综合试验站进行。试验处理为油菜-水稻和小麦-水稻轮作模式,2种轮作模式的施肥量相同,两季作物秸秆均还田。试验采用大区试验,大区面积90 m2

江苏如皋:试验始于2017年油菜季,在江苏省如皋市农业科学院科研基地进行。试验处理为油菜-水稻、小麦-水稻轮作模式,2种轮作模式的施肥量相同,秸秆不还田。试验采用小区试验,小区面积30 m2,3次重复。

1.3 测试项目及方法

1.3.1 产量收获及产量构成因子调查 成熟期,各试验点各小区单独收获以计实产。本研究中北碚试验点水稻为1991—2018年平均产量,盐亭和沙洋试验点玉米为2016—2018年平均产量,沙洋和衡阳试验点水稻为2016—2018年平均产量,如皋和信阳试验点水稻为2017—2018年平均产量。

2019年水稻成熟期在沙洋和信阳试验点进行水稻产量构成因子调查。具体方法为从各小区中取有代表性的水稻植株10兜,调查有效穗数、穗粒数、结实率和千粒重。

1.3.2 植物样品采集与测定 2019年水稻成熟期在沙洋和北碚试验点从每个小区随机取10兜有代表性的水稻植株(其中北碚试验点在大区中进行3点取样),风干后分别对稻谷和稻草称重,根据谷草比和稻谷实际产量折算稻草生物学产量。测定地上部稻草和籽粒的养分含量,用H2SO4-H2O2消煮,连续流动分析仪(AA3,德国SEAL)测定N、P含量,火焰光度计测定K含量[19],计算地上部养分累积量(稻草生物量×稻草养分含量+稻谷产量×稻谷养分含量)。

1.4 数据统计

试验数据利用Excel 2016进行处理,采用SPSS 20.0数据处理软件进行数据的统计分析,采用Origin 2017软件作图。

2 结果

2.1 油菜轮作对后茬作物产量的影响

在水旱轮作两熟制的种植模式中,油菜轮作可显著提高后茬稻谷产量(图1-a),沙洋、信阳和如皋油-稻轮作的稻谷产量较麦-稻轮作分别提高了483、1 569和569 kg·hm-2,增幅为6.6%、17.3%和6.0%;北碚水旱轮作两熟制的种植模式中,油-稻轮作27年稻谷的平均产量较麦-稻轮作提高了323 kg·hm-2,增幅为4.6%。在旱旱轮作两熟制的种植模式中,油菜轮作可提高后茬玉米产量(图1-b),沙洋和盐亭油-玉轮作的玉米产量较麦-玉轮作分别提高了579和487 kg·hm-2,增幅为14.8%和7.0%。在水旱轮作三熟制的种植模式中,油菜轮作的早稻和晚稻的稻谷产量均有升高的趋势(图1-c),衡阳的油-稻-稻轮作的早稻和晚稻的稻谷产量较闲-稻-稻轮作分别提高了718和726 kg·hm-2,增幅为11.1%和10.5%。

图1

新窗口打开|下载原图ZIP|生成PPT
图1各试验点油菜轮作对后茬作物产量的影响

**表示差异极显著(P<0.01),*表示差异显著(P<0.05),ns表示差异不显著(P>0.05)
Fig. 1Effect of rapeseed rotation on yield of post-season crop at each experiment site

** indicate extremely significant at P<0.01, * indicate significant at P<0.05, while ns showed no significant difference


2.2 油菜轮作对后茬水稻产量构成因子的影响

油菜轮作可以提高后茬水稻的有效穗数和每穗粒数(表1)。在沙洋试验点,油-稻轮作水稻每穗粒数较麦-稻轮作显著提高18.1粒/穗,有效穗数、结实率和千粒重较麦-稻轮作无显著差异。在信阳试验点,油-稻轮作的水稻穗数和每穗粒数较麦-稻轮作显著提高了27.7万穗/hm2和20.2粒/穗,结实率和千粒重较麦-稻轮作无显著差异。

Table 1
表1
表1油菜轮作对后茬水稻产量构成因子的影响(沙洋和信阳)
Table 1Effect of rapeseed rotation on yield components of rice (Shayang and Xinyang)
试验点
Site
处理
Treatment
穗数
Spike number (×104 spike/hm2)
每穗粒数
Grain number per spike
结实率
Seed setting (%)
千粒重
1000-grain weight (g)
沙洋
Shayang
油-稻RR252.0a177.0a93.2a22.01a
麦-稻WR245.0a158.9b89.4a20.85a
信阳
Xinyang
油-稻RR391.7a98.0a69.9a24.28a
麦-稻WR364.0b77.8b69.1a24.47a
Different small letters indicate significant differences between different rotations of the same experiment site. The same as below
不同小写字母表示同一试验点不同轮作处理间达到显著性差异(P<0.05)。下同

新窗口打开|下载CSV

2.3 油菜轮作对后茬水稻地上部生物量及养分累积量的影响

表2结果可知,沙洋和北碚试验点油-稻轮作较麦-稻轮作提高了水稻的生物量和养分累积量。两试验点油-稻轮作较麦-稻轮作水稻生物量分别增加了1 711和2 627 kg·hm-2,增幅为11.2%和25.3%;氮素累积量分别增加了23.9和23.2 kg·hm-2,增幅为19.3%和21.7%;在北碚试验点磷素累积量增加了7.6 kg·hm-2,增幅30.2%,而沙洋试验点磷素累积量无显著差异;油-稻轮作的钾素累积量较麦-稻轮作均有增加的趋势但差异不显著。

Table 2
表2
表2油菜轮作对后茬水稻地上部生物量及养分累积量的影响(沙洋和北碚)
Table 2Effect of rapeseed rotation on aboveground biomass and nutrient accumulation of rice (Shayang and Beibei)
试验点
Site
处理
Treatment
生物量
Biomass (kg·hm-2)
养分累积量 Total nutrient accumulation (kg·hm-2)
NPK
沙洋
Shayang
油-稻RR16930a141.4a29.5a241.1a
麦-稻WR15219b118.5b33.9a229.3a
北碚
Beibei
油-稻RR13022a129.8a32.8a184.6a
麦-稻WR10396b106.6b25.2b162.4a

新窗口打开|下载CSV

3 讨论

3.1 油菜轮作可以提高后茬作物产量

作物产量不仅是田间种植管理水平与土壤生产力的综合反映,同时也是农业可持续发展的重要评价指标[20]。在本研究中,水旱两熟制轮作中油-稻轮作的稻谷产量较麦-稻轮作增加了323—1 569 kg·hm-2,水旱三熟制轮作中油-稻-稻轮作早稻和晚稻的稻谷产量较闲-稻-稻轮作分别增加了718和726 kg·hm-2,旱旱轮作中油-玉轮作的玉米产量较麦-玉轮作增加了487—903 kg·hm-2。本研究中的试验点分布较广,试验中有长期的定位试验也有中短期的定位试验,均证实了与小麦相比,油菜作为水旱轮作的冬季作物显著提高稻谷产量。油菜轮作提高后茬水稻产量的主要原因是水稻的有效穗数和每穗粒数明显增加。已有研究表明,油菜轮作可提高后茬烟草的产量[21];在德国,油菜-小麦轮作的小麦产量显著高于谷物-小麦轮作[22]。因此,将油菜纳入多种轮作模式均可提高后茬作物的产量。

3.2 油菜轮作土壤生产力提升的原因

本研究结果表明,油菜轮作可提高后茬水稻氮素累积量,在一定程度上可以理解为土壤的供氮能力增加了[15]。油菜轮作可以提高土壤生产力,分析其原因可能有以下几点:(1)油菜增加了养分归还量从而提高了土壤的养分含量。研究表明,油菜季在生育后期脱落的叶片会将大量的氮磷钾养分归还到土壤中[23],油菜秸秆还田带入的氮素也要显著高于小麦秸秆[24],朱芸等[25]通过大数据分析表明,油-稻轮作周年氮素盈余量显著高于麦-稻轮作。(2)油菜种植改变了土壤的物理结构。芸薹属作物具有强大的根系系统,在其生长过程中会对土壤物理性质产生积极影响[26]。杨瑞吉等[27]的研究表明,麦茬复种饲料油菜可以在一定程度上保持和提高土壤耕层的黏粒含量、水稳性团聚体含量和团聚度。(3)油菜轮作改善了土壤生物特性。研究表明,油菜种植可显著提高耕层土壤微生物量碳氮,降低土壤微生物碳氮比,土壤中细菌和真菌的群落结构也发生了改变[12,28-29]。北碚试验点27年长期轮作试验的结果表明油菜轮作是一种可持续提高土壤生产力的轮作模式。但目前关于油菜轮作提升土壤生产力详尽的机理仍不完全清楚,有待进一步研究。

3.3 油菜轮作提升土壤生产力的意义

在中国,水稻种植通常采用水旱轮作,油菜-水稻和小麦-水稻构成了一年一度的水旱轮作种植制度,这些轮作体系占水稻种植总面积的60%[30,31]。然而,在麦稻种植区,存在土壤物理性质的退化和土壤有机碳水平降低的现象;随之而来的是土壤生产力和资源利用效率下降[32]。调查数据显示,目前我国还有大量可开发利用的冬闲田,其中长江流域可用于种植油菜的冬闲田面积高达427万hm2,扩大油菜种植面积还有较大的发展空间[5]。我国是世界上最大的化肥生产国、消费国和进口国,但是肥料利用率远低于国际水平[1,33],张福锁等[34]提出要实现作物高产和资源高效,就必须挖掘作物产量潜力和提高土壤生产力,而不能过分依赖水肥等大量投入。因此,在多熟制种植模式中,将油菜纳入轮作体系,以用地与养地相结合的种植模式提高土壤生产力,促进作物增产与稳产,实现农业绿色可持续发展。

4 结论

在长江流域不同种植区域内,油菜在不同轮作模式中均可提高后茬作物的产量;油菜轮作提高了后茬水稻的有效穗数和每穗粒数进而提高了稻谷产量,水稻生物量及养分累积量尤其是氮素累积量显著提高。油菜轮作普遍提升了土壤生产力,因此推荐将油菜纳入多熟制轮作体系中,对于促进粮油兼分、周年丰产稳产具有重要意义。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

MIAO Y X, STEWART B A, ZHANG F S. Long-term experiments for sustainable nutrient management in China. A review
Agronomy for Sustainable Development, 2011,31(2):397-414.

DOI:10.1051/agro/2010034URL [本文引用: 2]
China is facing one of the largest challenges of this century to continue to increase annual cereal production to about 600 Mt by 2030 to ensure food security with shrinking cropland and limited resources, while maintaining or improving soil fertility, and protecting the environment. Rich experiences in integrated and efficient utilization of different strategies of crop rotation, intercropping, and all possible nutrient resources accumulated by Chinese farmers in traditional farming systems have been gradually abandoned and nutrient management shifted to over-reliance on synthetic fertilizers. China is now the world's largest producer, consumer and importer of chemical fertilizers. Overapplication of nitrogen (N) is common in intensive agricultural regions, and current N-uptake efficiency was reported to be only 28.3, 28.2 and 26.1% for rice, wheat and maize, respectively, and less than 20% in intensive agricultural regions and for fruit trees or vegetable crops. In addition to surface and groundwater pollution and greenhouse gas emissions, over-application of N fertilizers has caused significant soil acidification in major Chinese croplands, decreasing soil pH by 0.13 to 2.20. High yield as a top priority, small-scale farming, lack of temporal synchronization of nutrient supply and crop demand, lack of effective extension systems, and hand application of fertilizers by farmers are possible reasons leading to the over-application problems. There is little doubt that current nutrient management practices are not sustainable and more efficient management systems need to be developed. A review of long-term experiments conducted around the world indicated that chemical fertilizer alone is not enough to improve or maintain soil fertility at high levels and the soil acidification problem caused by overapplication of synthetic N fertilizers can be reduced if more fertilizer N is applied as NO (3) (-) relative to ammonium- or urea-based N fertilizers. Organic fertilizers can improve soil fertility and quality, but long-term application at high rates can also lead to more nitrate leaching, and accumulation of P, if not managed well. Well-managed combination of chemical and organic fertilizers can overcome the disadvantages of applying single source of fertilizers and sustainably achieve higher crop yields, improve soil fertility, alleviate soil acidification problems, and increase nutrient-use efficiency compared with only using chemical fertilizers. Crop yield can be increased through temporal diversity using crop rotation strategies compared with continuous cropping and legume-based cropping systems can reduce carbon and nitrogen losses. Crop yield responses to N fertilization can vary significantly from year to year due to variation in weather conditions and indigenous N supply, thus the commonly adopted prescriptive approach to N management needs to be replaced by a responsive in-season management approach based on diagnosis of crop growth, N status and demand. A crop sensor-based in-season site-specific N management strategy was able to increase Nuptake efficiency by 368% over farmers' practices in the North China Plain.
Combination of these well-tested nutrient management principles and practices with modern crop management technologies is needed to develop sustainable nutrient management systems in China that can precisely match field-to-field and year-to-year variability in nutrient supply and crop demand for both single crops and crop rotations to not only improve nutrient-use efficiency but also increase crop yieldand protect the environment. In addition, innovative and effective extension and service-providing systems to assist farmers in adopting and applying new management systems and technologies are also crucially important for China to meet the grand challenge of food security, nutrient-use efficiency and sustainable development.

国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2018.
[本文引用: 1]

National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistical Publishing House, 2018. (in Chinese)
[本文引用: 1]

石孝均. 水旱轮作体系中的养分循环特征
[D]. 北京: 中国农业大学, 2003.

[本文引用: 1]

SHI X J. Characteristics of nutrient cycling in the rice-wheat rotation system
[D]. Beijing: China Agricultural University, 2003. (in Chinese)

[本文引用: 1]

况福虹. 长江上游紫色土不同种植体系肥料氮去向及氮素平衡
[D]. 北京: 中国农业大学, 2016.

[本文引用: 1]

KUANG F H. Fate of N fertilizer and N balance in different cropping systems in purple soil areas of the upper reaches of Yangtze River
[D]. Beijing: China Agricultural University, 2016. (in Chinese)

[本文引用: 1]

刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策
中国油料作物学报, 2019,41(4):485-489.

[本文引用: 3]

LIU C, FENG Z C, XIAO T H, MA X M, ZHOU G S, HUANG F H, LI J N, WANG H Z. Development, potential and adaptation of Chinese industry
Chinese Journal of Oil Crop Sciences, 2019,41(4):485-489. (in Chinese)

[本文引用: 3]

赵广才. 中国小麦种植区划研究(一)
麦类作物学报, 2010,30(5):886-895.

DOI:10.7606/j.issn.1009-1041.2010.05.019URL [本文引用: 1]
To make planting regionalization serving wheat research and production better,massive investigation was conducted and information was collected,the experiences of the author on wheat cultivetion and production were integrated, the Chinese wheat planting regionalization was put forward based on the previous research.The Chinese wheat planting region was divided into 4 main areas, namely: the northern winter (autumn sowing) wheat production areas, the southern winter (autumn sowing) wheat production areas, spring (autumn sowing) wheat production areas,the southern winter (autumn sowing) wheat production area, spring (spring sowing) wheat production area and the winter spring wheat production area, which was further divided in to 10 sub districts, namely: the northern winter (autumn sowing) wheat area, the Huang Huai winter (autumn sowing) wheat area, the middle and lower reaches of yangtze China winter (Late autumn sowing) wheat area, the Northeast spring (sowing) wheat area, the northern spring (sowing) wheat area, the northwest spring (sowing) wheat areas, the Xinjiang winter spring wheat area and the Qinghai Tibet spring winter wheat areas. The geographical scope of the district, climatic conditions, soil type, planting system, wheat production situation, pest and disease incidence and wheat production technology requirements in each area were briefly elaborated.
ZHAO G C. Study on Chinese wheat planting regionalization (I)
Journal of Triticeae Crops, 2010,30(5):886-895. (in Chinese)

DOI:10.7606/j.issn.1009-1041.2010.05.019URL [本文引用: 1]
To make planting regionalization serving wheat research and production better,massive investigation was conducted and information was collected,the experiences of the author on wheat cultivetion and production were integrated, the Chinese wheat planting regionalization was put forward based on the previous research.The Chinese wheat planting region was divided into 4 main areas, namely: the northern winter (autumn sowing) wheat production areas, the southern winter (autumn sowing) wheat production areas, spring (autumn sowing) wheat production areas,the southern winter (autumn sowing) wheat production area, spring (spring sowing) wheat production area and the winter spring wheat production area, which was further divided in to 10 sub districts, namely: the northern winter (autumn sowing) wheat area, the Huang Huai winter (autumn sowing) wheat area, the middle and lower reaches of yangtze China winter (Late autumn sowing) wheat area, the Northeast spring (sowing) wheat area, the northern spring (sowing) wheat area, the northwest spring (sowing) wheat areas, the Xinjiang winter spring wheat area and the Qinghai Tibet spring winter wheat areas. The geographical scope of the district, climatic conditions, soil type, planting system, wheat production situation, pest and disease incidence and wheat production technology requirements in each area were briefly elaborated.

王志强, 刘英, 杨文亭, 周泉, AAMER M, , 王海, 黄国勤, 赵其国. 稻田复种轮作休耕对土壤团聚体分布及稳定性的影响
土壤学报, 2018,55(5):1143-1155.

[本文引用: 1]

WANG Z Q, LIU Y, YANG W T, ZHOU Q, AAMER M, WANG H, HUANG G Q, ZHAO Q G. Effects of rotation and fallow in paddy field on distribution and stability of soil aggregates
Acta Pedologica Sinica, 2018,55(5):1143-1155. (in Chinese)

[本文引用: 1]

钟文辉, 蔡祖聪. 土壤管理措施及环境因素对土壤微生物多样性影响研究进展
生物多样性, 2004(4):456-465.

URL [本文引用: 1]
In this paper, the effect of soil management practices and environmental factors on soil microbial diversity are reviewed and the methods for studying soil microbial diversity are briefly introduced. Soil microbial diversity includes microbial species diversity, genetic diversity and ecological diversity. Culturing techniques using a variety of culture media are used traditionally to analyze soil microbial communities, but only a small fraction of soil microbial community has been cultured and isolated. Recently several modern methods including Biolog analysis, phospholipid fatty acid analysis and nucleic acid-based analysis have been utilized internationally to study and characterize soil microbial diversity. Soil microbial diversity is affected by many factors including management practices. Application of pesticides usually causes declines in soil microbial diversity or changes in its structure and function. Organic manures are commonly reported to maintain soil microbial diversity and activities, but reports on the effects of inorganic fertilizers have been contradictory. Generally speaking, microbial diversity is higher and biomass is larger in agricultural soils cultivated with reduced tillage and crop rotation than in those soils cultivated with conservation tillage and monoculture. Soil microbial diversity may also be influenced by soil organic matter, vegetation, seasonal change, and usually suffer from stresses such as drought, overgrazing, and nutrient deficiencies.
ZHONG W H, CAI Z C. Effect of soil management practices and environmental factors on soil microbial diversity: A review
Biodiversity Science, 2004(4):456-465. (in Chinese)

URL [本文引用: 1]
In this paper, the effect of soil management practices and environmental factors on soil microbial diversity are reviewed and the methods for studying soil microbial diversity are briefly introduced. Soil microbial diversity includes microbial species diversity, genetic diversity and ecological diversity. Culturing techniques using a variety of culture media are used traditionally to analyze soil microbial communities, but only a small fraction of soil microbial community has been cultured and isolated. Recently several modern methods including Biolog analysis, phospholipid fatty acid analysis and nucleic acid-based analysis have been utilized internationally to study and characterize soil microbial diversity. Soil microbial diversity is affected by many factors including management practices. Application of pesticides usually causes declines in soil microbial diversity or changes in its structure and function. Organic manures are commonly reported to maintain soil microbial diversity and activities, but reports on the effects of inorganic fertilizers have been contradictory. Generally speaking, microbial diversity is higher and biomass is larger in agricultural soils cultivated with reduced tillage and crop rotation than in those soils cultivated with conservation tillage and monoculture. Soil microbial diversity may also be influenced by soil organic matter, vegetation, seasonal change, and usually suffer from stresses such as drought, overgrazing, and nutrient deficiencies.

王汉中. 我国油菜产业发展的历史回顾与展望
中国油料作物学报, 2010,32(2):300-302.

URL [本文引用: 1]
本文在分析了我国食用植物油供给形势、油菜产业在食用植物油供给中的地位的基础上,对我国油菜产业的发展历史进行了回顾,提出在新的历史时期必须推动以“三高”(“高油、高产、高效”)为标志的我国油菜产业发展的第四次飞跃来应对新的挑战。


WANG H Z. Review and future development of rapeseed industry in China
Chinese Journal of Oil Crop Sciences, 2010,32(2):300-302. (in Chinese)

URL [本文引用: 1]
本文在分析了我国食用植物油供给形势、油菜产业在食用植物油供给中的地位的基础上,对我国油菜产业的发展历史进行了回顾,提出在新的历史时期必须推动以“三高”(“高油、高产、高效”)为标志的我国油菜产业发展的第四次飞跃来应对新的挑战。



鲁剑巍. 中国油菜生产的高产高效氮素管理
中国农业科学, 2016,49(18):3504-3505.

DOI:10.3864/j.issn.0578-1752.2016.18.004URL [本文引用: 1]
氮素是作物生长最重要的必需营养元素之一,氮肥的合理施用能促进作物生长并提高产量,但过量施氮或不适时的偏施则会抑制作物生长并对生态环境产生威胁[1]。 油菜是中国最重要的油料作物,提供了60%左右的国产食用植物油,近年来种植面积保持在740万公顷左右,其中长江流域的冬油菜种植面积和总产量占全国的80%左右。与其他油料作物相比,长江流域冬油菜为冬季作物,具有不与夏粮作物争地、长期种植可以培肥地力、减少南方冬闲田面积等诸多特点,提高中国食用油自给率、保障食用油安全供给的可行之路只能是稳定和扩大冬油菜种植面积、依靠科技进步提高油料作物产量和产油量[2]
同世界其他主要油菜种植区域相比,中国冬油菜种植的长江流域一般采用一年两熟或三熟的种植制度,具有土地利用强度大、土壤养分带走量大、土壤有机质含量低、土壤自身供肥能力及保肥能力差等特点,导致在同等产量水平时要求比世界其他油菜主产区施用更多的肥料和多次施肥。例如在加拿大油菜主产区,种植油菜时如果不施肥仅靠土壤的自身肥力就可生产出施肥条件下的85-90%的产量[3],在中国的东北海拉尔地区如果不施肥也可生产出施肥条件下的80%左右的产量,但在中国长江流域如果不施肥仅靠土壤的自身肥力油菜只能维持施肥条件下的40%—50%的产量,也就是说,从养分供应角度来看中国油菜主产区的油菜产量对肥料的依存率平均高达55%以上。另外,就施肥对长江流域主要作物产量的贡献率来讲,水稻平均为29.6%、小麦为48.6%、棉花为38.0%、油菜为56.2%,反映在土壤肥力基本相同时,由于作物的种类、生育时期的气候不同导致冬作油菜更加依赖肥料的施用[4]。由于以上客观因素的存在,无论是农民实际生产还是农业技术推广部门的推荐指导,施肥已成为油菜生产中的重要技术措施,在油菜生产的直接成本中肥料投入占一半以上,施肥措施到位与否直接影响油菜籽产量和收入。
近10多年来随着国家测土配方施肥项目和其他相关科技项目的实施,初步建立和培植了一支以华中农业大学、中国农业科学院油料作物研究所、湖南农业大学及相关油菜主产省农业科学院为依托的油菜营养与施肥科研队伍,油菜科学施肥研究及技术应用有了长足的进步,明确了中国油菜主产区耕地土壤养分缺乏因子及缺乏程度、目前高产优质油菜的营养需求特性,研制了中国主要区域油菜专用肥配方及其配套施用技术,并通过农业部相关推广应用项目进行了大面积的示范和应用,为保障中国油菜的高产高效生产提供了技术支撑。
然而,目前油菜施肥尤其是氮肥施用量总体偏高导致肥料投入成本高、养分利用率低,区域间和田块间氮肥投入过高和过低的现象并存导致养分的增产增效潜力得不到有效发挥,油菜氮素营养与施肥技术研究跟不上生产发生的变化导致新推广应用的油菜品种缺少针对性的施肥方案以及与轻简化生产相配套的轻简高效施肥技术,这些问题的存在既制约了油菜高产绿色高效生产的发展,也阻碍了油菜植物营养与施肥科学的进步。针对以上问题,本专题从不同油菜品种的氮素营养效率及碳积累转运、不同氮营养条件下的氮分配及其对光合作用的影响、种植密度及栽培模式与氮素养分管理的配套等多个角度和层面对本领域的最新研究进展进行了展示,在此基础上,通过归纳总结国内外近年来的研究与实践进展和经验提出了中国冬油菜氮素养分管理策略[5-6]。需要指出的是,本专题只是近年来从事油菜养分与施肥研究工作的部分研究成果,油菜的氮素营养遗传生理[7]、油菜氮素营养快速诊断与精准施用[8]、氮与其他养分的配合、氮肥的简化施用技术等研究均有一定程度的进步,但本专题没有涉及。我们希望通过本专题能展示目前在油菜氮素营养管理研究上取得的进展、突出油菜生产中养分管理技术的重要作用、剖析当前生产中养分管理存在的问题,引起科研及技术推广各层面对油菜养分尤其是氮素科学管理进一步重视,开展更多更深入的研究,为油菜减肥高效绿色生产提供更强的技术支撑。

LU J W. Nitrogen management with high yield and high efficiency for oilseed rape in China
Scientia Agricultura Sinica, 2016,49(18):3504-3505. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2016.18.004URL [本文引用: 1]
氮素是作物生长最重要的必需营养元素之一,氮肥的合理施用能促进作物生长并提高产量,但过量施氮或不适时的偏施则会抑制作物生长并对生态环境产生威胁[1]。 油菜是中国最重要的油料作物,提供了60%左右的国产食用植物油,近年来种植面积保持在740万公顷左右,其中长江流域的冬油菜种植面积和总产量占全国的80%左右。与其他油料作物相比,长江流域冬油菜为冬季作物,具有不与夏粮作物争地、长期种植可以培肥地力、减少南方冬闲田面积等诸多特点,提高中国食用油自给率、保障食用油安全供给的可行之路只能是稳定和扩大冬油菜种植面积、依靠科技进步提高油料作物产量和产油量[2]
同世界其他主要油菜种植区域相比,中国冬油菜种植的长江流域一般采用一年两熟或三熟的种植制度,具有土地利用强度大、土壤养分带走量大、土壤有机质含量低、土壤自身供肥能力及保肥能力差等特点,导致在同等产量水平时要求比世界其他油菜主产区施用更多的肥料和多次施肥。例如在加拿大油菜主产区,种植油菜时如果不施肥仅靠土壤的自身肥力就可生产出施肥条件下的85-90%的产量[3],在中国的东北海拉尔地区如果不施肥也可生产出施肥条件下的80%左右的产量,但在中国长江流域如果不施肥仅靠土壤的自身肥力油菜只能维持施肥条件下的40%—50%的产量,也就是说,从养分供应角度来看中国油菜主产区的油菜产量对肥料的依存率平均高达55%以上。另外,就施肥对长江流域主要作物产量的贡献率来讲,水稻平均为29.6%、小麦为48.6%、棉花为38.0%、油菜为56.2%,反映在土壤肥力基本相同时,由于作物的种类、生育时期的气候不同导致冬作油菜更加依赖肥料的施用[4]。由于以上客观因素的存在,无论是农民实际生产还是农业技术推广部门的推荐指导,施肥已成为油菜生产中的重要技术措施,在油菜生产的直接成本中肥料投入占一半以上,施肥措施到位与否直接影响油菜籽产量和收入。
近10多年来随着国家测土配方施肥项目和其他相关科技项目的实施,初步建立和培植了一支以华中农业大学、中国农业科学院油料作物研究所、湖南农业大学及相关油菜主产省农业科学院为依托的油菜营养与施肥科研队伍,油菜科学施肥研究及技术应用有了长足的进步,明确了中国油菜主产区耕地土壤养分缺乏因子及缺乏程度、目前高产优质油菜的营养需求特性,研制了中国主要区域油菜专用肥配方及其配套施用技术,并通过农业部相关推广应用项目进行了大面积的示范和应用,为保障中国油菜的高产高效生产提供了技术支撑。
然而,目前油菜施肥尤其是氮肥施用量总体偏高导致肥料投入成本高、养分利用率低,区域间和田块间氮肥投入过高和过低的现象并存导致养分的增产增效潜力得不到有效发挥,油菜氮素营养与施肥技术研究跟不上生产发生的变化导致新推广应用的油菜品种缺少针对性的施肥方案以及与轻简化生产相配套的轻简高效施肥技术,这些问题的存在既制约了油菜高产绿色高效生产的发展,也阻碍了油菜植物营养与施肥科学的进步。针对以上问题,本专题从不同油菜品种的氮素营养效率及碳积累转运、不同氮营养条件下的氮分配及其对光合作用的影响、种植密度及栽培模式与氮素养分管理的配套等多个角度和层面对本领域的最新研究进展进行了展示,在此基础上,通过归纳总结国内外近年来的研究与实践进展和经验提出了中国冬油菜氮素养分管理策略[5-6]。需要指出的是,本专题只是近年来从事油菜养分与施肥研究工作的部分研究成果,油菜的氮素营养遗传生理[7]、油菜氮素营养快速诊断与精准施用[8]、氮与其他养分的配合、氮肥的简化施用技术等研究均有一定程度的进步,但本专题没有涉及。我们希望通过本专题能展示目前在油菜氮素营养管理研究上取得的进展、突出油菜生产中养分管理技术的重要作用、剖析当前生产中养分管理存在的问题,引起科研及技术推广各层面对油菜养分尤其是氮素科学管理进一步重视,开展更多更深入的研究,为油菜减肥高效绿色生产提供更强的技术支撑。

王汉中. 以新需求为导向的油菜产业发展战略
中国油料作物学报, 2018,40(5):613-617.

[本文引用: 1]

WANG H Z. New-demand oriented oilseed rape industry developing strategy
Chinese Journal of Oil Crop Sciences, 2018,40(5):613-617. (in Chinese)

[本文引用: 1]

ZHANG X, ZHANG R, GAO J, WANG X, FAN F, MA X, YIN H, ZHANG C FENG K, DENG Y. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria
Soil Biology and Biochemistry, 2017,104:208-217.

DOI:10.1016/j.soilbio.2016.10.023URL [本文引用: 2]

WANG Y, JI H F, WANG R, GUO S L, GAO C Q. Impact of root diversity upon coupling between soil C and N accumulation and bacterial community dynamics and activity: Result of a 30 year rotation experiment
Geoderma, 2017,292:87-95.

DOI:10.1016/j.geoderma.2017.01.014URL [本文引用: 1]

AI C, ZHANG S Q, ZHANG X, GUO D D, ZHOU W, HUANG S M. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation
Geoderma, 2018,319:156-166.

DOI:10.1016/j.geoderma.2018.01.010URL [本文引用: 1]

蔡艳, 郝明德. 轮作模式与周期对黄土高原旱地小麦产量、养分吸收和土壤肥力的影响
植物营养与肥料学报, 2015,21(4):864-872.

DOI:10.11674/zwyf.2015.0405URL [本文引用: 2]
【目的】粮草轮作、粮豆轮作是黄土高原旱地区常见种植制度,本文利用长期定位试验探索该地区轮作制度和茬口年限对小麦产量、养分吸收和土壤肥力的影响,以期优化旱地作物种植制度。【方法】长期定位试验始于1984年,试验设8个处理对照(小麦连作,CK),粮草长周期轮作(3组种植方式2茬小麦→4茬苜蓿→1茬马铃薯→小麦,WAT1;小麦→4茬苜蓿→1茬马铃薯→2茬小麦,WAT2;4茬苜蓿→马铃薯→3茬小麦,WAT3),粮草短周期轮作(2组种植方式小麦+红豆草→红豆草→小麦,WST1;红豆草→小麦→小麦+红豆草,WST2),粮豆轮作(2组种植方式小麦+糜子→豌豆→小麦,WPT1;豌豆→小麦→小麦+糜子,WPT2)。小区面积66.69 m2,每个处理重复3次,随机区组排列。小麦收获后采集植物及土壤样品,测定小麦产量、籽粒和秸秆养分含量、土壤肥力性质。【结果】与小麦连作相比,轮作小麦籽粒增产1.47%~29.66%,秸秆增产2.17%~29.77%,粮草轮作增产效果更显著,轮作优势在豆科牧草后第二年最高,第三年减弱。粮草长周期轮作有利于小麦对N、K、Fe、Cu、Zn的吸收,吸收量在苜蓿茬后第三年>第二年>第一年;粮草短周期轮作可提高小麦对N、K、Fe的吸收量,红豆草茬后第1年吸收量稍高于后第二年;粮豆轮作有利于小麦吸收N、K、Fe、Mn,豌豆茬后第二年吸收量大于第一年。轮作制度和茬口年限对小麦微量元素养分收获指数的影响程度大于大量元素,粮豆轮作有利于N、P、Cu向籽粒转移,3种轮作制度下小麦K收获指数均低于连作小麦,粮草轮作中小麦Fe收获指数低于连作小麦。轮作后,土壤全氮增加11.54% ~ 20.51%,碱解氮提高9.66%~21.56%;粮草短周期轮作对土壤有机质、氮素和速效钾的提升作用突出,但有效磷亏缺23.97%;粮豆轮作对土壤磷素累积和有效化作用明显,其有效磷比小麦连作增加45.52%。【结论】黄土高原旱地区增加小麦产量、改善籽粒矿质营养,实现土壤培肥的较优轮作模式为红豆草(2~4年)→小麦(2年),以4~6年为一个轮作周期,同时注意增施磷肥。
CAI Y, HAO M D. Effects of rotation model and period on wheat yield, nutrient uptake and soil fertility in the Loess Plateau
Journal of Plant Nutrition and Fertilizers, 2015,21(4):864-872. (in Chinese)

DOI:10.11674/zwyf.2015.0405URL [本文引用: 2]
【目的】粮草轮作、粮豆轮作是黄土高原旱地区常见种植制度,本文利用长期定位试验探索该地区轮作制度和茬口年限对小麦产量、养分吸收和土壤肥力的影响,以期优化旱地作物种植制度。【方法】长期定位试验始于1984年,试验设8个处理对照(小麦连作,CK),粮草长周期轮作(3组种植方式2茬小麦→4茬苜蓿→1茬马铃薯→小麦,WAT1;小麦→4茬苜蓿→1茬马铃薯→2茬小麦,WAT2;4茬苜蓿→马铃薯→3茬小麦,WAT3),粮草短周期轮作(2组种植方式小麦+红豆草→红豆草→小麦,WST1;红豆草→小麦→小麦+红豆草,WST2),粮豆轮作(2组种植方式小麦+糜子→豌豆→小麦,WPT1;豌豆→小麦→小麦+糜子,WPT2)。小区面积66.69 m2,每个处理重复3次,随机区组排列。小麦收获后采集植物及土壤样品,测定小麦产量、籽粒和秸秆养分含量、土壤肥力性质。【结果】与小麦连作相比,轮作小麦籽粒增产1.47%~29.66%,秸秆增产2.17%~29.77%,粮草轮作增产效果更显著,轮作优势在豆科牧草后第二年最高,第三年减弱。粮草长周期轮作有利于小麦对N、K、Fe、Cu、Zn的吸收,吸收量在苜蓿茬后第三年>第二年>第一年;粮草短周期轮作可提高小麦对N、K、Fe的吸收量,红豆草茬后第1年吸收量稍高于后第二年;粮豆轮作有利于小麦吸收N、K、Fe、Mn,豌豆茬后第二年吸收量大于第一年。轮作制度和茬口年限对小麦微量元素养分收获指数的影响程度大于大量元素,粮豆轮作有利于N、P、Cu向籽粒转移,3种轮作制度下小麦K收获指数均低于连作小麦,粮草轮作中小麦Fe收获指数低于连作小麦。轮作后,土壤全氮增加11.54% ~ 20.51%,碱解氮提高9.66%~21.56%;粮草短周期轮作对土壤有机质、氮素和速效钾的提升作用突出,但有效磷亏缺23.97%;粮豆轮作对土壤磷素累积和有效化作用明显,其有效磷比小麦连作增加45.52%。【结论】黄土高原旱地区增加小麦产量、改善籽粒矿质营养,实现土壤培肥的较优轮作模式为红豆草(2~4年)→小麦(2年),以4~6年为一个轮作周期,同时注意增施磷肥。

VIRGINIA S N, ZORNOZA R, FAZ á, FERNáNDEZ J A. Comparing legumes for use in multiple cropping to enhance soil organic carbon, soil fertility, aggregates stability and vegetables yields under semi-arid conditions
Scientia Horticulturae, 2019,246:835-841.

DOI:10.1016/j.scienta.2018.11.065URL [本文引用: 1]

蔡常被. 水田油菜用地养地初步调查研究
湖北农业科学, 1978(8):12-13.

[本文引用: 1]

CAI C B. Preliminary investigation of land use and keep of oilseed in paddy field
Hubei Agricultural Science, 1978(8):12-13. (in Chinese)

[本文引用: 1]

张维乐, 戴志刚, 任涛, 周先竹, 王忠良, 李小坤, 丛日环. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响
中国农业科学, 2016,49(7):1254-1266.

DOI:10.3864/j.issn.0578-1752.2016.07.004URL [本文引用: 1]
【Objective】The effects of nitrogen (N) fertilization management on crop yield, total N accumulation and partial factor productivity were studied under the condition of returning residues in different paddy-upland rotations. 【Method】Field experiments were conducted in 14 counties (e.g., Xiaonan, Songzi, Yingcheng) of Hubei Province under rice-oilseed rape and rice-wheat rotation systems in the period of 2013-2014. Five treatments were followed as: 1) Conventional N fertilization in 3 times, 2) conventional N fertilization in 3 times with residues incorporation, 3) high N fertilization rate in 3 times with residues incorporation, 4) N fertilization in 2 times, and 5) N fertilization in 2 times with residues incorporation. Crop yields (rice, rapeseed and wheat), total N accumulation and partial factor productivity were analyzed among the treatments.【Result】 Crop yield, aboveground biomass and total N accumulation were not affected by high N application rate under residue incorporation in the rice-oilseed rape rotation but were significantly increased in the rice-wheat rotation. Compared with conventional N fertilization in 3 times for the rice-wheat cropping rotation, high N fertilization rate in 3 times with residues incorporation rice and wheat yield increments were 0.632 and 0.564 t·hm-2 on average, with the increasing rates of 6.85% and 10.67%, respectively. Aboveground biomass increments were 1.50 and 1.07 t·hm-2 on average, with increasing rates of 8.11% and 9.06%, respectively. Total N accumulation increments were 11.54 and 23.57 kg·hm-2 on average, with increasing rates of 7.88% and 21.28%, respectively. Total N accumulation of rice and wheat increment was 35.11 kg·hm-2, with increasing rate of 13.65%. N application at 2 times with residues incorporation would satisfy crop yield and total N accumulation compared with conventional N fertilization at 3 times. Specifically for the rice-wheat rotations, rice and wheat yield increments were 0.439 and 0.385 t·hm-2 on average, with increasing rates of 5.12% and 7.63%, respectively. Total N accumulation increments were 11.09 and 21.06 kg·hm-2 on average, with increasing rates of 8.26% and 20.82%, respectively. Total N accumulation increment was 32.14 kg·hm-2 for the rice-wheat cropping rotation, with increasing rate of 13.66%. For N efficiency, regular application rate of N obtained high partial factor productivity of applied N (PFPN, averaged values of PFPN were 52.03 to 59.29 kg·kg-1 for rice, 10.62 to 11.12 kg·kg-1 for oilseed rape, and 33.63 to 36.20 kg·kg-1 for wheat), partial factor productivity of applied N (PFPN) with residues incorporation was better than that without residues incorporation for equal nitrogen rates, especially when we moved N fertilizer forward with residues returning. For rice-oilseed rape rotation system, Compared with conventional N fertilization at 3 times and N fertilization in 2 times, conventional N fertilization in 3 times with residues incorporation and N fertilization in 2 times with residues incorporation the PFPN of rice increments were 2.45 and 4.07 kg·kg-1 on average, with increasing rates of 4.36% and 7.37%, respectively. Oilseed rape increments were 0.36 and 0.49 kg·kg-1 on average, with increasing rates of 3.38% and 4.62%, respectively. For rice-wheat rotation system, rice increments were 3.88 and 1.64 kg·kg-1 on average, with increasing rates of 7.46% and 3.10%, respectively. Wheat increments were 1.60 and 1.93 kg·kg-1 on average, with increasing rates of 4.75% and 5.65%, respectively. Compared with conventional N fertilization at 3 times, the PFPN values of rice and oilseed rape would increase 5.68% and 4.00% under N Fertilization at 2 times with residues incorporation, respectively. For the rice-wheat rotation system, N application at 2 times with residues incorporation would increase the PFPN values by 5.12% and 7.63% for rice and wheat, respectively.【Conclusion】With residues returning, moving fertilizer-nitrogen forward would achieve high and stable crop yield and enhance N efficiency under different paddy-upland rotations.
ZHANG W L, DAI Z G, REN T, ZHOU X Z, WANG Z L, LI X K, CONG R H. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems
Scientia Agricultura Sinica, 2016,49(7):1254-1266. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2016.07.004URL [本文引用: 1]
【Objective】The effects of nitrogen (N) fertilization management on crop yield, total N accumulation and partial factor productivity were studied under the condition of returning residues in different paddy-upland rotations. 【Method】Field experiments were conducted in 14 counties (e.g., Xiaonan, Songzi, Yingcheng) of Hubei Province under rice-oilseed rape and rice-wheat rotation systems in the period of 2013-2014. Five treatments were followed as: 1) Conventional N fertilization in 3 times, 2) conventional N fertilization in 3 times with residues incorporation, 3) high N fertilization rate in 3 times with residues incorporation, 4) N fertilization in 2 times, and 5) N fertilization in 2 times with residues incorporation. Crop yields (rice, rapeseed and wheat), total N accumulation and partial factor productivity were analyzed among the treatments.【Result】 Crop yield, aboveground biomass and total N accumulation were not affected by high N application rate under residue incorporation in the rice-oilseed rape rotation but were significantly increased in the rice-wheat rotation. Compared with conventional N fertilization in 3 times for the rice-wheat cropping rotation, high N fertilization rate in 3 times with residues incorporation rice and wheat yield increments were 0.632 and 0.564 t·hm-2 on average, with the increasing rates of 6.85% and 10.67%, respectively. Aboveground biomass increments were 1.50 and 1.07 t·hm-2 on average, with increasing rates of 8.11% and 9.06%, respectively. Total N accumulation increments were 11.54 and 23.57 kg·hm-2 on average, with increasing rates of 7.88% and 21.28%, respectively. Total N accumulation of rice and wheat increment was 35.11 kg·hm-2, with increasing rate of 13.65%. N application at 2 times with residues incorporation would satisfy crop yield and total N accumulation compared with conventional N fertilization at 3 times. Specifically for the rice-wheat rotations, rice and wheat yield increments were 0.439 and 0.385 t·hm-2 on average, with increasing rates of 5.12% and 7.63%, respectively. Total N accumulation increments were 11.09 and 21.06 kg·hm-2 on average, with increasing rates of 8.26% and 20.82%, respectively. Total N accumulation increment was 32.14 kg·hm-2 for the rice-wheat cropping rotation, with increasing rate of 13.66%. For N efficiency, regular application rate of N obtained high partial factor productivity of applied N (PFPN, averaged values of PFPN were 52.03 to 59.29 kg·kg-1 for rice, 10.62 to 11.12 kg·kg-1 for oilseed rape, and 33.63 to 36.20 kg·kg-1 for wheat), partial factor productivity of applied N (PFPN) with residues incorporation was better than that without residues incorporation for equal nitrogen rates, especially when we moved N fertilizer forward with residues returning. For rice-oilseed rape rotation system, Compared with conventional N fertilization at 3 times and N fertilization in 2 times, conventional N fertilization in 3 times with residues incorporation and N fertilization in 2 times with residues incorporation the PFPN of rice increments were 2.45 and 4.07 kg·kg-1 on average, with increasing rates of 4.36% and 7.37%, respectively. Oilseed rape increments were 0.36 and 0.49 kg·kg-1 on average, with increasing rates of 3.38% and 4.62%, respectively. For rice-wheat rotation system, rice increments were 3.88 and 1.64 kg·kg-1 on average, with increasing rates of 7.46% and 3.10%, respectively. Wheat increments were 1.60 and 1.93 kg·kg-1 on average, with increasing rates of 4.75% and 5.65%, respectively. Compared with conventional N fertilization at 3 times, the PFPN values of rice and oilseed rape would increase 5.68% and 4.00% under N Fertilization at 2 times with residues incorporation, respectively. For the rice-wheat rotation system, N application at 2 times with residues incorporation would increase the PFPN values by 5.12% and 7.63% for rice and wheat, respectively.【Conclusion】With residues returning, moving fertilizer-nitrogen forward would achieve high and stable crop yield and enhance N efficiency under different paddy-upland rotations.

鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.
[本文引用: 1]

BAO S D. Soil and Agricultural Chemistry Analysis. 3rd. Beijing: China Agricultural Press, 2000. (in Chinese)
[本文引用: 1]

张志国, 徐琪, BLEVINS R L. 长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响
土壤学报, 1998,35(3):384-391.

[本文引用: 1]

ZHANG Z G, XU Q, BLEVINS R L. Influences of long-term mulched no-tillage treatment on some soil physical and chemical properties and corn yields
Acta Pedologica Sinica, 1998,35(3):384-391. (in Chinese)

[本文引用: 1]

FANG Y, ZHANG L, JIAO Y, LIAO J, LUO L, JI S, LI J, DAI K, ZHU S, YANG M. Tobacco rotated with rapeseed for soil-borne: phytophthora pathogen biocontrol: Mediated by rapeseed root exudates
Frontiers in Microbiology, 2016,7:894.

DOI:10.3389/fmicb.2016.00894URLPMID:27379037 [本文引用: 1]
Black shank, caused by Phytophthora parasitica var. nicotianae, is a widespread and destructive disease of tobacco. Crop rotation is essential in controlling black shank. Here, we confirmed that rotating black shank-infested fields with rapeseed (Brassica napus) suppressed the incidence this disease. Further study demonstrated that rapeseed roots have a strong ability to attract zoospores and subsequently stop the swimming of zoospores into cystospores. Then, rapeseed roots secrete a series of antimicrobial compounds, including 2-butenoic acid, benzothiazole, 2-(methylthio)benzothiazole, 1-(4-ethylphenyl)-ethanone, and 4-methoxyindole, to inhibit the cystospore germination and mycelial growth of P. parasitica var. nicotianae. Thus, rapeseed rotated with tobacco suppresses tobacco black shank disease through the chemical weapons secreted by rapeseed roots.

WEISER C, ROLAND F, KAGE H, FLESSA H. Do farmers in Germany exploit the potential yield and nitrogen benefits from preceding oilseed rape in winter wheat cultivation?
Archives of Agronomy and Soil Science, 2018,64(1):25-37.

DOI:10.1080/03650340.2017.1326031URL [本文引用: 1]

刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 冬油菜叶片的物质及养分积累与转移特性研究
植物营养与肥料学报, 2011,17(4):956-963.

DOI:10.11674/zwyf.2011.0481URL [本文引用: 1]
为优化当季和下季作物的养分管理,采用田间试验研究了冬油菜品种:华双5号与中油杂12号叶片的干物质及氮、磷、钾的积累及转移规律,并比较了品种间的异同。结果表明,两个油菜品种的绿叶干物质量在苗后期基本达最大值,花后期迅速降低;苗期的落叶干物质量较小,蕾薹期后直线增加;叶片总干物质先增后减,花期达最大值。中油杂12号的落叶及叶片总干物质均高于华双5号,差异随生育期的推进逐渐明显。绿叶氮含量出苗后逐渐降低,后因越冬肥的施用又略有升高,蕾薹期后便迅速下降;落叶氮含量持续降低,苗后期降至最低点,其后一直保持稳定。绿叶磷含量在苗期缓慢增加,蕾薹期达到最大值,而后迅速下降;苗期落叶的磷含量逐渐降低,蕾薹期降至最低值,角果期后又略有升高。出苗50d后绿叶钾含量快速下降,70d达到最低值,其后保持稳定;落叶钾含量在蕾薹期达到最低值,其后波动较大。两品种叶片养分含量的变化趋势相似,但无论绿叶还是落叶,华双5号的养分含量总体略低于中油杂12号。绿叶的养分与叶片总养分积累的变化规律一致,即氮、磷、钾积累量均先增加后降低,分别在蕾薹期、苗后期和花期达到最高值。落叶的养分积累量在抽薹后迅速增加,收获期达最大值。华双5号叶片的干物质、N、P2O5、K2O转移率分别为25.5%、82.9%、75.4%、45.8%;中油杂12号则分别为8.4%、76.0%、60.2%、38.8%,品种间差异显著。
LIU X W, LU J W, LI X K, BO R Y, LIU B. The characteristic of dry matter and nutrient accumulation and transportation in leaves in winter oilseed rape (Brassica napus L.)
Journal of Plant Nutrition and Fertilizers, 2011,17(4):956-963. (in Chinese)

DOI:10.11674/zwyf.2011.0481URL [本文引用: 1]
为优化当季和下季作物的养分管理,采用田间试验研究了冬油菜品种:华双5号与中油杂12号叶片的干物质及氮、磷、钾的积累及转移规律,并比较了品种间的异同。结果表明,两个油菜品种的绿叶干物质量在苗后期基本达最大值,花后期迅速降低;苗期的落叶干物质量较小,蕾薹期后直线增加;叶片总干物质先增后减,花期达最大值。中油杂12号的落叶及叶片总干物质均高于华双5号,差异随生育期的推进逐渐明显。绿叶氮含量出苗后逐渐降低,后因越冬肥的施用又略有升高,蕾薹期后便迅速下降;落叶氮含量持续降低,苗后期降至最低点,其后一直保持稳定。绿叶磷含量在苗期缓慢增加,蕾薹期达到最大值,而后迅速下降;苗期落叶的磷含量逐渐降低,蕾薹期降至最低值,角果期后又略有升高。出苗50d后绿叶钾含量快速下降,70d达到最低值,其后保持稳定;落叶钾含量在蕾薹期达到最低值,其后波动较大。两品种叶片养分含量的变化趋势相似,但无论绿叶还是落叶,华双5号的养分含量总体略低于中油杂12号。绿叶的养分与叶片总养分积累的变化规律一致,即氮、磷、钾积累量均先增加后降低,分别在蕾薹期、苗后期和花期达到最高值。落叶的养分积累量在抽薹后迅速增加,收获期达最大值。华双5号叶片的干物质、N、P2O5、K2O转移率分别为25.5%、82.9%、75.4%、45.8%;中油杂12号则分别为8.4%、76.0%、60.2%、38.8%,品种间差异显著。

张维乐. 水旱轮作秸秆还田条件下氮肥调控和钾肥替代效应研究
[D]. 武汉:华中农业大学, 2016.

[本文引用: 1]

ZHANG W L. Study of nitrogen management and potassium substitution under residues incorporation in the paddy-upland rotation system
[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)

[本文引用: 1]

朱芸, 廖世鹏, 刘煜, 李小坤, 任涛, 丛日环, 鲁剑巍. 长江流域油-稻与麦-稻轮作体系周年养分收支差异
植物营养与肥料学报, 2019,25(1):64-73.

[本文引用: 1]

ZHU Y, LIAO S P, LIU Y, LI X K, REN T, CONG R H, LU J W. Differences of annual nutrient budgets between rapeseed-rice and wheat-rice rotations in the Yangtze River Basin
Journal of Plant Nutrition and Fertilizers, 2019,25(1):64-73. (in Chinese)

[本文引用: 1]

AGEGNEHU G, LAKEW B, NELSON P N . Cropping sequence and nitrogen fertilizer effects on the productivity and quality of malting barley and soil fertility in the Ethiopian highlands
Archives of Agronomy and Soil Science, 2014,60(9):1261-1275.

DOI:10.1080/03650340.2014.881474URL [本文引用: 1]
The productivity and quality of malting barley were evaluated using factorial combinations of four preceding crops (faba bean, field pea, rapeseed, and barley) as main plots and four nitrogen fertilizer rates (0, 18, 36, and 54kgN ha(-1)) as sub-plots with three replications at two sites on Nitisols of the Ethiopian highlands in 2010 and 2011 cropping seasons. Preceding crops other than barley and N fertilizer significantly improved yield and quality of malting barley. The highest grain yield, kernel plumpness, protein content, and sieve test were obtained for malting barley grown after faba bean, followed by rapeseed and field pea. Nitrogen fertilizer significantly increased yield, protein content, and sieve test of malting barley. All protein contents were within the acceptable range for malting quality. Inclusion of legumes in the rotation also improved soil fertility through increases in soil carbon and nitrogen content. We conclude that to maximize yield and quality of malting barley, it is critical to consider the preceding crop and soil nitrogen status. Use of appropriate break crops may substitute or reduce the amount of mineral N fertilizer required for the production of malting barley at least for one season without affecting its quality.

杨瑞吉, 牛俊义, 黄文德, 王鹤龄. 麦茬复种饲料油菜对耕层土壤团聚体的影响
水土保持学报, 2006,20(5):77-81.

[本文引用: 1]

YANG R J, NIU J Y, HUANG W D, WANG H L. Effects of wheat stubble multiple cropping rape to soil aggregate structure on topsoil
Journal of Soil and Water Conservation, 2006,20(5):77-81. (in Chinese)

[本文引用: 1]

BENNETT A J, HILTON S, BENDING G D, CHANDLER D, MILLS P. Impact of fresh root material and mature crop residues of oilseed rape (Brassica napus) on microbial communities associated with subsequent oilseed rape
Biology and Fertility of Soils, 2014,50(8):1267-1279.

DOI:10.1007/s00374-014-0934-7URL [本文引用: 1]
Glasshouse bioassays were conducted to assess the impact of different inputs of oilseed rape plant material on soil and rhizosphere microbial diversity associated with subsequently grown oilseed rape (Brassica napus) plants. The first bioassay focussed on the effect of oilseed rape rhizodeposits and fresh detached root material on microbial communities, in a rapid-cycling experiment in which oilseed rape plants were grown successively in pots of field soil for 4 weeks at a time, with six cycles of repeated vegetative planting in the same pot. Molecular analyses of the microbial communities after each cycle showed that the obligate parasite Olpidium brassicae infected the roots of oilseed rape within 4 weeks after the first planting (irrespective of the influence of rhizodeposits alone or in the presence of fresh detached root material), and consistently dominated the rhizosphere fungal community, ranging in relative abundance from 43 to 88 % when oilseed rape was grown more than once in the same soil. Fresh detached root material also led to a reduction in diversity within the soil fungal community, due to the increased relative abundance of O. brassicae. In addition, rhizosphere bacterial communities were found to have a reduced diversity over time when fresh root material was retained in the soil. In the second glasshouse experiment, the effect of incorporating mature, field-derived oilseed rape crop residues (shoots and root material) on microbial communities associated with subsequently grown oilseed rape was investigated. As before, molecular analyses revealed that O. brassicae dominated the rhizosphere fungal community, despite not being prevalent in either the residue material or soil fungal communities.

杨瑞吉, 马海灵, 杨祁峰, 牛俊义. 种植密度与施氮量对麦茬复种饲料油菜土壤微生物活性的影响
应用生态学报, 2007,18(1):113-117.

URLPMID:17396509 [本文引用: 1]
A field experiment was conducted to study the effects of planting density and nitrogen application rate on the topsoil (0-15 cm) microbial activity under wheat/forage rape multiple cropping. The results showed that multiple-cropping forage rape with wheat could significantly increase soil microbial biomass C (Cmic), soil microbial biomass N (Nmic), soil bacteria number (SBN), soil fungi number (SFN) and soil actinomyces number (SAN), but decrease soil microbial biomass C/N (Cmic/Nmic). The Cmic/Nmic and SBN increased with increasing planting density of forage rape, while Nmic and SAN were in adverse. SFN increased significantly with increasing nitrogen application rate, but Cmic and Nmic decreased first, increased then, and decreased again, with the highest in treatment 1000 kg x hm(-2) N. Also with increasing nitrogen application rate, the SFN and SAN during harvest stage of forage rape decreased first and increased then, while the SAN during seedling stage increased first and decreased then. Soil microbial activities at rape harvest stage were all higher than those at seedling stage, except for SAN in treatment 600 kg x hm(-2) N. SBN and SAN were positively correlated with Cmic and Nmic, but negatively correlated with/Nmic. No significant correlation was observed between SFN and Cmic, and SMBN and Cmic/Nmic.
YANG R J, MA H L, YANG Q F, NIU J Y. Effects of planting density and nitrogen application rate on soil microbial activity under wheat/ forage rape multiple cropping
Chinese Journal of Applied Ecology. 2007,18(1):113-117. (in Chinese)

URLPMID:17396509 [本文引用: 1]
A field experiment was conducted to study the effects of planting density and nitrogen application rate on the topsoil (0-15 cm) microbial activity under wheat/forage rape multiple cropping. The results showed that multiple-cropping forage rape with wheat could significantly increase soil microbial biomass C (Cmic), soil microbial biomass N (Nmic), soil bacteria number (SBN), soil fungi number (SFN) and soil actinomyces number (SAN), but decrease soil microbial biomass C/N (Cmic/Nmic). The Cmic/Nmic and SBN increased with increasing planting density of forage rape, while Nmic and SAN were in adverse. SFN increased significantly with increasing nitrogen application rate, but Cmic and Nmic decreased first, increased then, and decreased again, with the highest in treatment 1000 kg x hm(-2) N. Also with increasing nitrogen application rate, the SFN and SAN during harvest stage of forage rape decreased first and increased then, while the SAN during seedling stage increased first and decreased then. Soil microbial activities at rape harvest stage were all higher than those at seedling stage, except for SAN in treatment 600 kg x hm(-2) N. SBN and SAN were positively correlated with Cmic and Nmic, but negatively correlated with/Nmic. No significant correlation was observed between SFN and Cmic, and SMBN and Cmic/Nmic.

LIU S, QIN Y, ZOU J, LIU Q. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China
Science of the Total Environment, 2010,408(4):906-913.

URLPMID:19926115 [本文引用: 1]

NATH CP, HAZRA KK, KUMAR N, PRAHARAJ S C, SINGH S S, SINGH U, SINGH N P. Including grain legume in rice-wheat cropping system improves soil organic carbon pools over time
Ecological Engineering, 2019,129:144-153.

DOI:10.1016/j.ecoleng.2019.02.004URL [本文引用: 1]

CHAUHAN B S, MAHAJAN G, SARDANA V, TIMSINA J, JAT M L. Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic plains of the Indian Subcontinent-Chapter Six:problems, opportunities, and strategies
Advances in Agronomy, 2012,117:315-369.

DOI:10.1016/B978-0-12-394278-4.00007-6URL [本文引用: 1]
Rice and wheat are the staple foods for almost the entire Asian population and therefore they occupy a premium position among all food commodities. The era of the Green Revolution started during the early 1970s with wheat and rice and since then the rice-wheat cropping system of the Indo-Gangetic Plains has played a significant role in the food security of the region. However, recent years have witnessed a significant slowdown in the yield growth rate of this system and the sustainability of this important cropping system is at risk due to second-generation technology problems and mounting pressure on natural resources. Traditional cultivars and conventional agronomic practices are no longer able to even maintain the gains in productivity achieved during the past few decades. Demand for food is increasing with the increasing population and purchasing power of consumers. The rice-wheat cropping system is labor-, water-, and energy-intensive and it becomes less profitable as these resources become increasingly scarce and the problem is aggravated with deterioration of soil health, the emergence of new weeds, and emerging challenges of climate change. Therefore, a paradigm shift is required for enhancing the system's productivity and sustainability. Resource-conserving technologies involving zero- or minimum-tillage in wheat, dry direct seeding in rice, improved water- and nutrient-use efficiency, innovations in residue management to avoid straw burning, and crop diversification should assist in achieving sustainable productivity and allow farmers to reduce inputs, maximize yields, increase profitability, conserve the natural resource base, and reduce risk due to both environmental and economic factors. A number of technological innovation and diversification options have been suggested to overcome the system's sustainability problems but some of them have not been fully embraced by the farmers as these are expensive, knowledge-intensive, or do not fit into the system and have resulted in some other unforeseen problems. Different concerns and possible strategies needed to sustain the rice-wheat cropping system are discussed in this review on the basis of existing evidence and future challenges.

JIAO X Q, MONGOL N, ZHANG F S. The transformation of agriculture in China: Looking back and looking forward
Journal of Integrative Agriculture, 2018,17(4):755-764.

DOI:10.1016/S2095-3119(17)61774-XURL [本文引用: 1]

张福锁, 王激清, 张卫峰, 崔振玲, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径
土壤学报, 2008,45(5):915-924.

[本文引用: 1]

ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement
Acta Pedologica Sinica, 2008,45(5):915-924. (in Chinese)

[本文引用: 1]

相关话题/土壤 作物 生产 营养 技术