删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

小麦矮秆突变体的鉴定及其突变性状的关联分析

本站小编 Free考研考试/2021-12-26

贺军与,, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位,*云南农业大学农学与生物技术学院, 云南昆明 650201

Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants

HE Jun-Yu,, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei,*Collage of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China

通讯作者: *陈升位, E-mail: ynkmcsw@126.com

收稿日期:2020-08-16接受日期:2020-11-13网络出版日期:2021-05-12
基金资助:国家自然科学基金项目.31660434
国家自然科学基金项目.32060457


Received:2020-08-16Accepted:2020-11-13Online:2021-05-12
Fund supported: National Natural Science Foundation of China.31660434
National Natural Science Foundation of China.32060457

作者简介 About authors
E-mail: etfiee_coisini@126.com











摘要
矮秆突变体是小麦育种和株高遗传研究的重要基因资源。通过‘云麦53’成熟种子的EMS (Ethyl methyl sulfonate)诱变及诱变植株连续自交, 获得了33个M3代候选突变体。通过诱变亲本与M2和M3代候选植株的株高差异分析, 筛选到26个矮秆突变体, 其株高变幅为(13.61±0.11)~(44.08±1.73) cm。基于8个矮秆基因的12个特异性标记检测发现, 26个矮秆突变体至少携带2个矮秆基因标记位点。除株高外, 26个矮秆突变体还携带穗长、小穗密度、节间数和平均节间长4个不同突变性状。26个矮秆突变体可聚为5个亚类, 第1亚类的小穗数和小花数最少; 第2亚类的株高最矮, 穗长和平均节间长最短, 小穗密度最高; 第3亚类突变体的节间数最少。株高与平均节间长和节间数呈极显著相关, 偏相关系数分别为0.94、0.58, 但与穗长、小穗数、小花数和小穗密度4个性状无相关性。26个矮秆突变体的株高与平均节间长和节间数关联遗传, 携带不同的突变基因组合, 可用于小麦矮化育种, 以及株高、穗长和小穗密度等性状的遗传机制研究。
关键词: 小麦;突变体;矮秆基因;分子标记;遗传关联

Abstract
Dwarf mutant is an important gene resource in wheat breeding and plant height genetic research. In this paper, EMS (ethyl methyl sulfonate) was used to mutate the mature seeds of ‘Yunmai 53’, and 33 candidate dwarf mutants of M3 generation were finally obtained by self-bred. Twenty-six dwarf mutants were selected by analyzing differences between the mutant parent in two years and that of M2 and M3 generation candidate plants, and the variation range of their plant height was from (13.61 ± 0.11) cm to (44.08 ± 1.73) cm. Twenty-six dwarf mutants with at least 2 mutant sites were verified based on 12 specific markers of 8 dwarf genes. In addition to plant height, 26 dwarf mutants also carried four mutational traits, spike length, spikelet density, internode number, and average internode length. The 26 dwarf mutants could be clustered into 5 subgroups. Among them, the first subgroup was the least in spikelets and florets, the second subgroup was the shortest in plant height, spike length and average internode length, and the highest spikelet density, while the third subgroup was the least in internode number. Plant height was significantly correlated with average internode length and internode number with partial correlation coefficients of 0.94 and 0.58, respectively, but not correlated with spike length, spikelet number and spikelet density. The plant height was genetically associated with internode length and internode number in 26 dwarf mutants. The mutants carried different combinations of the mutant gene, and can be useful in wheat dwarf breeding and the studies on genetic mechanism of the traits, such as plant height, spike length and spikelet density.
Keywords:wheat;mutant;dwarf genes;molecular marker;genetic association


PDF (3591KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. doi:10.3724/SP.J.1006.2021.01066
HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants[J]. Acta Agronomica Sinica, 2021, 47(5): 974-982. doi:10.3724/SP.J.1006.2021.01066


自“绿色革命”以来, 全球种植的小麦品种中有90%含有矮秆和半矮秆基因[1,2,3,4,5]。迄今为止, 已报道的矮秆和半矮秆基因超过25个, 但可用于小麦育种的矮秆基因局限于Rht-B1b、Rht-D1b、Rht8Rht9[6,7]。矮秆基因Rht-B1b、Rht-D1bRht8在降低小麦株高时对其他性状无显著不良影响, 且Rht-D1b、Rht8Rht9可显著增加穗粒数[8,9,10,11,12]。李杏普等[13]发现Rht10Rht12的降秆作用大于Rht8, 但其株系的地上部分生物量低于Rht8株系。王清海等[14]研究发现Rht14、Rht16Rht18的降秆效应分别为47.3%、39.9%和36.0%。携带Rht14、Rht16Rht18的矮秆株系的小穗小花数变化不大, 但穗长变长。Rht5在降低小麦株高的同时会减少每穗小穗数和穗粒数[15]。前人研究表明, 大多数小麦推广品种携带的矮秆基因为Rht-B1b、Rht-D1bRht8 [3-6,16-17], 可有效利用的矮秆亲本不足, 育成品种遗传背景狭窄。创制新突变体是解决该问题的有效策略。本文采用甲基磺酸乙酯(Ethyl methyl sulfonate, EMS)诱变‘云麦53’ (国审品种)成熟种子, 通过诱变植株的连续3年套袋自交成功获得了一批株高、小穗密度和小花数等性状不同的候选突变体。基于连续2年的田间观察和常见矮秆基因的12个特异性分子标记检测鉴定了26株矮秆突变株, 分析了26个突变体的株高差异及其与穗长、小穗数和小穗密度等农艺性状的遗传关联性, 评估了矮秆突变体的育种价值。

1 材料与方法

1.1 试验材料

诱变亲本‘云麦53’由云南省农业科学研究院粮食作物研究所提供, 突变体由课题组创制。所有材料由课题组繁育并保存。

1.2 试验材料的种植及取样

1.2.1 材料诱变和繁育 将15,000粒‘云麦53’种子置于三角瓶中, 用pH 8.0的0.05 mol L-1磷酸缓冲液(PBS)震荡浸泡4 h, 再用0.6% EMS室温震荡浸泡16 h, 然后用自来水冲洗4 h。诱变种子及其后代均播种于云南农业大学昆明市盘龙区试验教学农场。分别套袋自交M1、M2和M3候选突变材料, 按单株收获种子。

1.2.2 农艺性状调查 按随机排列种植试验材料, 每个材料种植1行, 5行后种植1行诱变亲本。行距20cm, 株距5 cm, 3次重复。其他田间管理措施与常规大田管理一致。于2018—2019年度和2019—2020年度分别在开花期调查穗长、小穗数和小花数, 待种子成熟后调查株高、平均节间长和节间数。M2代调查单株性状, M3株系随机调查5株, 以5株均值代表株系性状的表型值。按下列公式计算小穗密度、平均节间长。

小穗密度=单株小穗数/单株穗长

平均节间长=单株节间长/单株节间数

1.2.3 矮秆基因的分子标记检测 于拔节期剪取M2单株及其诱变亲本的幼嫩叶片, 置于-80℃保存备用。采用CTAB法提取基因组DNA。采用Ellis等[18,19]报道的BF-WR1、BF-MR1、BF-WR2、BF-MR2、WMC317、BARC102、BARC151、WMC410和WMS577, 以及XBARC3[20]Xgwm261[20]和WMC503[21]特异性标记检测突变体携带的矮秆基因(表1), 其中BF-WR1和BF2-WR2为野生型(株高正常)基因标记, 其余标记为突变型(矮秆)基因标记。由上海生工生物技术有限公司合成所有引物。参照前人报道的PCR扩增条件扩增各标记, 采用8%聚丙烯酰胺凝胶电泳检测PCR扩增产物。上述标记均重复检测3次, 3次检测结果一致。

Table 1
表1
表1矮秆基因及其特异性标记的引物序列和片段长度
Table 1Specific molecular markers of dwarf genes and the fragment length and primers sequence of the markers
基因
Gene
标记
Marker
正向引物
Forward sequence
(5′-3′)
反向引物
Reverse sequence
(5′-3′)
片段长度
Product size
(bp)
Rht-B1aBF-WR1GGTAGGGAGGCGAGAGGCGAGCATCCCCATGGCCATCTCGAGCTG237
Rht-B1bBF-MR1GGTAGGGAGGCGAGAGGCGAGCATCCCCATGGCCATCTCGAGCTA237
Rht-D1aBF2-WR2GGCAAGCAAAAGCTTCGCGGGCCATCTCGAGCTGCAC264
Rht-D1bBF-MR2CGCGCAATTATTGGCCAGAGATAGCCCCATGGCCATCTCGAGCTGCTA254
Rht4WMC317TGCTAGCAATGCTCCGGGTAACTCACGAAACCTTTTCCTCCTCC170
Rht5BARC102GGAGAGGACCTGCTAAAATCGAAGACAGCGTTTACGGATCAGTGTTGGAGA200
Rht8Xgwm261CTCCCTGTACGCCTAAGGCCTCGCGCTACTAGCCATTG192
Rht8WMC503GCAATAGTTCCCGCAAGAAAAGATCAACTACCTCCAGATCCCGT225
Rht9BARC151TGAGGAAAATGTCTCTATAGCATCCCGCATAAACACCTTCGCTCTTCCACTC220
Rht12WMC410GGACTTGAAAGGAAGCTTGTGACATGGATGGCATGCAGTGT114
Rht13WMS577ATGGCATAATTTGGTGAAATTGTGTTTCAAGCCCAACTTCTATT130
Rht14/16/18XBARC3TTCCCTGTGTCTTTCTAATTTTTTTTGCGAACTCCCGAACATTTTTAT210

新窗口打开|下载CSV

1.2.4 农艺性状的关联分析 基于SPSS 25.0软件的t测验、聚类、方差、多重比较和相关分析模块默认参数, 分析突变体株高差异及其与穗长、小穗数和小穗密度等性状的遗传关联性。显著和极显著水平分别为5%和1%。

2 结果与分析

2.1 候选矮秆突变体的农艺性状差异分析

本研究采用t测验检测了‘云麦53’与33个候选材料的株高(M2单株表型值, M3株系均值)差异(表2)。结果表明, mutant 2、mutant 4、mutant 5等26个材料与‘云麦53’的株高存在显著或极显著差异, 为矮秆突变体。在26个矮秆突变体中mutant 16、mutant 23、mutant 25和mutant 26的株高值低于20 cm, mutant 18、mutant 19和mutant 20的株高值大于40 cm, 其余19个突变体的株高值介于20~40 cm之间(图1)。与‘云麦53’相比, mutant 4、mutant 5和mutant 7等18个突变体的穗长显著或极显著缩短; mutant 4、mutant 5和mutant 7等11个突变体的小穗密度显著或极显著增加; mutant 18的小花数显著减少; mutant 5、mutant 11、mutant 14等13个突变体的平均节间长显著或极显著缩短; mutant 5、mutant 10和mutant 14等6个突变体的节间数显著或极显著减少(表2图2)。mutant 7、mutant 12、mutant 24、mutant 28和mutant 29的节间数在M2和M3代中未发生分离, 均低于‘云麦53’的节间数, 但因方差为0、未做t测验。26个矮秆突变体携带株高、穗长和小穗密度等多个突变性状。

图1

新窗口打开|下载原图ZIP|生成PPT
图1‘云麦53’与部分矮秆突变体的株高差异

A: 突变体31; B: 突变体17; C: 突变体10; D: 突变体16; E: 突变体23; F: 突变体25。
Fig. 1Differences of plant height between ‘Yunmai 53’ and other dwarf mutants

A: mutant 31; B: mutant 17; C: mutant 10; D: mutant 16; E: mutant 23; F: mutant 25.


Table 2
表2
表2‘云麦53’及候选突变体的7个农艺性状均值及其显著性(t测验)
Table 2Mean values of 7 agronomic traits of ‘Yunmai 53’ and candidate mutants, and the difference between the mean values (t-test)
材料
Material
株高
Plant height
(cm)
穗长
Spike length (cm)
每穗小穗数
Spikelets number
per spike
小穗密度
Spikelet
density
小花数
Number of
florets
平均节间长
Average internode length (cm)
节间数
Number of
internodes
云麦53 Yunmai 5374.89±4.0310.30±0.3119.25±1.211.88±0.1859.35±5.2311.10±1.046.00±0.00
mutant 156.95±6.9510.49±1.5220.50±3.502.05±0.6360.34±9.347.50±3.335.00±0.00
mutant 239.52±2.02*8.40±1.1017.30±3.302.15±0.6858.20±16.207.98±0.784.50±0.50
mutant 363.99±2.516.11±0.59*17.10±1.102.84±0.4651.70±3.7011.23±0.965.40±0.60
mutant 437.24±0.44*4.44±0.34**19.30±1.304.35±0.04**55.00±1.007.21±0.614.50±0.50
mutant 521.94±3.66*3.72±0.02**20.00±1.005.37±0.24**58.30±1.304.88±0.62*3.80±0.20**
mutant 639.85±4.39*6.01±0.45*19.10±2.103.73±1.2755.50±4.506.87±0.444.50±0.50
mutant 733.89±2.89*4.71±0.41**21.00±2.004.46±0.04**63.40±6.407.22±0.394.00±0.00
mutant 834.92±2.58*4.40±0.10**22.50±0.505.12±0.01**67.50±1.507.16±0.444.40±0.60
mutant 931.81±6.79*4.18±0.58*21.30±2.305.12±0.16**61.20±4.206.20±0.954.40±0.60
mutant 1025.55±7.85*4.24±0.35**19.40±1.404.62±0.7154.70±0.705.44±1.773.90±0.10**
mutant 1129.78±1.92*8.20±0.7016.10±0.901.97±0.0648.00±3.005.49±0.24*4.50±0.50
mutant 1238.79±2.61*4.63±0.13**19.30±2.304.16±0.38*54.40±3.407.30±0.085.00±0.00
mutant 1338.32±8.483.98±0.38**15.90±1.903.98±0.10**44.90±2.906.65±0.854.50±0.50
mutant 1433.18±6.02*4.36±0.24**18.80±0.804.34±0.43*53.00±1.005.95±0.03*3.90±0.01**
mutant 1530.94±2.26*4.00±0.50**17.90±0.104.55±0.59*49.50±4.505.68±0.24*4.80±0.20*
mutant 1613.61±0.11**3.39±0.11**18.40±1.405.45±0.59*45.70±5.302.26±0.63*4.80±1.20
mutant 1732.62±4.98*3.96±0.26**17.50±0.504.43±0.16**49.10±1.906.16±0.624.50±0.50
mutant 1844.08±1.73*7.08±0.48*13.50±2.501.90±0.2333.25±0.25*7.87±0.975.50±0.50
mutant 1942.41±12.1910.58±1.5221.40±2.402.10±0.5369.10±12.106.10±1.015.30±0.70
mutant 2042.18±6.587.97±0.6315.30±0.301.94±0.2043.10±1.907.31±1.894.80±0.20*
mutant 2131.26±4.44*4.02±0.48**15.60±1.603.99±0.8840.40±1.607.04±0.793.80±0.20**
mutant 2252.28±5.488.45±0.9519.50±0.502.34±0.3356.30±0.708.44±0.945.50±0.50
材料
Material
株高
Plant height
(cm)
穗长
Spike length (cm)
每穗小穗数
Spikelets number
per spike
小穗密度
Spikelet
density
小花数
Number of
florets
平均节间长
Average internode length (cm)
节间数
Number of
internodes
mutant 2315.80±0.60**3.70±0.35**19.80±1.805.28±0.01*58.80±4.802.29±0.41*4.40±0.60
mutant 2430.07±4.43*6.76±1.0416.90±2.902.63±0.8449.70±7.705.26±0.05*5.00±0.00
mutant 2518.16±4.44*3.77±0.17**20.20±0.205.37±0.19**58.80±1.203.93±0.93*4.50±0.50
mutant 2619.75±1.35**4.60±1.00*18.60±1.604.17±0.5653.20±2.204.16±0.46*3.80±0.20**
mutant 2734.54±4.74*7.49±0.8914.80±3.801.95±0.2850.00±17.007.13±1.404.50±0.50
mutant 2833.76±10.168.86±0.1615.90±1.901.79±0.1853.90±11.906.59±3.495.00±0.00
mutant 2935.01±4.79*8.20±0.4016.40±0.402.01±0.1549.30±1.306.18±0.02*5.00±0.00
mutant 3030.09±6.01*8.57±1.1316.10±1.101.93±0.3848.60±3.605.92±0.00*4.30±0.70
mutant 3133.96±0.36*8.70±1.0017.20±0.202.01±0.2649.20±1.805.60±0.944.50±0.50
mutant 3231.50±0.70**8.02±0.28*16.50±1.502.07±0.2646.30±1.305.11±0.53*4.50±0.50
mutant 3324.02±3.38*10.04±1.9416.63±1.631.69±0.1747.75±2.753.95±0.12*5.00±1.00
***分别代表0.05和0.01显著水平。
* and ** represent significant differences at the 0.05 and 0.01 probability levels, respectively.

新窗口打开|下载CSV

图2

新窗口打开|下载原图ZIP|生成PPT
图2部分矮秆突变体及其诱变亲本的穗部形态特征

(a): ‘云麦53’; (b), (c), (d)和(e): 候选矮秆突变体。
Fig. 2Spike characteristic of some dwarf mutants and their parents

(a): ‘Yunmai 53’; (b), (c), (d), and (e): candidate dwarf mutants.


2.2 候选矮秆突变体的分子标记检测

为了进一步验证26个矮秆材料, 本文采用前人报道的矮秆基因的12个特异性标记检测了33个候选材料及其诱变亲本。结果表明, 在‘云麦53’中未检测到BF-MR1 (Rht-B1b)、BF2-WR2 (Rht-D1a)、BARC102 (Rht5)和WMS577 (Rht13)标记, 但检测到其他9个标记。与‘云麦53’相比, mutant 1等32个候选突变体的BARC151 (Rht9)标记, mutant 2等5个候选突变体的Xgwm261 (Rht8)、WMC503 (Rht8)标记均具有差异, 表明其Rht9Rht8基因发生了突变。在33个候选突变体中, mutant 3与‘云麦53’的共有扩增标记较多(7个), mutant 11与‘云麦53’仅有2个共同扩增标记(表3图3), mutant 1、mutant 2、mutant 3、mutant 27和mutant 28的Xgwm261 (Rht8)、WMC503 (Rht8)和BARC151 (Rht9)均发生变异, 其中BARC151 (Rht9)标记位点的突变频率最高(表3)。

Table 3
表3
表3‘云麦53’和候选突变体中检测到的矮秆基因
Table 3Dwarf genes detected in the genome of ‘Yunmai 53’ and candidate mutants
材料
Material
检测到的基因
Genes detected by 13 markers
云麦53 Yunmai 53Rht-B1a, Rht-D1b, Rht4, Rht8, Rht9, Rht12, Rht14, Rht16, Rht18
mutant 1Rht-B1a, Rht-D1a, Rht4, Rht5, Rht8#, Rht9#, Rht13, Rht14, Rht16, Rht18
mutant 2Rht-B1a, Rht-D1b, Rht4, Rht5, Rht8#, Rht9#, Rht13, Rht14, Rht16, Rht18
mutant 3Rht-B1a, Rht-D1b, Rht4, Rht8#, Rht9#, Rht12, Rht14, Rht16, Rht18
mutant 10Rht-B1a, Rht-D1a, Rht4, Rht8, Rht9#
mutant 11Rht-B1a, Rht-D1a, Rht5, Rht12
mutant 19Rht-B1a, Rht-D1a, Rht4, Rht5, Rht8, Rht9#, Rht14, Rht16, Rht18
mutant 26Rht-B1a, Rht-D1b, Rht4, Rht8, Rht9, Rht13
mutant 27 & mutant 28Rht-B1a, Rht-D1b, Rht4, Rht8#, Rht9#, Rht13
Other mutantsRht-B1a, Rht-D1a, Rht4, Rht5, Rht8, Rht9#
#”:多态性标记; Rht8两个标记(Xgwm261、WMC503)在试验材料间的多态性一致。
#”: polymorphism markers in the fragment. The polymorphism of Xgwm261 and WMC503 of Rht8 show consistent among the experimental materials.

新窗口打开|下载CSV

图3

新窗口打开|下载原图ZIP|生成PPT
图3‘云麦53’和候选突变体的部分特异性扩增标记

CK: 对照; M: marker; 53: 云麦53; 1~33: 突变体1~突变体33; A和B分别是‘云麦53’和候选突变体中扩增的WMC503和BARC151标记; 红色箭: 差异片段。
Fig. 3Specific markers amplified from the genomes of ‘Yunmai 53’ and candidate mutants

CK: control; M: marker; 53: Yunmai 53; 1-33: mutant 1-mutant 33; A-B were WMC503 and BARC151 markers amplified in ‘Yunmai 53’ and candidate mutants, respectively. The red arrows indicate differential fragments.


2.3 基于7个性状的矮秆突变体聚类分析

基于株高、穗长和小穗密度等7个性状的聚类分析结果表明, 所有材料可聚为2个大类, 第1大类包括诱变亲本, 第2大类包括所有突变体(图4)。第2大类可分为5个亚类, 其中mutant 18和mutant 16分别聚为第1、2亚类, mutant 5、mutant 10和mutant 23等5个突变体为第3亚类, mutant 2、mutant 4和mutant 6等7个突变体为第4亚类, 其余12个突变体为第5亚类(图4)。与‘云麦53’相比, 5个亚类的突变体均表现植株矮化、穗长和平均节间长缩短, 但其余4个性状出现了分化。其中第1亚类突变体的小穗数和小花数极显著减少, 但小穗密度和节间数没有差异; 第2~4亚类突变体的小穗密度极显著增加, 小花数和节间数极显著减少, 但小穗数没有明显变化(图5)。在5个亚类中, 第1亚类突变体的小穗数和小花数降幅最大; 第2亚类的株高、穗长和平均节间长的降幅和小穗密度的增幅最大, 第3亚类突变体的节间数降幅最大(图5附表1)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4基于7个农艺性状的26个突变体和诱变亲本聚类结果

Fig. 4Cluster result of 26 mutants and their parent based on seven agronomic traits



除株高外, 26个矮秆突变体还携带穗长缩短、小花密度增加和节间数减少等不同突变性状。通过分子检测本研

图5

新窗口打开|下载原图ZIP|生成PPT
图5不同类群材料的农艺性状均值及其差异

I: ‘云麦53’类群; II~VI: 突变体的第1亚类~第5亚类。不同小写字母和大写字母分别代表0.05和0.01显著水平。
Fig. 5Mean values and differences of agronomic traits in different groups materials

I: group ‘Yunmai 53’; II-VI: the subclass 1-subclass 5 of mutants. Different lowercase letters and capital letters represent significant differences at the 0.05 and 0.01 probability levels, respectively.


Table S1
附表1
附表1‘云麦53’类群和5个矮秆突变体亚类的方差分析结果
Table S1ANOVA result of ‘Yunmai 53’ and 5 subclasses dwarf mutants
性状
Traits
变异来源
SOV
平方和
SS
自由度
df
均方
MS
F
F-value
株高Plant height (cm)组间Between groups11,981.95252396.39037.615**
组内Within group4077.2926463.708
穗长Spike length (cm)组间Between groups119.531523.9064.603**
组内Within group332.417645.194
小穗数Spikelets number per spike组间Between groups234.415546.88310.229**
组内Within group293.328644.583
小穗密度Spikelet density组间Between groups48.71659.7436.920**
组内Within group90.110641.408
小花数Number of florets组间Between groups3126.9215625.38411.289**
组内Within group3545.3166455.396
平均节间长Average internode length (cm)组间Between groups190.020538.00413.307**
组内Within group182.776642.865
节间数Number of Internode组间Between groups14.62852.9267.604**
组内Within group24.623640.385
**表示在0.01水平差异显著。
** mean significant difference at the 0.01 probability level.

新窗口打开|下载CSV

2.4 突变农艺性状间的相关分析

基于26个突变体及其诱变亲本的株高等7个性状的二元相关和偏相关分析表明, 株高与穗长、小穗密度和平均节间长等4个性状的二元相关系数达到了显著或极显著水平, 但只有平均节间长和节间数与株高偏相关; 穗长与小穗数、小穗密度和平均节间长的二元相关系数达到了显著或极显著水平, 但只有小穗密度和平均节间长与穗长存在负偏相关; 小穗数与小穗密度和小花数的二元相关和偏相关系数均达到了极显著水平; 小穗密度与小花数和节间数的二元相关系数达到了显著或极显著水平, 但偏相关系数不显著; 虽然平均节间长与节间数的二元相关系数不显著, 但偏相关系数达到了显著水平(表4)。上述结果表明, 26个突变体的株高与平均节间长和节间数关联遗传, 其余4个性状与植株矮化没有遗传关联性。

Table 4
表4
表4不同突变性状的二元相关和偏相关系数及其显著性
Table 4Binary correlation, partial correlation coefficients and significances among the different mutant traits
性状
Trait
株高
Plant height (cm)
穗长
Spike length (cm)
小穗数
Spikelets number per spike
小穗密度
Spikelet
density
小花数
Number of florets
平均节间长
Average internode length (cm)
节间数
Number of internode
株高 Plant height (cm)0.51**-0.09-0.47*0.060.92**0.59**
穗长 Spike length (cm)0.26-0.54*-0.95**-0.250.360.53**
小穗数 Spikelets number per spike0.260.410.74**0.89**-0.07-0.27
小穗密度 Spikelet density-0.11-0.95**0.64**0.47*-0.38-0.48**
小花数 Number of florets-0.320.130.78**-0.090.10-0.23
平均节间长 Average internode length (cm)0.94**-0.43*-0.16-0.290.350.35
节间数 Number of internode0.58**0.16-0.100.16-0.08-0.44*
***分别代表0.05和0.01显著水平。
* and ** represent significant differences at the 0.05 and 0.01 probability levels, respectively.

新窗口打开|下载CSV

3 讨论

通过诱变亲本和候选突变体连续2个年度的株高比对分析, 作者发现了26个矮秆突变体。基于前人报道的矮秆基因的12个特异性标记检测结果表明26个矮化材料至少携带有2个矮秆基因标记位点。虽然mutant 1、mutant 3和mutant 13等7个候选突变体中也检测到了矮秆基因突变, 但植株偏高, 为(33.76±10.16)~(63.99 ±2.51) cm, 且与诱变亲本‘云麦53’的株高没有显著差异。笔者认为这可能是2个年份间的株高波动降低了“t”值所致。在33个候选突变体中, 26个材料明显矮化、且携带不同的矮秆突变基因, 因此可判定为矮秆突变体。究发现26个突变体均携带与‘云麦53’不同的矮秆基因组合, 如mutant 11携带Rht5Rht 12矮秆基因(可能还携带其他未被检测的矮秆基因), mutant 2携带Rht-D1bRht4Rht5等9个矮秆基因。通过推广品种株高与穗长、小穗数和穗粒数的关联分析, 陈亮等[8,9,10,11,12]发现矮秆突变基因Rht-D1b、Rht8Rht9可增加穗粒数; 王清海等[13,14]研究发现Rht8、Rht10、Rht12、Rht14、Rht16Rht18等矮秆基因的效应不同, Rht10Rht12的降秆效应大于Rht8[3,5]; Baloch等[16]发现Rht14、Rht16Rht18可增加穗长, Rht5可减少每穗小穗数。前人研究结果表明小麦矮秆基因对穗长、小穗数和穗粒数等性状可能具有多效性, 但在不同遗传背景中矮秆基因的遗传效应不同。因此作者认为是矮秆基因与穗长、小穗密度和小花数等性状的突变基因及其组合不同导致了26个突变体的农艺性状差异。本研究发现株高与平均节间长和节间数、以及穗长与小穗数、小穗数与小穗密度、小穗与小花数等性状关联遗传, 该结果与前人报道的基本一致[22,23,24,25,26,27,28,29,30,31,32]。虽然株高降低后mutant 7等3个突变体的小穗数和小花数增多(均未达到显著水平), 其余突变体的穗长缩短、小穗数和小花数减少、小穗密度增加, 但株高与穗长等4个性状的偏相关系数均未达到显著水平。作者认为该结果可能与本文研究所用材料大多为相同亲本诱导的矮秆突变体有关, 可能是矮秆基因及其组合的多效性较低或者矮秆与其他性状的突变基因位点的连锁强度较低导致了株高与穗长、小穗数和小穗密度等性状不能关联遗传。通过进一步自交繁育, 可望从26份矮秆突变体中筛选到适合不同育种需求的矮秆亲本。通过聚类分析, 作者发现26个矮秆突变体可分为农艺特性不同的5个亚类, 不同亚类间株高、穗长和小穗数等农艺性状存在差异, 其中第2亚类和第3亚类的mutant 5、mutant 23和mutant 25等5个突变体株高不到20 cm, 均低于陆燕等的报道 [12,17,33-35]。虽然株高较低, 但mutant 11、mutant 27和mutant 28等突变体的穗长、小穗数和小花数没有变化, 且节间数只是导致部分突变体矮化的因素之一, 因此上述材料可用于小麦矮化育种。除此之外, 26个突变体携带的株高、穗长和小穗密度等突变性状基因及其组合类型不同, 如mutant 16携带株高较低(13.61 cm±0.11 cm), 穗长(3.72 cm±0.02 cm)和平均节间长(4.88 cm±0.62 cm)较短, 小穗密度(5.37±0.24)较高的基因组合; mutant 18具有植株偏高(44.08 cm±1.73 cm), 穗长偏长(7.08 cm±0.48 cm)小花数较少(33.25±0.25)的基因组合。基于上述突变体, 可望解析小麦株高及其构成因素、小穗密度和小花数等性状的遗传机制。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

孙树贵, 李艳丽, 鲁敏, 张军, 王秀娟, 武军, 赵继新, 杨群慧, 刘淑会, 陈新宏. 67份美国小麦品种矮秆基因的分子标记检测
麦类作物学报, 2013,33:1087-1092.

[本文引用: 1]

Sun S G, Li Y L, Lu M, Zhang J, Wang X J, Wu J, Zhao J X, Yang Q H, Liu S H, Chen X H. Distribution of dwarfing genes in 67 American wheat cultivars detected by molecular markers
J Triticeae Crops, 2013,33:1087-1092 (in Chinese with English abstract).

[本文引用: 1]

张德强, 宋晓朋, 冯洁, 马文洁, 武炳瑾, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种矮秆基因Rht-Blb、Rht-DlbRht8的检测及其对农艺性状的影响
麦类作物学报, 2016,36:975-981.

[本文引用: 1]

Zhang D Q, Song X P, Feng J, Ma W J, Wu B J, Zhang C L, Cui Z X, Feng Y, Sun D J. Detection of dwarf genes Rht-B1b, Rht-D1b and Rht8 in Huang-Huai Valley winter wheat areas
J Triticeae Crops, 2016,36:975-981 (in Chinese with English abstract).

[本文引用: 1]

昝凯, 李春游, 敬樊, 陈真真, 王亮明, 王秀娟, 杨群慧, 王中华, 陈新宏. 部分印度小麦品种矮秆基因的检测及其对部分性状的影响
麦类作物学报, 2015,35:910-917.

[本文引用: 3]

Zan K, Li C Y, Jing F, Chen Z Z, Wang L M, Wang X J, Yang Q H, Wang Z H, Chen X H. Detection of dwarfing genes in some India wheat cultivars and their influences on partial agronomic characteristics
J Triticeae Crops, 2015,35:910-917 (in Chinese with English abstract).

[本文引用: 3]

周强, 袁中伟, 欧俊梅, 任勇, 杜小英, 陶军, 李生荣, 刘登才. 四川小麦主要矮秆基因的分子鉴定
麦类作物学报, 2015,35:1624-1630.

[本文引用: 1]

Zhou Q, Yuan Z W, Ou J M, Ren Y, Du X Y, Tao J, Li S R, Liu D C. Molecular identification of the main dwarfing genes in wheat varieties in Sichuan
J Triticeae Crops, 2015,35:1624-1630 (in Chinese with English abstract).

[本文引用: 1]

朱浩, 牛艳路, 王佩, 全军利, 陈耀锋. 小麦矮秆基因的分子检测及遗传效应研究
分子植物育种, 2018,16:1855-1861.

[本文引用: 2]

Zhu H, Niu Y L, Wang P, Quan J L, Chen Y F. Molecular detection and genetic effect research of dwarf gene in wheat
Mol Plant Breed, 2018,16:1855-1861 (in Chinese with English abstract).

[本文引用: 2]

周强, 袁中伟, 张连全, 甯顺腙, 任勇, 陶军, 李生荣, 刘登才. 四倍体小麦地方品种矮蓝麦矮秆性状的遗传分析
作物学报, 2015,41:1899-1905.

[本文引用: 2]

Zhou Q, Yuan Z W, Zhang L Q, Ning S Z, Ren Y, Tao J, Li S R, Liu D C. Genetic Analysis on dwarfing trait in landrace Ailanmai of Triticum turgidum L. ssp
turgidum. Acta Agron Sin, 2015,41:1899-1905 (in Chinese with English abstract).

[本文引用: 2]

钟明志, 魏淑红, 彭正松, 杨在君. 小麦Rht矮秆基因研究和应用综述
分子植物育种, 2018,16:6670-6677.

[本文引用: 1]

Zhong M Z, Wei S H, Peng Z S, Yang Z J. A review of the research and application of Rht dwarf genes in wheat
Mol Plant Breed, 2018,16:6670-6677 (in Chinese with English abstract).

[本文引用: 1]

Emma M J, Rachel E J, Alanna J O, John M M, Michael J G. The impact of the wheat Rht-B1b semi-dwarfing allele on photosynthesis and seed development under field conditions
Front Plant Sci, 2019,10:10-51.

[本文引用: 2]

陈亮. 矮秆基因Rht12对小麦重要农艺性状的遗传效应及新矮秆突变体的筛选
西北农林科技大学博士学位论文, 陕西杨凌, 2014. pp 10-19.

[本文引用: 2]

Chen L. Genetic Effects of Dwarfing Gene Rht12 on the Important Agronomic Traits of Common Bread Wheat and Screening of New Dwarf Mutants
PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2014. pp 10-19 (in Chinese with English abstract).

[本文引用: 2]

唐娜, 逯芳芳, 何蓓如, 胡银岗. 矮秆基因对小麦部分农艺性状的效应
西北植物学报, 2010,30:41-49.

[本文引用: 2]

Tang N, Lu F F, He B R, Hu Y G. Effects of dwarfing genes on some agronomic characteristics of wheat
Acta Bot Boreal- Occident Sin, 2010,30:41-49 (in Chinese with English abstract).

[本文引用: 2]

刘晴, 古佳玉, 赵紫伟, 赵林姝, 郭会君, 谢永盾, 宋希云, 刘录祥. 小麦矮秆突变体DC20的转录组分析
核农学报, 2019,33:1451-1458.

[本文引用: 2]

Liu Q, Gu J Y, Zhao Z W, Zhao L S, Guo H J, Xie Y D, Song X Y, Liu L X. RNA-Seq analysis of wheat dwarf mutant DC20
J Nucl Agric Sci, 2019,33:1451-1458 (in Chinese with English abstract).

[本文引用: 2]

陆燕, 赵天祥, 刘国祥, 贾继增, 孔秀英. 小麦矮秆圆粒突变体的鉴定与分析
植物遗传资源学报, 2014,15:160-164.

[本文引用: 3]

Lu Y, Zhao T X, Liu G X, Jia J Z, Kong X Y. Identification and analysis of the dwarf-spherical grain mutant W98
J Plant Genet Resour, 2014,15:160-164 (in Chinese with English abstract).

[本文引用: 3]

李杏普, 兰素缺, 张业伦, 张京惠, 冯延茹, 刘书娥, Gale M D, Worland T J. Rht8、Rht10、Rht12矮秆基因对小麦营养生长和生殖生长发育的影响
华北农学报, 2009,24(增刊1):50-53.

[本文引用: 2]

Li X P, Lan S Q, Zhang Y L, Zhang J H, Feng Y R, Liu S E, Gale M D, Worland T J. Effects of Rht8, Rht10 and Rht12 semi-dwarfing and dwarfing genes on wheat vegetative and reproductive development
Acta Agric Boreali-Sin, 2009,24(S1):50-53 (in Chinese with English abstract).

[本文引用: 2]

王清海, 杨在君, 魏淑红, 廖明莉, 苏瑾, 杨宇凤, 杨会, 王育伟, 彭正松. 四倍体小麦矮秆基因的赤霉素敏感性及对农艺性状的影响
华北农学报, 2015,30(2):132-139.

[本文引用: 2]

Wang Q H, Yang Z J, Wei S H, Liao M L, Su J, Yang Y F, Yang H, Wang Y W, Peng Z S. Gibberellin sensitivity of the Rht genes in tetraploid wheat and effects on agronomic traits
Acta Agric Boreali-Sin, 2015,30(2):132-139 (in Chinese with English abstract).

[本文引用: 2]

Baloch G A, Cui L, Hu Y G. The effects of dwarfing gene Rht-8 on plant height and other agronomic traits in common wheat
Agric Res Arid Areas, 2014,32:245-252.

[本文引用: 1]

Sun L H, Yang W L, Li Y F, Shan Q Q, Ye X B, Wang D Z, Yu K, Lu W W, Xin P Y, Pei Z, Guo X L, Liu D C, Sun J Z, Zhan K H, Chu J F, Zhang A M. A wheat dominant dwar?ng line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line
Plant J, 2019,97:887-900.

[本文引用: 2]

卢媛, 崔超凡, 胡平, 陈佩度, 沈雪芳, 韩晴, 王义发, 邢莉萍, 曹爱忠. 矮秆基因Rht_NM9在小麦株高建成中对内源激素含量的影响
作物学报, 2017,43:1272-1279.

[本文引用: 2]

Lu Y, Cui C F, Hu P, Chen P D, Shen X F, Han Q, Wang Y F, Xing L P, Cao A Z. Effects of dwarf gene Rht_NM9 on contents of endogenous hormone regulating plant height of common wheat
Acta Agron Sin, 2017,43:1272-1279 (in Chinese with English abstract).

[本文引用: 2]

Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin responsive dwarfing genes in bread wheat
Theor Appl Genet, 2005,111:423-430.

[本文引用: 1]

Ellis M H, Spielmeyer W, Rebetzke G J, Richards R A. Perfect markers for the and dwarfing genes in wheat
Theor Appl Genet, 2002,105:1038-1042.

[本文引用: 1]

Watanabe N. Genetic collection and development of near-isogenic lines in durum wheat
Czech J Genet Plant, 2008,12:636-643.

[本文引用: 2]

Korzun V, Roeder M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene in wheat: Part I. molecular mapping of on the short arm of chromosome 2D of bread wheat
Theor Appl Genet, 1998,96:1104-1109.

[本文引用: 1]

贾影影. 小麦矮秆基因Rht13Rht-D1b互作研究及Rht13分子标记开发
宁夏大学硕士学位论文, 宁夏银川, 2016. pp 22-26.

[本文引用: 1]

Jia Y Y. Study on Interaction of Dwarfing Gene Rht13 with Rht-D1b and Development Molecular Markers for Rht13 in Wheat
MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2016. pp 22-26 (in Chinese with English abstract).

[本文引用: 1]

吴同彦, 谢令琴, 杨学举, 张彩英, 陈荣芬. 小麦株高构成因素与产量及其他性状相关性的研究
河北农业大学学报, 2002,25(3):10-12.

[本文引用: 1]

Wu T Y, Xie L Q, Yang X J, Zhang C Y, Chen R F. Study on the correlations between the components of the plant height and the yield and other traits of wheat
J Agric Univ Hebei, 2002,25(3):10-12(in Chinese with English abstract).

[本文引用: 1]

闵东红, 王辉, 孟超敏, 翟耀锋, 李学军, 曹宁, 于新智. 不同株高小麦品种抗倒伏性与其亚性状及产量相关性研究
麦类作物学报, 2001,21(4):76-79.

[本文引用: 1]

Min D H, Wang H, Meng C M, Zhai Y F, Li X J, Cao N, Yu X Z. Studies on the lodging resistance with its subtraits of different height wheat varieties and correlation between plant height and yield
J Triticeae Crops, 2001,21(4):76-79 (in Chinese with English abstract).

[本文引用: 1]

赵万春, 王红. 小麦株高及其构成因素的遗传和相关性研究
麦类作物学报, 2003,23(4):28-31.

[本文引用: 1]

Zhao W C, Wang H. Genetic and correlation study on plant height and its components in wheat
J Triticeae Crops, 2003,23(4):28-31 (in Chinese with English abstract).

[本文引用: 1]

张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位
作物学报, 2009,35:270-278.

[本文引用: 1]

Zhang K P, Xu X B, Tian J C. QTL Mapping for grain yield and spike related traits in common wheat
Acta Agron Sin, 2009,35:270-278 (in Chinese with English abstract).

[本文引用: 1]

张晶, 张定一, 王姣爱, 党建友. 小麦单株有效分蘖数与农艺性状的相关性研究
山西农业科学, 2009,37(6):17-19.

[本文引用: 1]

Zhang J, Zhang D Y, Wang J A, Dang J Y. The dependence study of the effective tillers per plant and agronomic characters in wheat
J Shanxi Agric Sci, 2009,37(6):17-19 (in Chinese with English abstract).

[本文引用: 1]

卢翔, 张锦鹏, 王化俊, 杨欣明, 李秀全, 李立会. 小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位
植物遗传资源学报, 2011,12:86-91.

[本文引用: 1]

Lu X, Zhang J P, Wang H J, Yang X M, Li X Q, Li L H. Genetic analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat × Agropyron cristatum offspring
J Plant Genet Resour, 2011,12:86-91 (in Chinese with English abstract).

[本文引用: 1]

张祥池, 郝燕冉, 魏凡, 张志锋, 魏佳佳, 付帅, 安浩军, 王睿辉. 小麦矮秆突变体矮秆基因的遗传分析
河北农业大学学报, 2017,40(2):5-10.

[本文引用: 1]

Zhang X C, Hao Y R, Wei F, Zhang Z F, Wei J J, Fu S, An H J, Wang R H. Characterization of the Rht gene in one dwarfing mutant of wheat ( Triticum aestivum L.)
J Agric Univ Hebei, 2017,40(2):5-10 (in Chinese with English abstract).

[本文引用: 1]

冯洁, 许小宛, 李小东, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种和CIMMYT材料的矮秆基因型及其对株高和胚芽鞘的影响
麦类作物学报, 2018,38:668-673.

[本文引用: 1]

Feng J, Xu X W, Li X D, Zhang C L, Cui Z X, Feng Y, Sun D J. Dwarf genotype of wheat from Huang-Huai river wheat area and CIMMYT and their effects on plant height and coleoptile length
J Triticeae Crops, 2018,38:668-673 (in Chinese with English abstract).

[本文引用: 1]

吴儒刚, 裴艳婷, 张超, 范业泉, 靳义荣, 刘鹏, 贾德新, 戴忠民. 基于盐胁迫的小麦农艺性状多样性分析及评价
麦类作物学报, 2019,39:1029-1037.

[本文引用: 1]

Wu R G, Pei Y T, Zhang C, Fan Y Q, Jin Y R, Liu P, Jia D X, Dai Z M. Analysis and evaluation of agronomic character diversity of wheat based on salt stress
J Triticeae Crops, 2019,39:1029-1037 (in Chinese with English abstract).

[本文引用: 1]

林旭群, 李韵芳, 鲁璐, 张春艳, 廖金花, 李莉蓉, 吴瑜. 小麦矮秆基因Rht-B1b、Rht-D1b、Rht8的检测及其对株高的影响
应用与环境生物学报, 2014,20:80-86.

[本文引用: 1]

Lin X Q, Li Y F, Lu L, Zhang C Y, Liao J H, Li L R, Wu Y. Identi?cation of wheat dwarfing genes Rht-B1b, Rht-D1b, Rht8 and their effects on plant height
Chin J Appl Environ Biol, 2014,20:80-86 (in Chinese with English abstract).

[本文引用: 1]

王鑫, 马莹雪, 杨阳, 王丹峰, 殷慧娟, 王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析
作物学报, 2016,42:1134-1142.

[本文引用: 1]

Wang X, Ma Y X, Yang Y, Wang D F, Yin H J, Wang H G. Identification of dwarfing wheat germplasm SN224 and analysis of QTLs for its agronomic characters
Acta Agron Sin, 2016,42:1134-1142 (in Chinese with English abstract).

[本文引用: 1]

杨秋平, 杨阳, 王鑫, 马莹雪, 张明, 王洪刚. 小麦矮秆种质山农11069-5矮秆基因的遗传分析及分子定位
分子植物育种, 2015,13:71-76.



Yang Q P, Yang Y, Wang X, Ma Y X, Zhang M, Wang H G. Genetic analysis and molecular mapping of the gene in dwarf germplasm Shannong 11069-5
Mol Plant Breed, 2015,13:71-76 (in Chinese with English abstract).



张明, 吴瑕, 张一铎, 张超, 牛祖彪, 崔淑佳, 杨秋平, 王洪刚. 小麦矮秆种质系山农342-9矮秆基因的分子标记定位
山东农业科学, 2014,46(7):7-10.

[本文引用: 1]

Zhang M, Wu X, Zhang Y D, Zhang C, Niu Z B, Cui S J, Yang Q P, Wang H G. Molecular mapping of Rht Gene in wheat dwarfing germplasm line Shannong 342-9
Shandong Agric Sci, 2014,46(7):7-10 (in Chinese with English abstract).

[本文引用: 1]

相关话题/基因 材料 遗传 作物 小穗