删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

高产高油花生品种的光合与物质生产特征

本站小编 Free考研考试/2021-12-26

陈四龙, 程增书, 宋亚辉, 王瑾, 刘义杰, 张朋娟, 李玉荣,*河北省农林科学院粮油作物研究所 / 河北省作物遗传育种实验室, 河北石家庄 050035

Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content

CHEN Si-Long, CHENG Zeng-Shu, SONG Ya-Hui, WANG Jin, LIU Yi-Jie, ZHANG Peng-Juan, LI Yu-Rong,*Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, Hebei, China

通讯作者: 李玉荣, E-mail: hbhuasheng@163.com,Tel: 0311-87670656

第一联系人: E-mail: chsl99@163.com
收稿日期:2018-04-3接受日期:2018-10-8网络出版日期:2018-10-31
基金资助:本研究由国家自然科学基金项目.31771843
本研究由国家自然科学基金项目.31201239
河北省人才培养工程.2017-192
国家现代农业产业技术体系建设专项.CARS-13
河北省现代农业科技创新工程项目.494-0402-YBN-XGHI
河北省科学技术研究与发展计划项目资助.16226301D


Received:2018-04-3Accepted:2018-10-8Online:2018-10-31
Fund supported: his study was supported the National Natural Science Foundation of China.31771843
his study was supported the National Natural Science Foundation of China.31201239
the Hebei Province Talent Training Project.2017-192
the China Agriculture Research System.CARS-13
the Hebei Modern Agricultural Science and Technology Innovation and Research Project.494-0402-YBN-XGHI
and the Hebei Province Science and Technology R&D Plan.16226301D


摘要
以冀花2号、冀花4号和鲁花12号为材料, 连续测定干物质、荚果产量、含油量及叶片光合指标, 定量分析高产高油花生品种冀花4号物质生产指标的动态特征和叶片光合性能, 为解析花生高产高油形成机制和优质高效栽培提供依据。结果表明, 荚果产量和籽仁含油量均以冀花4号最高。干物质平均积累速率和最大积累速率均以冀花4号>冀花2号>鲁花12号, 且冀花4号干物质积累潜力适中; 籽仁油分最大积累速率和平均积累速率均以冀花4号>鲁花12号>冀花2号, 籽仁油分积累活跃期以冀花4号最短。冀花4号全生育期的光合势显著高于冀花2号和鲁花12号, 分别高20%以上, 产量形成期的光合势占全生育期的80%, 冀花4号结荚期光合速率比冀花2号和鲁花12号均高24%以上; 光饱和点和CO2饱和点均为冀花4号最高。荚果产量与干物质平均积累速率、叶片光合速率和总光合势呈极显著正相关; 籽仁含油量与单株干物质积累速率、籽仁油分平均积累速率、光饱和点、CO2饱和点、经济系数、出仁率等显著或极显著相关; 荚果产量与含油量极显著正相关。冀花4号具有较高的经济系数、总光合势及结荚期后分配比例、光合速率、光饱和点和CO2饱和点, 以及相对较高的干物质和油分积累平均速率, 是其较冀花2号和鲁花12号高产高油的重要原因。
关键词: 花生;干物质积累;产量;油分积累;光合特征

Abstract
The pod yield and seed oil content are important factors affecting oil yield in peanut varieties. Obviously, it is essential for high oil yield to explore the dry matter accumulate, yield, seed oil content and leaf photosynthesis characteristics. In order to clarify the formation mechanisms for high yield and high oil content in peanut varieties and to provide a theoretical base for peanut high quality and high yield cultivation techniques, a field experiment was conducted to evaluate three widely cultivated peanut varieties (Jihua 2 and Luhua 12, the high-yield and normal-oil; Jihua 4, the high-yield and high-oil). The dry matter accumulation, pod yield, seed oil content accumulation, and leaf photosynthetic characteristics were determined, showing that the pod yield and seed oil content of Jihua 4 were the highest among the three varieties used. The average rate of dry matter accumulation and the maximum rate of dry matter accumulation showed a trend of Jihua 4 > Jihua 2 > Luhua 12. The maximum weight of dry matter of Jihua 4 was moderate. The maximum seed oil accumulation rate and average seed oil accumulation rate showed a trend of Jihua 4 > Luhua 12 > Jihua 2, the active seed oil accumulation stage of Jihua 2 was the longest, while that of Jihua 4 was the shortest among the three varieties. The leaf photosynthesis potential of Jihua 4 in the entire growth period was above 20% higher than that of Jihua 2 and Luhua 12, respectively. The photosynthesis potential in pod-setting stage was very important to peanut yield, accounting for 80% over whole growing season. The leaf photosynthetic rate of Jihua 4 at pod-setting stage was more than 24% higher than that of Jihua 2 and Luhua 12. There was a significant difference in photosynthesis parameters among the three varieties. The light saturation point and CO2 saturation point of Jihua 4 were the highest. The pod yield was positively significantly correlated with average plant dry matter accumulation rate, leaf photosynthetic rate and total leaf area duration, respectively. The seed oil content was positively significantly correlated with average plant dry matter accumulation rate, average seed oil accumulation rate, light saturation point, CO2 saturation point. Furthermore, there existed a weak but significant correlation between pod yield and seed oil content. In conclusion, Jihua 4 has higher economic coefficient, photosynthesis potential after pod-setting stage, leaf photosynthetic rate, light saturation point and CO2 saturation point, average accumulation rate of dry matter and seed oil, which is the main reason for higher productivity potential in yield and oil in Jihua 4.
Keywords:peanut;dry matter accumulation;yield;oil accumulation;photosynthetic characteristics


PDF (723KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
陈四龙, 程增书, 宋亚辉, 王瑾, 刘义杰, 张朋娟, 李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288. doi:10.3724/SP.J.1006.2019.84050
CHEN Si-Long, CHENG Zeng-Shu, SONG Ya-Hui, WANG Jin, LIU Yi-Jie, ZHANG Peng-Juan, LI Yu-Rong. Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content[J]. Acta Agronomica Sinica, 2019, 45(2): 276-288. doi:10.3724/SP.J.1006.2019.84050


花生是世界第四大油料作物[1]。近5年, 我国花生年均总产1638万吨, 居世界第一; 年均种植面积460万公顷, 列世界第二位[2]。在大宗油料作物中, 花生单位面积产油量最高, 在保障我国油脂供给安全、稳定国内油源方面具有较大的潜力和优势。花生产油量主要取决于产量和含油量2个方面[3], 其中产量与干物质积累分配、叶片光合性能、产量构成因素等密切相关; 而含油量与籽仁油分积累速率、油分积累时间等直接关联[4,5]

在一定范围内作物干物质积累量与产量正相关, 较高的干物质量是作物高产特征之一[6]。但是针对不同的品种类型, 作物各个生育期干物质积累、经济系数与产量的关系不尽相同[7,8,9,10,11], 说明这些特征主要取决于品种的遗传特性[12]。此外, 叶面积指数(LAI)及其峰值持续时间直接影响干物质的生产能力, 作物籽粒灌浆期保持较高的LAI对高产十分重要[13]。王才斌等[14]研究发现, 花生结荚期LAI达到最高峰5.0以上, 表明“源库同强”是高产花生品种获得理想产量的生理基础。LAI峰值持续时间长、干物质生产速率峰值高、后期下降速度慢是高产花生品种的重要特征[15]

植物90%的干物质来自叶片光合作用[16,17,18]。选育高叶片光合速率的作物品种是进一步提高产量的有效途径[19]。通常叶片作为源器官, 将光合作用的产物主要以蔗糖的形式转运到种子等库器官中, 通过一系列生理生化过程将蔗糖卸载并转化为油脂、蛋白、淀粉等营养物质储存在库器官中[20]。花生等油料作物种子发育的基本规律是前期依靠叶片等绿色器官合成糖类, 为后期油脂等储存物质的合成和积累提供碳架和能量[21]

通过增强种子库器官的容量、增加光合代谢产物的供给可以显著提高种子含油量。提高叶片光合性能和效率, 可为种子脂肪酸合成和油脂积累提供大量碳源, 满足油脂积累过程中对可溶性糖和糖代谢的需要[22]。对蓖麻种子的研究发现, 种子油分积累期, 叶片光合作用及其代谢产物对脂肪酸合成和油脂积累过程具有重要作用[23,24]。油茶的光合代谢产物积累与油脂积累关系密切, 光合作用的主要产物能显著影响油茶果实发育状况和品质形成过程[25]

长期以来, 科研攻关在生产应用中已使花生单位面积产量提高到9750 kg hm-2以上[15]。育成的花生品种含油量也得到大幅提高, 培育出如冀花4号等含油量超过55%的高油品种。然而, 多数高油品种仍以珍珠豆型为主, 产量潜力较低[26]。从生物学角度分析, 不同花生种质含油量最高相差29个百分点[27], 说明花生品种产油量仍有较大提高空间。关于提高花生产油量的相关研究, 前人主要集中在遗传、分子改良途径上[19], 而围绕干物质积累分配、光合速率、产量构成及油分积累特征等的报道不多。本研究定量分析高产高油品种冀花4号物质生产指标的动态特征和叶片光合性能, 旨在为解析花生高产、高油形成机制和实现优质高效栽培提供依据。

1 材料与方法

1.1 试验材料

选用冀花2号、冀花4号和鲁花12号, 均为株型直立、紧凑、疏枝型中早熟品种, 其中冀花4号为河北省农林科学院粮油作物研究所育成, 高产高油, 属中果品种, 河北省花生新品种区域试验中荚果产量5259.0 kg hm-2, 籽仁含油量57.65%; 冀花2号和鲁花12号是对照种, 其区试荚果产量分别为3615.0 kg hm-2和3343.5 kg hm-2, 含油量分别为52.0%和51.0%, 分别属于中大果品种和中小果品种。

1.2 试验地点与试验设计

试验在河北省农林科学院粮油作物研究所堤上试验站进行。试验田0~20 cm耕层含有机质1.36%、全氮0.09%、全磷0.19%、碱解氮75 mg kg-1、有效磷32.1 mg kg-1、有效钾107.0 mg kg-1。于2014年5月7日播种, 9月11日收获; 2015年5月14日播种, 9月10日收获。播种方式为露地春播, 采用随机区组排列, 3次重复, 小区面积26.8 m2 (4.8 m×5.6 m), 12行区, 人工双粒穴播, 行距40 cm, 穴距16.5 cm, 种植密度为15×104穴 hm-2, 小区四周设保护行。栽培管理同大田一致。

1.3 测定内容与方法

1.3.1 叶面积及干物质积累特征 花生出苗后10 d开始, 每隔10 d取样一次, 随机选取每小区3处不缺株、无病虫害的有代表性连续5穴(10株), 室内将根、茎、叶、花、果针、荚果等植株各部位分离(生育后期落叶不计重), 采用打孔法测定叶面积。将各部分在105℃杀青0.5 h, 80℃烘干至恒重后称重, 分别统计营养体和生殖体器官干物质重, 经济系数HI = Yp/Yb[28], 式中Yp为荚果产量(kg hm-2), Yb为总生物学产量(kg hm-2)。叶面积指数LAI = 1×10-4 WLDSrP/(WrDS0), 式中参数WLD为单株全部叶片干重(g), Sr为小圆片叶总面积(cm2), P为单位土地面积株数, WrD为小圆片叶总干重(g), S0为单位土地面积(m2)。光合势LAD (×104 m2 d hm-2) = (L1+L2) (t2 -t1)/2, 式中L1L2为前后2次测定的叶面积(m2 hm-2), t1t2为前后测定的时间(d)。

参照本课题组以前的方法[4], 利用Logistic方程Y = a/(1+be-kt)模拟干物质积累动态。对Logistic方程求一阶导数即得到干物质积累速率y = abke-kt/ (1+be-kt)2, 式中Y为干物质积累量(g), y为干物质积累速率(g d-1), a为最大干物质积累上限(g 株-1), bk为常数, t为出苗后天数(d)。

1.3.2 荚果产量及产量构成 成熟后全小区收获, 荚果自然风干后测定产量。收获时随机选取10株考查单株荚果数、饱果率、出仁率、千克果数等产量构成指标。

1.3.3 籽仁含油量及油分积累特征 花生出苗后, 挂牌标记长势一致的单株, 开花期再标记生长一致、同期开花的单株。根据前期研究结果[4], 从开花后30 d开始, 每隔10 d收取标记单株的荚果, 选择各阶段充分发育的荚果, 共取样7次。用Minispec mq-20 (Bruker, Germany)核磁共振仪测定风干荚果的籽仁含油量。每个小区测定3次重复, 取平均值。

参照以前方法[4], 利用Richards方程W = A(1+Be-Kt)-1/N模拟籽仁油脂积累过程。种子油脂积累速率为G = KABe-Kt(1+Be-Kt)-(1+N)/N, 最大积累速率Gmax = (KWmax/N)[1 - (Wmax/A)N], 平均积累速率$\bar{G}$ = AK/(2N+4), 达到最大累积速率的日期Tmax.G = (ln B-ln N)/K, 积累活跃期T = 2(N+2)/K, 式中W为花生籽仁含油量(%), Wmax为达到最大积累速率时的最大含油量(%), t为出苗后的天数(d), ABKN为大于0的参数。

1.3.4 叶绿素含量 花生下针期(R2)、结荚期(R4)和饱果期(R6)[29]即分别在出苗后45 d、75 d和95 d选取主茎上完全展开的倒3叶, 每小区3次重复, 采用80%丙酮提取叶绿素, 紫外分光光度计测定提取液在663、645、470 nm处的吸光度值, 计算叶绿素a、叶绿素b和类胡萝卜素含量。

1.3.5 叶片光合速率 选择结荚期晴朗天气, 用LI-6400XT便携式光合测定系统(LI-COR, USA)测定完全展开的主茎倒3叶的光合速率, 随机测定每个品种5片叶。采用闭合式气流模式, 进样气体源自地面2 m以上空气, 设定光强1300和800 μmol m-2 s-1, CO2流速500 μmol s-1

1.3.6 光响应曲线和CO2响应曲线 结荚期用LI-6400XT光合仪人工光源模式测定光响应曲线, 设10个光照强度梯度, 即50、100、150、200、400、600、1000、1500、1750和2000 μmol m-2 s-1, 选每品种完全展开的顶部叶片5个, 取3次重复均值。测定CO2响应曲线前, 先用锡箔纸对叶片遮光处理30 min, 用CO2钢瓶人工控制环境CO2浓度, 分别设定50、100、200、300、400、600和800 μmol mol-1。用光合助手软件计算光饱和点、CO2饱和点等光合作用参数。

1.4 数据统计分析

用SPSS 19.0软件进行数据显著性检验和相关分析, 采用最小显著极差法(LSD)进行平均数显著性检验, 采用Pearson correlation进行性状间的相关性分析; 采用Microsoft Excel软件作图; 干物质积累动态和籽仁油分积累动态利用Origin 7.0进行模拟。

2 结果与分析

2.1 干物质积累

图1可知, 不同花生品种单株干物质积累进程均表现慢—快—慢的“S”型变化, 干物质积累速率则呈先升后降的单峰曲线变化。经数据处理后得到干物质积累特征参数(表1), 各品种干物质积累动态Logistic方程拟合决定系数(R2)在0.9936~0.9996之间, 均达到了极显著水平, 说明Logistic曲线方程可用于描述花生干物质积累过程的阶段性和连续性变化。由图1表1结果看, 2年试验单株干物质积累动态趋势一致, 以2015年试验结果为例, 干物质最大积累量以冀花2号最大(62.88 g 株-1), 冀花4号次之(56.20 g 株-1), 鲁花12号最小(48.67 g 株-1), 说明高油品种冀花4号积累干物质的潜力适中。干物质积累速率最大的时期是结荚期, 3个品种达到最大积累速率的时间以鲁花12号最早, 冀花4号次之, 冀花2号最晚。最大积累速率和平均积累速率均表现为冀花4号>冀花2号>鲁花12号。干物质积累速率快速增长期表现为冀花2号>鲁花12号>冀花4号。由此可见, 冀花2号和鲁花12号虽然快速生长期长, 但最大积累速率和平均积累速率偏低, 而冀花4号表现恰好相反。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同花生品种干物质积累进程和积累速率动态

图中数据为3次重复均值, 垂直误差线为标准误(±SE)。虚线表示2014年Logistic预测值, 实线表示2015年预测值。
Fig. 1Dry matter accumulation dynamics and accumulation rate in different peanut varieties

Data are means ± standard error (SE, n = 3). Vertical bars indicate the ±SE. The dotted lines represent the simulation results using Logistic regression in 2014, and the solid lines represent the simulation results in 2015.


Table 1
表1
表1不同花生品种干物质积累动态模型及其参数
Table 1Equation and parameters of dry matter accumulation dynamics of different peanut varieties
品种
Variety
模拟方程
Simulation equation
最大积累速率
MAR (g d-1)
MAR出现时间
Day of MAR (d)
平均积累速率
ARMAR (g d-1)
活跃积累期
AAS (d)
2014
冀花2号Jihua 2Y=61.33/(1+40.72e-0.06t)0.9659.50.6442.31
冀花4号Jihua 4Y=57.77/(1+38.75e-0.07t)0.9754.60.6539.35
鲁花12号Luhua 12Y=46.24/(1+36.36e-0.06t)0.7456.00.5041.04
2015
冀花2号Jihua 2Y=62.88/(1+97.39e-0.07t)1.1861.20.7835.21
冀花4号Jihua 4Y=56.20/(1+644.30e-0.11t)1.5857.61.0523.45
鲁花12号Luhua 12Y=48.67/(1+92.02e-0.08t)0.9756.90.6433.14
MAR: maximum accumulation rate; ARMAR: average rate of dry matter accumulation, the days to MAR are known as days after emergence; AAS: activated accumulation stage.
MAR: 干物质最大积累速率; ARMAR: 干物质平均积累速率, 最大积累速率出现时间以出苗后天数表示; AAS: 活跃积累期。

新窗口打开|下载CSV

2.2 荚果产量和经济系数

图2看, 参试品种的单株荚果干重动态变化2年试验结果趋势基本一致, 其中2015年参试品种的单株荚果干重平均增加速率表现为冀花4号(0.31 g d-1)>冀花2号(0.27 g d-1)>鲁花12号(0.24 g d-1)。成熟时, 单株荚果产量冀花4号最高, 为19.05 g, 冀花2号和鲁花12号分别为16.78 g和15.32 g, 冀花4号比冀花2号、鲁花12号分别高13.54%和24.35%。从经济系数增加速率看, 快速增长期(出苗后70 d前)

为鲁花12号>冀花4号>冀花2号, 缓慢增加阶段为冀花4号>冀花2号>鲁花12号。荚果成熟后, 冀花2号、冀花4号和鲁花12号的经济系数分别为0.27、0.34和0.32, 冀花4号较冀花2号和鲁花12号分别高25.52%和6.46%, 说明冀花4号在增加总生物产量的同时, 营养体光合产物的转换速率也保持较高水平, 所以提高了经济系数, 取得高产。2014年和2015年试验结果仅在经济系数缓慢增加阶段品种间存在差异, 但差异不明显。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同花生品种单株荚果干重增加及经济系数变化动态

图中数据为3次重复均值, 垂直误差线为标准误(±SE)。虚线表示2014年试验结果, 实线表示2015年结果。
Fig. 2Dynamics of pod dry weight per plant and harvest index in different varieties

Data are means ± standard error (SE, n = 3). Vertical bars indicate the ±SE. The dotted lines represent the results in 2014, and the solid lines represent the results in 2015.


2.3 产量及其构成

表2可见, 荚果产量、饱果率、出仁率和千克仁数在品种和年际间的差异均显著。2年试验结果冀花4号的单株果数、饱果率、出仁率均最高, 分别比冀花2号高37.50% (2014)和16.67% (2015)、22.61%和10.65%、6.53%和1.94%, 分别比鲁花12号高22.22%和27.27%、7.96%和3.40%、1.75%和0.86%。从产量结果可见, 无论是欠收年(2014年)还是丰产年(2015年)荚果产量均以冀花4号最高, 分别为4350.35 kg hm-2(2014)和5162.36 kg hm-2(2015), 冀花2号次之, 鲁花12号最低, 冀花4号比后2个品种分别高7.66%和44.92% (2014)、2.22%和25.66% (2015), 说明冀花4号抗(耐)逆性强、稳产性突出。

Table 2
表2
表2参试花生品种的产量及产量构成因素
Table 2Peanut pod yield and yield components of the tested peanut varieties
品种
Variety
单株果数
Pods per plant
饱果率
Rate of full-pod
(%)
出仁率
Shelling
percentage (%)
千克果数
Pods per kg
千克仁数
Seeds per kg
荚果产量
Pod yield (kg hm-2)
2014
冀花2号Jihua 28±0.46 c59.7±3.55 c73.08±0.16 b684±19.73 a1444±10.07 c4040.75±84.79 b
冀花4号Jihua 411±0.67 a73.2±4.36 a77.85±0.23 a737±19.74 a1569±15.72 b4350.35±83.03 a
鲁花12号Luhua 129±0.54 b67.8±4.03 b76.51±0.77 a749±26.59 a1699±34.67 a3002.00±35.27 c
2015
冀花2号Jihua 212±1.49 b74.2±0.59 c72.10±0.10 b659±4.00 b1504±41.67 b5050.10±366.01 a
冀花4号Jihua 414±0.80 a82.1±3.06 a73.50±1.44 a779±1.73 a1335±24.43 c5162.36±141.52 a
鲁花12号Luhua 1211±0.81 b79.4±1.50 b72.87±0.37 b778±13.33 a1891±83.00 a4108.11±321.81 b
变异来源 Source of variation?
品种Variety (V)0.034 *0.001 **0.002 **0.000 **0.000 **0.000 **
年份Year (Y)0.031 *0.000 **0.000 **0.287 NS0.000 **0.000 **
互作V×Y0.826 NS0.085 NS0.073 NS0.148 NS0.000 **0.785 NS
?F is value with confidence degree 95% in F test. NS No significant difference at the 0.05 probability level; *Significant difference at the 0.05 probability level; **Significant difference at the 0.01 probability level. The data are means ± standard error (SE, n = 3). Values followed by different letters within a column in the same year are significantly different at the 0.05 probability level.
?F检验置信度95%时F值, NSP < 0.05水平差异不显著, *P < 0.05水平上差异显著; **P < 0.01水平上差异极显著。表中数据为3次重复均值。同一年内的同列数据中不同字母表示差异显著(P < 0.05)。

新窗口打开|下载CSV

2.4 籽仁油分积累特性

2.4.1 油分积累进程 由图3可见, 3个品种2年油分积累趋势基本一致, 即冀花4号籽仁油分积累进程与冀花2号和鲁花12号差异明显, 初始阶段冀花4号的积累速率高于冀花2号和鲁花12号; 出苗后80 d, 3个品种的油分积累均进入平台期。成熟时, 冀花4号含油量达到53.35% (2014)和54.18% (2015), 而冀花2号和鲁花12号分别为50.78% (2014)、50.37% (2015)和49.55% (2014)、50.68% (2015)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3不同花生品种籽仁油分积累动态和积累速率变化

图中数据为3次重复均值, 垂直误差线为标准误(±SE)。虚线表示2014年试验结果, 实线表示2015年结果。
Fig. 3Seed oil content accumulation dynamics and oil accumulation rate in different peanut varieties

Data are means ± standard error (SE, n = 3). Vertical bars indicate the ±SE. The dotted lines represent the results in 2014, and the solid lines represent the results in 2015.


2.4.2 油分积累特征参数 参试品种籽仁油分积累动态Richards方程拟合的R2值都大于0.98(表3), 说明该曲线方程适于描述油分积累过程。籽仁油分积累最大速率和平均速率均表现为冀花4号>鲁花12号>冀花2号; 达到最大积累速率的时间以鲁花12号最早(43.1~64.0 d), 冀花4号(49.7~66.8 d)次之, 冀花2号最晚(50.8~68.5 d); 油分积累活跃期以冀花4号最短(57.3~67.4 d), 鲁花12号次之(68.2~70.0 d), 冀花2号最长(71.2~76.7 d)。可见, 冀花2号积累活跃期虽长, 但平均积累速率低; 冀花4号积累活跃期虽短, 但平均积累速率明显高于冀花2号。

Table 3
表3
表3不同花生品种籽仁油分积累动态的Richards模型参数及其特征参数
Table 3Parameters of Richards model for seed oil content accumulation in different peanut varieties
参数
Parameter
冀花2号Jihua 2冀花4号Jihua 4鲁花12号Luhua 12
201420152014201520142015
R20.98350.99710.98760.99840.98700.9989
A52.7951.9155.3954.9350.9551.65
B0.794.05E+81.013.11E+80.227.74E+8
K0.05350.26020.05860.26680.05980.2541
N0.05517.26350.05135.64200.01686.6660
Gmax1.0121.2221.1641.5771.1121.261
$\bar{G}$0.6880.7290.7910.9590.7560.757
Tmax.G50.868.549.766.843.164.0
T76.771.267.457.370.068.2
Wmax19.9438.8220.8939.2718.9038.05
R2: coefficient of determination; A, B, K, and N: coefficient more than o in Richards equation; Gmax: maximum accumulation rate; $\bar{G}$ : average accumulation rate; Tmax.G: days to the maximum accumulation rate; T: activated oil accumulation stage; Wmax: seed oil content at Gmax.
R2: 决定系数; ABKN: 模拟方程大于0的系数; Gmax: 最大积累速率; $\bar{G}$ : 平均积累速率; Tmax.G: 达到最大累积速率的时间; T: 积累活跃期; Wmax: 达到最大积累速率时的含油量。

新窗口打开|下载CSV

2.5 光合势特征

图4可见, 参试品种的LAI发育动态和光合势动态变化在2年间的结果表现一致。冀花4号和鲁花12号在出苗后40 d LAI达到3.0以上, 出苗后60 d达到峰值, 而后鲁花12号LAI较快衰落下降, 但冀花4号的LAI仍维持高值。冀花2号、冀花4号和鲁花12号全生育期LAI在3.0以上维持的时间差异明显, 如2015年试验3品种分别为40 d、55 d和35 d。总光合势表现为冀花4号显著高于鲁花12号和冀花2号, 冀花4号比后两者均高20%以上。光合势表现为结荚期>饱果成熟期>花针期>苗期, 其中花生产量形成关键期(结荚期和饱果成熟期)光合势占全生育期的80%以上。

图4

新窗口打开|下载原图ZIP|生成PPT
图4不同花生品种叶面积指数(LAI)动态和不同时期光合势

数据为3次重复均值。误差线为标准误(±SE)。误差线上不同字母表示差异显著(P < 0.05)。虚线表示2014年试验结果, 实线表示2015年结果。
Fig. 4Dynamics of leaf area index (LAI) and photosynthetic potential (leaf area duration, LAD) of different peanut varieties at different periods

The data are means ± standard error (SE, n = 3). Error bars indicate ±SE. Bars superscripted by different letters are significantly different at the 0.05 probability level. The dotted lines represent the results in 2014, and the solid lines represent the results in 2015.


2.6 叶片光合特征

2.6.1 叶绿素含量 2年试验结果中, 叶绿素a、叶绿素b、类胡萝卜素及叶绿素(a+b)含量均表现为冀花4号最高。冀花2号和冀花4号的类胡萝卜素含量较高, 且差异不显著, 均显著高于鲁花12号; 叶绿素a/b值冀花2号显著高于冀花4号和鲁花12号(图5)。说明冀花4号和鲁花12号更耐阴, 在光照不足的条件下仍可正常进行干物质生产。

图5

新窗口打开|下载原图ZIP|生成PPT
图5不同花生品种叶绿素含量

数据为3次重复均值。误差线为标准误(±SE)。误差线上不同字母表示差异显著(P < 0.05)。
Fig. 5Chlorophyll content in different peanut varieties

The data are means ± standard error (SE; n = 3). Error bars indicate ±SE. Bars superscripted by different letters are significantly different at the 0.05 probability level.


2.6.2 叶片光合速率 表4为结荚期叶片光合参数, 冀花4号叶片光合速率最高, 为19.30~21.01 μmol CO2 m-2 s-1, 比冀花2号和鲁花12号均高24%以上。冀花4号叶片蒸腾速率也最高, 为8.14~8.48 mmol H2O m-2 s-1, 比鲁花12号和冀花2号分别高19.1%~26.9%和2.4%~7.2%。叶片水分利用效率表现为冀花4号(2.42~2.55 μmol CO2 mmol-1 H2O)>冀花2号(2.32~2.36 μmol CO2 mmol-1 H2O)>鲁花12号(1.72~1.90 μmol CO2 mmol-1 H2O)。叶片气孔导度冀花4号最高, 为0.54~0.57 mol H2O m-2 s-1

Table 4
表4
表4不同花生品种结荚期光合指标
Table 4Photosynthetic characteristics of different peanut varieties at pod-setting stage
品种
Variety
光合速率
Pn
(μmol CO2 m-2 s-1)
气孔导度
Gs
(mol H2O m-2 s-1)
胞间CO2浓度
Ci
(μmol CO2 m-2 s-1)
蒸腾速率
Tr
(mmol H2O m-2 s-1)
叶片水分利用效率
LWUE
(μmol CO2 / mmol H2O)
2014
冀花2号Jihua 216.47±0.49 b0.42±0.02 b256.35±6.88 a7.12±0.24 a2.32±0.05 a
冀花4号Jihua 421.01±0.96 a0.57±0.03 a252.64±9.52 a8.48±0.78 a2.55±0.22 a
鲁花12号Luhua 1213.69±1.12 b0.39±0.05 b260.56±5.36 a7.91±0.48 a1.72±0.05 b
2015
冀花2号Jihua 215.55±0.89 b0.38±1.23 c243.03±20.69 b6.76±1.55 b2.36±0.03 a
冀花4号Jihua 419.30±1.25 a0.54±1.07 a245.04±11.10 b8.14±0.85 a2.42±0.05 a
鲁花12号Luhua 1215.52±2.02 b0.47±0.65 b253.63±18.52 a8.08±0.64 a1.90±0.01 b
The data are means ± standard error (SE, n = 5). Values followed by different letters within a column are significantly different at the 0.05 probability level. Pn: photosynthetic rate; Gs: stomatal conductance; Ci: intercellular CO2 concentration; Tr: transpiration rate; LWUE: leaf water use efficiency.
数据为5次重复均值。同列中不同字母表示差异显著(P < 0.05)。

新窗口打开|下载CSV

2.6.3 叶片光合作用对光强的响应 图6表5为参试品种叶片光合速率对光强变化响应的光合助手拟合结果。光饱和点是作物能够充分利用光能的程度, 即作物需光上限, 一定范围内光饱和点越高说明作物可利用的光强越大。光饱和点以冀花4号最大, 其次是鲁花12号, 冀花2号最小, 最大相差715.84 μmol m-2 s-1。光补偿点是在达到光饱和点时光合作用吸收的CO2量与呼吸作用放出的CO2量相等时净光合速率为零, 是作物需光下限。光补偿点表现为鲁花12号和冀花2号高于冀花4 号, 最大相差60.59 μmol m-2 s-1。冀花4号的最大光合速率明显高于冀花2号和鲁花12号, 暗呼吸速率则以冀花4号最低。冀花4号的初始量子效率在3个品种中最高, 说明冀花4号利用单位光量子同化固定的CO2分子数量显著高于其他品种, 对弱光的利用能力较大。

图6

新窗口打开|下载原图ZIP|生成PPT
图6不同花生品种叶片光合速率和水分利用效率对光强度变化的响应

虚线表示2014年试验结果, 实线表示2015年结果。误差线为标准误(±SE)。
Fig. 6Response of photosynthetic rate and water use efficiency (WUE) in peanut leaves to different light intensities in different peanut varieties

The dotted lines represent the results in 2014, and the solid lines represent the results in 2015. Error bars indicate ±SE.


Table 5
表5
表5不同花生品种的光响应特征参数
Table 5Parameters of light response in different peanut varieties
品种
Variety
暗呼吸速率
DkRR
(μmol m-2 s-1)
初始量子效率
IQE
最大光合速率
MPRl
(μmol m-2 s-1)
光补偿点
LCP
(μmol m-2 s-1)
光饱和点
LSP
(μmol m-2 s-1)
2014
冀花2号Jihua 22.04±0.01 a0.0297±0.001 a17.57±0.98 b72.45±1.95 a2222.40±19.52 b
冀花4号Jihua 40.60±0.01 b0.0519±0.001 a25.19±1.10 a11.86±1.03 c2922.54±21.11 a
鲁花12号Luhua 121.10±0.01 b0.0207±0.001 a11.81±0.75 b55.65±2.36 b2358.51±13.64 b
2015
冀花2号Jihua 22.48±0.01 b0.0642±0.001 b16.08±0.19 b42.43±1.65 b1559.33±19.71 c
冀花4号Jihua 42.36±0.02 b0.0755±0.001 a19.28±0.21 a34.07±0.91 c2275.17±10.12 a
鲁花12号Luhua 123.09±0.01 a0.0654±0.001 b14.92±0.26 b58.11±1.18 a1789.32±16.43 b
The data are means ± standard error (SE, n = 3). Values followed by different letters within a column are significantly different at the 0.05 probability level. DkRR: dark respiration rate; IQE: initial quantum efficiency; MPRl: maximum photosynthetic rate; LCP: light compensation point; LSP: light saturation point.
数据为3次重复均值。同列中不同字母表示差异显著(P < 0.05)。

新窗口打开|下载CSV

图6可看出, 叶片水分利用效率对光强的响应也表现同样的规律, 在相同光强下, 冀花4号的叶片水分利用效率明显高于冀花2号和鲁花12号, 2年试验结果一致。

2.6.4 叶片光合作用对CO2浓度的响应 环境CO2浓度升高将对植物光合作用产生两方面影响, 一是增加叶片内外CO2浓度差, 促进CO2向叶片内部扩散; 二是引起气孔开度减小, 阻止CO2向叶内扩散。从图7可见, 在一定范围内, 花生叶片光合速率和水分利用效率随环境CO2浓度增加而增加, 当达到CO2饱和点时, CO2浓度继续增加但光合速率不再增加。CO2补偿点是在光照充足时作物光合作用消耗的CO2与呼吸作用释放的CO2达到平衡时的CO2浓度。拟合结果如表6, CO2饱和点、最大净光合速率均表现为冀花4号>冀花2号>鲁花12号, CO2补偿点、初始羧化效率和光呼吸速率冀花4号居中。相同CO2浓度下, 冀花4号叶片水分利用效率明显高于冀花2号和鲁花12号。

图7

新窗口打开|下载原图ZIP|生成PPT
图7不同花生品种叶片光合速率和水分利用效率对CO2浓度变化的响应

虚线表示2014年试验结果, 实线表示2015年结果。误差线为标准误(±SE)。
Fig. 7Response of photosynthetic rate and water use efficiency (WUE) in peanut leaves to CO2 concentration changes in different peanut varieties

The dotted lines represent the results in 2014, and the solid lines represent the results in 2015. Error bars indicate ±SE.


Table 6
表6
表6不同花生品种叶片光合作用CO2响应特征参数
Table 6Photosynthetic parameters of CO2 response in different peanut varieties
品种
Variety
初始羧化效率
ICE
(μmol m-2 s-1)
CO2饱和点
CSP
(μmol mol-1)
最大净光合速率
MPRc
(μmol m-2 s-1)
CO2补偿点
CCP
(μmol mol-1)
光呼吸速率
DyRR
(μmol m-2 s-1)
2014
冀花2号Jihua 20.19±0.02 a728.40±10.21 a28.86±2.34 b58.86±3.01 a9.63±0.18 a
冀花4号Jihua 40.16±0.01 a781.95±5.30 a35.89±1.65 a56.56±2.32 b8.26±0.05 a
鲁花12号Luhua 120.12±0.01 a674.33±13.84 b24.56±0.97 b56.87±1.54 b6.29±0.12 b
2015
冀花2号Jihua 20.29±0.01 a632.65±9.05 b27.39±1.85 b44.26±2.58 b10.47±0.84 a
冀花4号Jihua 40.25±0.01 b647.91±10.21 a34.10±1.08 a47.21±1.66 b10.42±0.95 a
鲁花12号Luhua 120.23±0.01 b621.57±11.02 c24.40±0.94 b55.15±1.23 a10.42±0.87 a
The data are means ± standard error (SE, n = 3). Values followed by different letters within a column are significantly different at the 0.05 probability level. ICE: initial carboxylation efficiency; CSP: CO2 saturation point; MPRc: maximum photosynthetic rate; CCP: CO2 compensation point; DyRR: photo respiratory rate.
数据为3次重复均值。同列中不同字母表示差异显著(P < 0.05)。

新窗口打开|下载CSV

2.7 干物质积累和油分积累特征参数、产量与光合参数的相关分析

表7相关分析表明, 单株干物质平均积累速率、经济系数、含油量、油分平均积累速率均与叶片光合速率、总光合势之间呈显著或极显著正相关。荚果产量与干物质平均积累速率、叶片光合速率和总光合势呈极显著正相关。此外, 籽仁含油量与单株干物质积累速率、籽仁油分平均积累速率、光饱和点、CO2饱和点、经济系数、出仁率等相关显著或极显著。荚果产量与含油量呈低度正相关(r=0.540), 相关极显著(P=0.006)。

Table 7
表7
表7干物质积累、产量、籽仁油分积累与叶片光合特征参数的相关性分析
Table 7Correlation coefficients of dry matter accumulation, yield and seed oi accumulation with leaf photosynthetic characteristic parameters
性状指标
Index
x1x2x3x4x5x6x7x8x9x10
x20.239
x30.2220.635**
x40.552**0.879**0.753**
x50.774**0.5060.706**0.740**
x6-0.4740.365-0.1690.101-0.380
x7-0.1270.3290.746**0.476*0.3130.031
x80.503*0.3960.635**0.754**0.588**-0.0900.652**
x90.850**0.4200.562**0.750**0.872**-0.4500.1980.775**
x10-0.1900.511*0.529**0.555**0.0420.5420.2330.621**0.068
x110.867**0.2560.0290.540**0.414-0.156-0.2010.574**0.790**-0.057
x1: average accumulation rate of dry matter per plant; x2: shelling percentage; x3: harvest index; x4: seed oil content at mature stage; x5: average accumulation rate of seed oil; x6: activated accumulation stage of seed oil; x7: light saturation point; x8: leaf photosynthetic rate; x9: total leaf area duration; x10: CO2 saturation point; x11: pod yield. *: Significant correlation at the 0.05 probability level; **: Significant correlation at the 0.01 probability level. Sample size n = 18.
x1: 单株干物质平均积累速率; x2: 出仁率; x3: 经济系数; x4: 含油量; x5: 油分平均积累速率; x6: 油分积累活跃期; x7: 光饱和点; x8: 叶片光合速率; x9: 总光合势; x10: CO2饱和点; x11: 荚果产量。*: 在P < 0.05水平上显著; **: 在P < 0.01水平上显著。样本个数n=18。

新窗口打开|下载CSV

3 讨论

干物质生产是作物经济产量形成的基础, 经济产量由生物学产量和经济系数共同决定, 使生物学产量与经济系数同步提高、或者生物学产量或经济系数单独提高能获得较高的产量[19]。其中经济系数反映作物源库关系[30], 是源库关系对经济产量产生影响的关键因素之一。不同花生品种的源库关系及其特征差异明显。本研究中, 冀花4号和冀花2号全生育期均保持较高的生物学产量水平, 其中冀花4号经济系数较高, 所以其荚果产量水平最高, 而冀花2号的经济系数在各生育阶段均最低, 荚果产量未能获得最高值。鲁花12号的生物学产量和经济系数变化与冀花2号恰好相反, 其荚果减产显著。因此, 本研究认为提高生物学产量并保持较高的经济系数是花生品种取得高产的关键, 这与水稻等作物的研究结果一致[12]。目前, 普遍认为增加干物质生产是高产的重要途径[31], 而各生育阶段因生态条件、品种类型及栽培技术模式等存在较大差异, 所得出的结论不同[10,32]

另一方面, 定量分析物质生产过程中干物质积累的动态变化可揭示产量形成特征[33]。本研究利用动态模型模拟花生干物质积累过程, 表明荚果产量与干物质平均积累速率正相关(r=0.730, P<0.05), 这一结果与花生超高产田群体干物质生产特征高度吻合。已有的研究结果表明, 花生超高产田的干物质生产速率全生育期始终高于一般高产田, 而且具有峰值高、降速慢的特点[14], 说明在一定范围内干物质积累速率越大, 产量越高。该结果与Ottariano等[31]和Severini等[34]在玉米上的结果也较接近。此外, 对冬小麦、水稻等的研究已表明, 干物质快速增长阶段起始时间越早、延续点离收获期越近, 干物质快速增长期持续时间越长, 越有利于产量的提高[35,36]。但是, 本研究中冀花2号、冀花4号和鲁花12号的干物质积累快速增长期持续时间与荚果产量无相关性, 推测其与地上部分存在冗余现象有关, 若仅保证源供应的持续增加, 而库容的扩大和经济系数的提高不足, 同样难以获得高产[15]。以上分析说明, 在花生高产栽培中, 从苗期开始即重视干物质的迅速积累, 如选择发芽势强的饱满种子、适期播种、苗后清棵等措施, 促使幼苗根深、茎壮、节密、枝多、花芽分化多, 才可为中后期干物质持续快速积累奠定基础。但是, 到中期应将栽培重点放在确保营养体稳长上, 重视适当调节和控制, 防止徒长, 促使养分合理分配, 促进源库协调。

叶片是花生进行光合作用的主要器官, LAI、叶片持绿期及LAI峰值持续时间直接影响干物质的生产能力。所以, 合理的群体叶面积是花生高产结构的重要指标。一般来说, 高产花生品种LAI变化规律为, 自苗期随着植株的生长叶片增多, 叶面积系数逐步提高, 由2.0上升到4.0, 至结荚期达到高峰约5.0左右, 以后又逐渐下降到2.0以下, 生育中期较大LAI持续时间在50 d以上[14]。王才斌等[14]指出, LAI峰值持续时间长、全生育期保持较高的光合势是高产花生群体的显著特点。冀花4号全生育期LAI 3.0以上的持续时间达55 d, 有效保持了光合面积, 促进了干物质持续积累, 为获得高产高油奠定了物质基础, 这与其他研究结果一致[14]。此外, 光合势比LAI更能解析作物干物质生产的优势[37]。冀花4号各生育阶段均保持最高的光合势, 总光合势比冀花2号和鲁花12号高20%以上, 这正是高产花生光合性能指标的显著特点。参试品种产量形成期的光合势占总光合势的80%以上, 与已有研究结果一致[38]。将干物质生产与光合势综合分析发现, 冀花2号、冀花4号和鲁花12号结荚期后分别用83.62%、79.83%、80.74%的总光合势生产出48.70%、55.02%和45.42%的干物质(以2015年结果为例), 高产品种冀花4号以相对较低比例的光合势获得较高比例的干物质产量, 说明其结荚期以后生产的光合产物更多地转运到荚果中。所以, 在高产栽培中应使叶面积系数在适宜范围并保持较长的时间, 使花生光合势与净同化速率协调发展, 防止田间郁闭和倒伏, 争取既要有较大的光合势(总叶面积), 又要使单位叶面积积累的干物质保持较高水平。

本研究表明, 花生籽仁油分积累过程与干物质积累、荚果干重变化趋势相同, 即积累速度先快后慢, 这与以前的研究结果一致[5,39]。研究组前期已经发现, 花生籽仁油分积累速率受基因型和环境的共同影响, 油分积累时间和积累速率决定了花生种子含油量[4]。本研究发现, 籽仁油分平均积累速率与干物质平均积累速率、含油量显著正相关, 所以光合产物平均积累速率是提高荚果产量和籽仁含油量的重要因素。冀花2号籽仁油分积累活跃期维持时间最长, 但平均积累速率最低, 含油量最低; 鲁花12号籽仁油分积累活跃期和平均积累速率均居中, 含油量中等; 而冀花4号油分积累平均速率最高, 油分积累活跃期相对较短, 获得了高含油量。因此, 对于高油花生品种, 进一步证明增加结荚期前的营养物质供应, 促进植株早生快发, 为油分积累提供充足的前期储备, 保证获得持续高的积累速率; 结荚期后重视叶部病害防控, 保证维持较多的绿叶面积, 延长叶片功能期, 保持适宜的土壤湿度, 促进荚果充实, 进而使干物质和油分积累速率均保持在较高水平, 实现产量与含油量协同提高, 这是通过栽培途径进一步充分挖掘高油花生品种高油潜力的方向[4]

光合作用为花生籽仁油脂积累提供还原力NADPH和ATP, 其性能对种子油脂合成至关重要[40]。关于叶片光合性能与种子含油量关系的研究鲜见报道。本研究证实, 叶片光合速率、总光合势与籽仁含油量和油分平均积累速率均极显著正相关, 所以结荚期叶片光合速率可以作为衡量花生种子油脂积累效率的一个重要指标。冀花4号的光合速率显著高于冀花2号和鲁花12号, 结荚期具有较大的LAI和光合势, 叶片功能期持续时间长, 结荚前能积累较多的干物质, 种子内积累的糖类能快速转化为油脂贮存起来, 表现了高油特性。因此, 冀花4号是油用型花生品种选育的典型。

不同花生品种光合作用对光照强度和环境CO2浓度的变化规律存在明显差异, 冀花4号光饱和点、CO2饱和点显著高于冀花2号和鲁花12号, 该品种能够在较强的光照、较高的环境CO2浓度条件下维持较强的光合作用。但并非光饱和点越大, 品种的光合速率越大。相关分析表明, 干物质积累速率、籽仁油分积累速率、产量和含油量均与叶片光合速率正相关, 而且光饱和点、CO2饱和点分别与含油量和经济系数正相关, 说明叶片光合作用对光强和CO2响应的能力直接影响花生含油量和经济产量的形成。荚果产量与含油量呈正相关, 这与Janila等[41]和Meta等[42]的研究结果一致, 说明通过聚合育种途径, 可以将该2个复杂性状聚合于一体, 大幅提升高产或高油花生品种的产油量。

4 结论

花生单株干物质平均积累速率、经济系数、含油量、油分平均积累速率均与叶片光合速率、总光合势显著正相关。荚果产量分别与干物质平均积累速率、叶片光合速率和全生育期总光合势极显著正相关。此外, 籽仁含油量与单株干物质积累速率、籽仁油分平均积累速率、光饱和点、CO2饱和点、经济系数、出仁率等显著相关。荚果产量与含油量极显著正相关。冀花4号比冀花2号和鲁花12号具有经济系数较高、总光合势高且结荚期后分配比例较高、光合速率较高、光饱和点及CO2饱和点较高、干物质和油分积累平均速率也相对较高等突出优势, 是其同时实现高产、高油的重要原因。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Sharma M, Gupta S K, Mondal A K. Production and trade of major world oil crops. In: Gupta S eds. Technological Innovations in Major World Oil Crops, Volume 1: Breeding
New York: Springer New York, 2012. pp 1-15.

[本文引用: 1]

禹山林 . 中国花生产业现状与发展思路探讨. 见: 中国作物学会油料作物专业委员会汇编.
中国作物学会油料作物专业委员会第七次会员代表大会暨学术年会论文集. 2013. pp 24-28.

[本文引用: 1]

Yu S L. Study on current situation and development of peanut industry in China. In: China Crop Society Oil Crop Specialized Committee, eds.
Seventh Member Congress and Academic Annual Meeting of China Crop Society Oil Crop Specialized Committee. 2013. pp 24-28(in Chinese).

[本文引用: 1]

陈四龙, 李玉荣, 程增书, 廖伯寿, 雷永, 刘吉生 . 花生含油量杂种优势表现及主基因+多基因遗传效应分析
中国农业科学, 2009,42:3048-3057.

URL [本文引用: 1]
【Objective】 Oil content is an important quantitative trait of peanut. High oil content has became a major target of genetic improvement on peanut cultivar. Heterosis and genetic analysis of oil content will provide a very important guidance for breeding of high oil peanut cultivar. 【Method】 The method of joint segregation analysis of multiple generations with P1, P2, F1 and F2 of major gene plus polygene mixed inheritance model was used to analyze the inheritance of oil content in peanut cultivars. Four basic populations (P1, P2, F1 and F2) from four peanut crosses respectively were made for analysis of the genetic model. The female parent in each cross was progeny of distant hybridization with a high oil gene pool of peanut wild species. The male parents were peanut cultivars with low oil content. 【Result】 The results indicated that the heterosis of oil content was showed in F1 with significant different degree among four crosses, and the mid-parents heterosis were from 1.4% to 9.4% respectively. The differences of oil content genetic characteristcs among four crosses were obvious. The frequency distributions of oil content in F2 populations derived from two crosses SW9721-3×Te21 and SW9721-12×Puhua22 showed the characteristics of mixture normal distribution, which indicated that inheritance of oil content followed the major gene plus polygene model. Results showed that genetic model D-0 was the most fitted genetic model for the trait. In other words, oil content was controlled by one major gene with additive-dominant effects plus polygenes with additive-dominant-epistasis effects. The major gene heritabilities in F2 were 47.51% and 45.00%, respectively, and polygene heritabilities were 22.75% and 18.72%, respectively. The frequency distributions of oil content in F2 populations derived from SW9721-23×95-3 and SW9721-38×Luhua11 showed the characteristics of normal distribution, which indicated that inheritance of oil content followed the polygene model. Results showed that genetic model C-0 was the most fitted genetic model for the trait. In other words, oil content was controlled by polygenes with additive-dominant-epistasis effects. The polygene heritabilities in F2 were 66.51% and 66.09%, respectively. 【Conclusion】 The heterosis and transgressive segregation of oil content commonly existed in hybrid progenies of peanut. The genetic effects of genes for oil content traits were significantly different in magintude, some with major gene character. Oil content in peanut was controlled by additive gene effects. And therefore, in high oil peanut breeding for cultivars improvement, some strains with high oil content may be selected through single directional selection.
Chen S L, Li Y R, Cheng Z S, Liao B S, Lei Y, Liu J S . Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene
Sci Agric Sin, 2009,42:3048-3057 (in Chinese with English abstract).

URL [本文引用: 1]
【Objective】 Oil content is an important quantitative trait of peanut. High oil content has became a major target of genetic improvement on peanut cultivar. Heterosis and genetic analysis of oil content will provide a very important guidance for breeding of high oil peanut cultivar. 【Method】 The method of joint segregation analysis of multiple generations with P1, P2, F1 and F2 of major gene plus polygene mixed inheritance model was used to analyze the inheritance of oil content in peanut cultivars. Four basic populations (P1, P2, F1 and F2) from four peanut crosses respectively were made for analysis of the genetic model. The female parent in each cross was progeny of distant hybridization with a high oil gene pool of peanut wild species. The male parents were peanut cultivars with low oil content. 【Result】 The results indicated that the heterosis of oil content was showed in F1 with significant different degree among four crosses, and the mid-parents heterosis were from 1.4% to 9.4% respectively. The differences of oil content genetic characteristcs among four crosses were obvious. The frequency distributions of oil content in F2 populations derived from two crosses SW9721-3×Te21 and SW9721-12×Puhua22 showed the characteristics of mixture normal distribution, which indicated that inheritance of oil content followed the major gene plus polygene model. Results showed that genetic model D-0 was the most fitted genetic model for the trait. In other words, oil content was controlled by one major gene with additive-dominant effects plus polygenes with additive-dominant-epistasis effects. The major gene heritabilities in F2 were 47.51% and 45.00%, respectively, and polygene heritabilities were 22.75% and 18.72%, respectively. The frequency distributions of oil content in F2 populations derived from SW9721-23×95-3 and SW9721-38×Luhua11 showed the characteristics of normal distribution, which indicated that inheritance of oil content followed the polygene model. Results showed that genetic model C-0 was the most fitted genetic model for the trait. In other words, oil content was controlled by polygenes with additive-dominant-epistasis effects. The polygene heritabilities in F2 were 66.51% and 66.09%, respectively. 【Conclusion】 The heterosis and transgressive segregation of oil content commonly existed in hybrid progenies of peanut. The genetic effects of genes for oil content traits were significantly different in magintude, some with major gene character. Oil content in peanut was controlled by additive gene effects. And therefore, in high oil peanut breeding for cultivars improvement, some strains with high oil content may be selected through single directional selection.

陈四龙, 李玉荣, 徐桂真, 程增书 . 不同高油花生品种(系)油分积累特性的模拟研究
作物学报, 2008,34:142-149.

DOI:10.3724/SP.J.1006.2008.00142URL [本文引用: 6]
为了准确了解油用型花生籽仁油分积累特性,筛选适合描述花生籽仁油分累积特性的生长模型,以 6个高油花生品种(系)为材料,用Richards、Logistic和Gompertz方程拟合了花生籽仁油分累积特征曲线。研究结果表 明,Richards方程能够较好地拟合不同花生品种(系)的油分累积特性,其拟合度优于Logistic和Gompertz方程。不同花生品种(系)间 油分累积特性的比较研究结果表明,籽仁脂肪含量的变化过程基本可以划分为初始积累、快速积累和稳定积累3个阶段,油分积累主要集中在前2个阶段。提高含油 量有提高油分积累速率和延长油分积累持续时间2策略。提高籽仁油分最大积累速率、初始积累阶段油分积累量和快速积累阶段油分积累量是增加籽仁含油量的关 键。
Chen S L, Li Y R, Xu G Z, Cheng Z S . Simulation on oil accumulation characteristics in different high oil peanut varieties
Acta Agron Sin, 2008,34:142-149 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2008.00142URL [本文引用: 6]
为了准确了解油用型花生籽仁油分积累特性,筛选适合描述花生籽仁油分累积特性的生长模型,以 6个高油花生品种(系)为材料,用Richards、Logistic和Gompertz方程拟合了花生籽仁油分累积特征曲线。研究结果表 明,Richards方程能够较好地拟合不同花生品种(系)的油分累积特性,其拟合度优于Logistic和Gompertz方程。不同花生品种(系)间 油分累积特性的比较研究结果表明,籽仁脂肪含量的变化过程基本可以划分为初始积累、快速积累和稳定积累3个阶段,油分积累主要集中在前2个阶段。提高含油 量有提高油分积累速率和延长油分积累持续时间2策略。提高籽仁油分最大积累速率、初始积累阶段油分积累量和快速积累阶段油分积累量是增加籽仁含油量的关 键。

张佳蕾, 顾学花, 杨传婷, 郭峰, 李向东, 万书波 . 不同品质类型花生籽仁脂肪酸积累规律研究
花生学报, 2016,45(2):33-37.

DOI:10.14001/j.issn.1002-4093.2016.02.006URL [本文引用: 2]
以高蛋白品系KB008、高脂肪品种花17和高油酸/亚油酸品种农大818为材料对花生籽仁发育过程中脂肪酸积累规律进行研究。结果显示,在花生籽仁发育过程中,籽仁中脂肪的积累速度呈先快后慢的趋势。油酸亚油酸比值(O/L)受遗传因素影响较大,收获期O/L值以农大818最高,KB008最低,差异显著。不同品种成熟期的脂肪酸组分相对含量存在差异,高蛋白品种成熟期亚油酸、棕榈酸、硬脂酸、花生酸和山嵛酸相对含量显著高于高脂肪和高O/L值品种,而其油酸和二十四烷酸相对含量明显低于后两者。高脂肪品种和高O/L值品种成熟期脂肪酸组分相对含量差异不明显。
Zhang J L, Gu X H, Yang C T, Guo F, Li X D, Wan S B . Regularity of fatty acids accumulation in different quality types of peanut seed kernel
J Peanut Sci, 2016,45(2):33-37 (in Chinese with English abstract).

DOI:10.14001/j.issn.1002-4093.2016.02.006URL [本文引用: 2]
以高蛋白品系KB008、高脂肪品种花17和高油酸/亚油酸品种农大818为材料对花生籽仁发育过程中脂肪酸积累规律进行研究。结果显示,在花生籽仁发育过程中,籽仁中脂肪的积累速度呈先快后慢的趋势。油酸亚油酸比值(O/L)受遗传因素影响较大,收获期O/L值以农大818最高,KB008最低,差异显著。不同品种成熟期的脂肪酸组分相对含量存在差异,高蛋白品种成熟期亚油酸、棕榈酸、硬脂酸、花生酸和山嵛酸相对含量显著高于高脂肪和高O/L值品种,而其油酸和二十四烷酸相对含量明显低于后两者。高脂肪品种和高O/L值品种成熟期脂肪酸组分相对含量差异不明显。

凌启鸿 . 作物群体质量
上海: 上海科学技术出版社, 2000. pp 458-516.

[本文引用: 1]

Ling Q H . Crop Population Quality.
Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 458-516(in Chinese).

[本文引用: 1]

Sarker Z I, Barma N, Zahid R A, Rahman M M, Samad M A, Pandit D B . Harvest index and biomass as the selection criteria for grain yield in spring wheat
J Sci Technol, 2003,1:37-41.

[本文引用: 1]

Ghosh M K, Chowdhuri S R, Nath S, Ghosh P K, Debnath S, Roy I, Ghosh P L . Harvest index and biological yield as selection criteria for mulberry (Moru5 spp.).
Indian J Genet Plant Breed, 2007,67:196-197.

URL [本文引用: 1]

Borghi B, Accerbi M, Corbellini M . Response to early generation selection for grain yield and harvest index in bread wheat (T. aestivum L.).
Plant Breed, 2010,117:13-18.

DOI:10.1111/j.1439-0523.1998.tb01440.xURL [本文引用: 1]
The availability of a reliable selection criterion for the identification of the most productive genotypes in early generations represents a crucial point in many breeding programs. The findings reported in the literature concerning the effectiveness of early generation testing for grain yield (GY) or harvest index (HI) are contradictory. In this work, we measured the response to selection for GY and HI applied in different generations, from F 2 to F 6 in nine segregating populations previously screened in F 2 by means of visual selection. Genetic variability for HI and GY was found in most of the segregating populations. However, GY of spaced plants in F 6 and F 3 generations was weakly correlated with yield of F 4 and successive generations grown at normal seed density. HI was of limited value as an indicator of yield potential.

王永宏, 王克如, 赵如浪, 王楷, 赵健, 王喜梅, 李健, 梁明晰, 李少昆 . 高产春玉米源库特征及其关系
中国农业科学, 2013,46:257-269.

DOI:10.3864/j.issn.0578-1752.2013.02.005URL [本文引用: 2]
【Objective】 Clearifing the relationship between the source and sink characteristics and the quantitative traits of spring maize with high yield (15 000 kg61hm-2) and to reveal the regulation of the source, sink and yield at different densities.【Method】Four experimental sites in maize regions with high yield of Xinjiang and Ningxia of China with similar climatic characteristics were set up (The 71st groups of the Fourth Agricultural Divisions of Xinjiang, the Qitai Farm of the Sixth Agricultural Division of Xinjiang, the experimental farm of Ningxia University, the Tongxin County of Ningxia). The resistant, density tolerance, high-yielding variety Zhengdan-958 was planted in accordance with the uniform cultivation and management practices. The treatments include 12 densities (15 000 to 180 000 plant/hm2) in order to create different types of source and sink, different yield levels (>15 000 kg61hm-2), the characteristics of the material production of maize, the maximum leaf area index (LAI), photosynthetic potential, grain weight per plant, single-grain number, harvest index, the ratio of grain to leaf, sink features, and their interrelationship.【Result】The high-yield maize dry matter accumulation and grain yield showed a quadratic function, 15 000 kg61hm-2 maize dry matter accumulation was 24 937-54 895 kg61hm-2, 19 270 kg61hm-2 (the highest yield) of dry matter accumulation of 37 417 kg61hm-2, pre-anthesis and post-anthesis accounted for 44.31% and 55.69%, respectively. The high yield maize production and maximum LAI, LAD showed a quadratic function relationships. The maximum LAI of the above 15 000 kg61hm-2 was 3.9-11.4, photosynthetic potential was 113 401-502 703 m261d, LAI and LAD of the highest yield of maize were 6.88 and 348 142 m261d. The yield and ear weight per plant had a negatively significant correlation (r =0.7188**), ear weight per plant of maize with the yield above 15 000 kg61hm-2 was 95.5-289.6 g, the highest yield of ear weight per plant was 169 g, yield and kernel number showed a function of quadratic relationship of maize with 1 5000 kg61hm-2 yield, the kernel number was 366.6-545.9. The kernel number of the highest yield of maize was 469. The yield and weight of kernel showed a quadratic function relationships. The 1000-kernels-weight was 232.6-388.6 g, the 1000-kernel-weight of maize with the highest yield was 361.0 g. The high yield maize production and harvest index had a quadratic function relationship, the harvest index was 31.5-61.9%, while that of the highest yield was 51.5%. The yield and kernel number/leaf area and kernel number/leaf dry weight was not significantly correlated (rkernel number/leaf area=0.1520, rkernelr/leaf dry weight =0.2577), the kernel weight/leaf dry weight was significantly (r=0.5847*) and had a quadratic relationship, the kernel weight/leaf weight was 1.1-7.13, kernel weight/leaf area was 149.4-506.5 g61m-2, the highest yield of kernel-leaf ratio was 5.39 and 366.4 g61m-2 of maize with yield above 15 000 kg?hm-2.【Conclusion】At different yield levels, the proportion of dry material accumulation and the photosynthetic potential existed difference in pre-anthesis and post-anthesis, the higher yield needs higher dry matter accumulation and photosynthetic potential, and the higher dry matter accumulation at pre-anthesis, the higher the proportion of photosynthetic potential at post-anthesis, As Zhengdan-958 is a type of source deficiency, which is a main limiting factor of production in low-density, so increasing the density could improve yield. The primary mechanism of yield is increase of leaf source. The high-density conditions, the source and sink increased at the same time but the increased proportion of the relative lack of sink was the main limiting factor of production, the main mechanism of yield increase improved seed setting rate and increased grain weight by the sink expansion methods.
Wang Y H, Wang K R, Zhang R L, Wang K, Zhao J, Wang X M, Li J, Liang M X, Li S K . Relationship between the source and sink of spring maize with high yield
Sci Agric Sin, 2013,46:257-269 (in Chinese with English abstract).

DOI:10.3864/j.issn.0578-1752.2013.02.005URL [本文引用: 2]
【Objective】 Clearifing the relationship between the source and sink characteristics and the quantitative traits of spring maize with high yield (15 000 kg61hm-2) and to reveal the regulation of the source, sink and yield at different densities.【Method】Four experimental sites in maize regions with high yield of Xinjiang and Ningxia of China with similar climatic characteristics were set up (The 71st groups of the Fourth Agricultural Divisions of Xinjiang, the Qitai Farm of the Sixth Agricultural Division of Xinjiang, the experimental farm of Ningxia University, the Tongxin County of Ningxia). The resistant, density tolerance, high-yielding variety Zhengdan-958 was planted in accordance with the uniform cultivation and management practices. The treatments include 12 densities (15 000 to 180 000 plant/hm2) in order to create different types of source and sink, different yield levels (>15 000 kg61hm-2), the characteristics of the material production of maize, the maximum leaf area index (LAI), photosynthetic potential, grain weight per plant, single-grain number, harvest index, the ratio of grain to leaf, sink features, and their interrelationship.【Result】The high-yield maize dry matter accumulation and grain yield showed a quadratic function, 15 000 kg61hm-2 maize dry matter accumulation was 24 937-54 895 kg61hm-2, 19 270 kg61hm-2 (the highest yield) of dry matter accumulation of 37 417 kg61hm-2, pre-anthesis and post-anthesis accounted for 44.31% and 55.69%, respectively. The high yield maize production and maximum LAI, LAD showed a quadratic function relationships. The maximum LAI of the above 15 000 kg61hm-2 was 3.9-11.4, photosynthetic potential was 113 401-502 703 m261d, LAI and LAD of the highest yield of maize were 6.88 and 348 142 m261d. The yield and ear weight per plant had a negatively significant correlation (r =0.7188**), ear weight per plant of maize with the yield above 15 000 kg61hm-2 was 95.5-289.6 g, the highest yield of ear weight per plant was 169 g, yield and kernel number showed a function of quadratic relationship of maize with 1 5000 kg61hm-2 yield, the kernel number was 366.6-545.9. The kernel number of the highest yield of maize was 469. The yield and weight of kernel showed a quadratic function relationships. The 1000-kernels-weight was 232.6-388.6 g, the 1000-kernel-weight of maize with the highest yield was 361.0 g. The high yield maize production and harvest index had a quadratic function relationship, the harvest index was 31.5-61.9%, while that of the highest yield was 51.5%. The yield and kernel number/leaf area and kernel number/leaf dry weight was not significantly correlated (rkernel number/leaf area=0.1520, rkernelr/leaf dry weight =0.2577), the kernel weight/leaf dry weight was significantly (r=0.5847*) and had a quadratic relationship, the kernel weight/leaf weight was 1.1-7.13, kernel weight/leaf area was 149.4-506.5 g61m-2, the highest yield of kernel-leaf ratio was 5.39 and 366.4 g61m-2 of maize with yield above 15 000 kg?hm-2.【Conclusion】At different yield levels, the proportion of dry material accumulation and the photosynthetic potential existed difference in pre-anthesis and post-anthesis, the higher yield needs higher dry matter accumulation and photosynthetic potential, and the higher dry matter accumulation at pre-anthesis, the higher the proportion of photosynthetic potential at post-anthesis, As Zhengdan-958 is a type of source deficiency, which is a main limiting factor of production in low-density, so increasing the density could improve yield. The primary mechanism of yield is increase of leaf source. The high-density conditions, the source and sink increased at the same time but the increased proportion of the relative lack of sink was the main limiting factor of production, the main mechanism of yield increase improved seed setting rate and increased grain weight by the sink expansion methods.

Li J, Xie R Z, Wang K R, Ming B, Guo Y Q, Zhang G Q, Li S K . Variations in maize dry matter, harvest index, and grain yield with plant density
Agron J, 2015,107:829.

DOI:10.2134/agronj14.0522URL [本文引用: 1]
Modern maize (Zea mays L.) hybrids are generally regarded as strongly population dependent because maximum grain yields (GYs) per area are achieved primarily in high-density populations. This study was conducted to analyze changes in density independence with plant density based on the response of GY, dry matter (DM) accumulation, and the harvest index (HI) to changes in plant density. Two modern cultivars, ZhengDan958 and ZhongDan909, were planted at 12 densities ranging from 1.5 to 18 plants m–2. The experiment was conducted for 3 yr, with drip irrigation and plastic mulching, at the 71 Group and Qitai Farms located in Xinjiang, China. With increased plant density, DM accumulation per area increased logarithmically, the HI decreased according to a cubic curve, and GY per area increased quadratically; the optimum density was 10.57 plants m–2. Further analysis showed that the response of GY per area, DM per area, and the HI to changes in plant density could be divided into four density ranges: Range I (054.7 plants m–2), in which DM per area, the HI, and GY per area were significantly affected by density; Range II (4.7–8.3 plants m–2), in which the HI was unaffected by density but DM per area and GY per area were significantly affected; Range III (8.3–10.75 plants m–2), in which GY per area was unaffected by density but DM per area and the HI were significantly affected; and Range IV (0610.7 plants m–2), in which DM per area was unaffected by density but the HI and GY per area were significantly affected. These results indicated that Range II is a density-independent range and Range III is a GY-stable range. 08 2015 by the American Society of Agronomy, 5585 Guilford Road, Madison, WI 53711. All rights reserved.

吴桂成, 张洪程, 戴其根, 霍中洋, 许柯, 高辉, 魏海燕, 沙安勤, 徐宗进, 钱宗华, 孙菊英 . 南方粳型超级稻物质生产积累及超高产特征的研究
作物学报, 2010,36:1921-1930.

DOI:10.3724/SP.J.1006.2010.01921URL [本文引用: 2]
以超级粳稻品种武粳15、淮稻9号、徐稻3号和常优1号为材料,对高产(8.25~9.75thm?2)、更高产(9.75~11.25thm?2)和超高产(〉11.25thm?2)3个产量等级群体的物质生产与产量的关系、干物质积累、输出与转运等方面进行了系统的比较研究。结果表明,4个超级稻品种成熟期、抽穗至成熟期的干物质重与产量呈极显著正相关,抽穗期干物质重均与产量呈抛物线关系,拔节至抽穗期的干物质重与产量呈极显著正相关(高产—更高产、更高产—超高产以及将3个产量等级综合起来);从高产到更高产再到超高产,4个超级稻品种的生物学产量不断提高(差异显著),而超高产群体的经济系数则与更高产水平相当(0.5000以上),显著高于高产水平;较之更高产、高产群体,超高产群体在生育中期(拔节至抽穗期)干物质积累量大,抽穗期叶面积指数高、株型挺拔、群体质量优[有效叶面积率、高效叶面积率、总颖花量与颖花/叶(cm2)、基部节间粗、单茎茎鞘重均高],在生育后期(抽穗至成熟期),光合能力强(叶面积衰减率小,光合势、群体生长率、净同化率均高)、干物质积累量高(占生物学产量的40.0%以上)、茎鞘物质的输出与转运协调[实粒/叶(cm2)、粒重(mg)/叶(cm2)均高]。
Wu G C, Zhang H C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Sha A Q, Xu Z J, Qian Z H, Sun J Y . Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in South China.
Acta Agron Sin, 2010,36:1921-1930 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2010.01921URL [本文引用: 2]
以超级粳稻品种武粳15、淮稻9号、徐稻3号和常优1号为材料,对高产(8.25~9.75thm?2)、更高产(9.75~11.25thm?2)和超高产(〉11.25thm?2)3个产量等级群体的物质生产与产量的关系、干物质积累、输出与转运等方面进行了系统的比较研究。结果表明,4个超级稻品种成熟期、抽穗至成熟期的干物质重与产量呈极显著正相关,抽穗期干物质重均与产量呈抛物线关系,拔节至抽穗期的干物质重与产量呈极显著正相关(高产—更高产、更高产—超高产以及将3个产量等级综合起来);从高产到更高产再到超高产,4个超级稻品种的生物学产量不断提高(差异显著),而超高产群体的经济系数则与更高产水平相当(0.5000以上),显著高于高产水平;较之更高产、高产群体,超高产群体在生育中期(拔节至抽穗期)干物质积累量大,抽穗期叶面积指数高、株型挺拔、群体质量优[有效叶面积率、高效叶面积率、总颖花量与颖花/叶(cm2)、基部节间粗、单茎茎鞘重均高],在生育后期(抽穗至成熟期),光合能力强(叶面积衰减率小,光合势、群体生长率、净同化率均高)、干物质积累量高(占生物学产量的40.0%以上)、茎鞘物质的输出与转运协调[实粒/叶(cm2)、粒重(mg)/叶(cm2)均高]。

Liu T, Wang Z, Cai T . Canopy apparent photosynthetic characteristics and yield of two spike-type wheat cultivars in response to row spacing under high plant density
PLoS One, 2016,11:e0148582.

DOI:10.1371/journal.pone.0148582URLPMID:4741391 [本文引用: 1]
In northern China, large-spike wheat (Triticum aestivum L) is considered to have significant potential for increasing yields due to its greater single-plant productivity despite its lower percentage of effective tillers, and increasing the plant density is an effective means of achieving a higher grain yield. However, with increases in plant density, the amount of solar radiation intercepted by lower strata leaves is decreased and the rate of leaf senescence is accelerated. Row spacing can be manipulated to optimize the plant spatial distribution under high plant density, therefore improving light conditions within the canopy. Consequently, field experiments were conducted from 2010 to 2012 to investigate whether changes in row spacing under high plant density led to differences in canopy apparent photosynthesis (CAP), individual leaf photosynthesis and grain yield. Two different spike-type winter wheat cultivars, Jimai22 (a small-spike cultivar as a control cultivar) and Wennong6 (a large-spike cultivar), were grown at a constant plant density of 3,600,000 plants ha 1 (a relatively higher plant density) over a wide range of row spacing as follows: 5-cm row spacing (R0), 15-cm row spacing (R1), 25-cm conventional row spacing (R2), and 35-cm row spacing (R3). The two-year investigations revealed that increased row spacing exhibited a significantly higher light transmission ratio (LT), which improved light conditions within the canopy; however, excessive light leakage losses in R2 and R3 treatments were not favorable to improved irradiation energy utilization efficiency. Aboveground biomass accumulation was influenced by row spacing. Two spike-type wheat accumulated greater biomass under 15-cm row spacing compared to other row spacing treatments, although a markedly improved photosynthetic rate (PN), effective quantum yield of photosystem II ( PSII) and maximal efficiency of photosystem II photochemistry (Fv/Fm) in the penultimate and third leaves were observed in R2 and R3 treatments. At the same time, a longer duration of CAP and green leaf area was maintained in R1 during grain filling. Compared with conventional row spacing, Wennong6 in R1 treatment obtained 21.0% and 19.1% higher grain yield in 2011 and 2012, respectively, while for Jimai22 it increased by 11.3% and 11.4%, respectively. A close association of yield with CAP and LAI at mid-grain filling was observed. In conclusion, for the tested growing conditions, decreasing the row spacing to an optimal distance (15 cm) maintained a longer duration of LAI and CAP during grain filling, made a better coordination of group and individual leaf photosynthesis, and accumulated higher aboveground biomass, leading to a greater grain yield. In addition, Wennong6 had a more rational canopy architecture than Jimai22 (improved LT and higher LAI) and CAP under 15-cm row spacing, leading to a higher grain yield, which indicated that the large-spike type cultivar has the potential to obtain higher yields by increasing plant density through optimum row spacing allocation (15 cm).

王才斌, 郑亚萍, 成波, 沙继锋, 姜振祥 . 花生超高产群体特征与光能利用研究
华北农学报, 2004,19(2):40-43.

DOI:10.3321/j.issn:1000-7091.2004.02.011URLMagsci [本文引用: 5]
大田条件下,通过比较花生超高产田(产量&ge;8.5 t/hm2)和一般高产田(产量&ge;6.0 t/hm2)群体特征和光能利用率得:叶面积系数峰值持续时间长是超高产花生的一个显著特点;超高产田全生育期光合势明显高于一般高产田;产量形成期光合势占全生育期的80%以上,对产量的形成至关重要;超高产田单位叶面积光截获效率低于一般高产田;超高产田的干物质生产速率全生育期始终高于一般高产田,干物质生产速率峰值高,后期下降速度慢,是超高产群体的显著特征;花生光能利用还有很大的潜力;研究适宜的栽培条件和措施是今后花生再高产主攻方向.
Wang C B, Zheng Y P, Cheng B, Sha J F, Jiang Z X . The canopy characters and efficiency for solar energy utilization of supper high-yielding peanut
Acta Agric Boreali-Sin, 2004,19(2):40-43 (in Chinese with English abstract).

DOI:10.3321/j.issn:1000-7091.2004.02.011URLMagsci [本文引用: 5]
大田条件下,通过比较花生超高产田(产量&ge;8.5 t/hm2)和一般高产田(产量&ge;6.0 t/hm2)群体特征和光能利用率得:叶面积系数峰值持续时间长是超高产花生的一个显著特点;超高产田全生育期光合势明显高于一般高产田;产量形成期光合势占全生育期的80%以上,对产量的形成至关重要;超高产田单位叶面积光截获效率低于一般高产田;超高产田的干物质生产速率全生育期始终高于一般高产田,干物质生产速率峰值高,后期下降速度慢,是超高产群体的显著特征;花生光能利用还有很大的潜力;研究适宜的栽培条件和措施是今后花生再高产主攻方向.

张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波 . 单粒精播对超高产花生群体结构和产量的影响
中国农业科学, 2015,48:3757-3766.

DOI:10.3864/j.issn.0578-1752.2015.18.019URL [本文引用: 3]
【目的】在超高产地力条件下,研究单粒精播对花生个体发育与群体结构的影响,探讨超高产花生理想株型和合理群体构建,进一步挖掘花生的高产潜力。【方法】以普通大花生品种花育22号(HY22)为试验材料,分别在平度古岘镇、莒南板泉镇、冠县梁堂乡和宁阳葛石镇设置4块春花生超高产试验点,每个试验点安排单粒精播(SS)和双粒穴播(DS)2种种植方式。分别于开花期、结荚期、饱果期和成熟期对各试验点不同播种方式的花生进行植株性状考察,于成熟期对单株结果数、幼果数、秕果数、饱果数、双仁果数和经济系数等进行考察,收获时组织专家进行实收测产。【结果】(1)各试验点单粒精播花生的荚果平均产量比双粒穴播高13.92%,单株结果数显著增加是增产的原因,其中单粒精播每公顷果数(幼果除外)最高达到592.5万个。(2)生育前期单粒精播花生的主茎高、侧枝长、主茎节数、主茎绿叶数、分枝数、根冠比和叶面积系数均显著高于双粒穴播,有利于提早封垄,能有效增加光合面积。(3)成熟期单粒精播花生主茎绿叶数显著高于双粒穴播,有效光合时间得到了延长。(4)单粒精播条件下各试验点花生饱果期的单株果重与主茎高和侧枝长成负相关,与分枝数和叶面积系数呈显著正相关。(5)单产水平最高的莒南试验点,其单粒精播花生成熟期的单株果重与叶面积系数和经济系数极显著正相关。【结论】超高产条件下花生存在地上部冗余现象,单粒精播方式对合理优化超高产花生群体结构效果显著,分枝数是影响单粒精播花生单株果重的重要因素,而增加结果数提高经济系数则是其进一步增产的关键。
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B . Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation
Sci Agric Sin, 2015,48:3757-3766 (in Chinese with English abstract).

DOI:10.3864/j.issn.0578-1752.2015.18.019URL [本文引用: 3]
【目的】在超高产地力条件下,研究单粒精播对花生个体发育与群体结构的影响,探讨超高产花生理想株型和合理群体构建,进一步挖掘花生的高产潜力。【方法】以普通大花生品种花育22号(HY22)为试验材料,分别在平度古岘镇、莒南板泉镇、冠县梁堂乡和宁阳葛石镇设置4块春花生超高产试验点,每个试验点安排单粒精播(SS)和双粒穴播(DS)2种种植方式。分别于开花期、结荚期、饱果期和成熟期对各试验点不同播种方式的花生进行植株性状考察,于成熟期对单株结果数、幼果数、秕果数、饱果数、双仁果数和经济系数等进行考察,收获时组织专家进行实收测产。【结果】(1)各试验点单粒精播花生的荚果平均产量比双粒穴播高13.92%,单株结果数显著增加是增产的原因,其中单粒精播每公顷果数(幼果除外)最高达到592.5万个。(2)生育前期单粒精播花生的主茎高、侧枝长、主茎节数、主茎绿叶数、分枝数、根冠比和叶面积系数均显著高于双粒穴播,有利于提早封垄,能有效增加光合面积。(3)成熟期单粒精播花生主茎绿叶数显著高于双粒穴播,有效光合时间得到了延长。(4)单粒精播条件下各试验点花生饱果期的单株果重与主茎高和侧枝长成负相关,与分枝数和叶面积系数呈显著正相关。(5)单产水平最高的莒南试验点,其单粒精播花生成熟期的单株果重与叶面积系数和经济系数极显著正相关。【结论】超高产条件下花生存在地上部冗余现象,单粒精播方式对合理优化超高产花生群体结构效果显著,分枝数是影响单粒精播花生单株果重的重要因素,而增加结果数提高经济系数则是其进一步增产的关键。

Marschner H. Mineral Nutrition of Higher Plants, 2nd edn. London: Academic Press, 1995. pp 131-183.
[本文引用: 1]

Li D Y, Zhang Z A, Zheng D J, Jiang L Y, Wang Y L . Comparison of net photosynthetic rate in leaves of soybean with different yield levels
J Northeast Agric Univ, 2012,19(3):14-19.

DOI:10.3969/j.issn.1006-8104.2012.03.002URL [本文引用: 1]
A total of nine soybean (Glycine max (L.) Merr.) cultivars were divided into three yield levels which were planted under the same environmental condition. The net photosynthetic rate was measured by LI-6400 portable photosynthesis system. The chlorophyll content and specific leaf weight were measured with regular methods. The results showed that the specific leaf weight, chlorophyll content and net photosynthetic rate of high yield varieties were higher than those of low yield varieties. The yield had a significantly positive correlation with the net photosynthetic rate. With the improvement of modem technology, the net photosynthetic rate could be measured quickly and exactly. Hence, net photosynthetic rate could be used as an effective index in the selection of high yield soybean.

Li Y, Hu T, Duan X, Zeng F . Effects of decomposing leaf litter of Eucalyptus grandis on the growth and photosynthetic characteristics of Lolium perenne.
J Agric Sci, 2013,5:123-131.

[本文引用: 1]

Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J . A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate.
Sci Rep, 2013,3:2149.

DOI:10.1038/srep02149PMID:23985993 [本文引用: 3]
Abstract Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.

Thomasl S, Davidm B . Current perspectives on the regulation of whole-plant carbohydrate partitioning
Plant Sci, 2010,178:341-349.

DOI:10.1016/j.plantsci.2010.01.010URL [本文引用: 1]
Whole-plant carbohydrate partitioning is the process whereby carbon assimilated through photosynthesis is distributed from the leaves to the rest of the plant by transport through the phloem. Allocation of carbohydrates underlies all aspects of plant growth and crop yield. Yet, in spite of the extremely critical role this process has on plant function and development, very little is known about the genetic and molecular mechanisms that control carbohydrate partitioning. Plants employ different strategies for importing photoassimilates into the phloem. Recent findings have uncovered plasticity both in the modes of phloem loading and carbohydrates translocated. Sugar transporters play essential roles in phloem loading in many plant species, but it is not known how they are regulated. Studies into the transcriptional and post-translational regulation of sugar transporters provide insights into the cellular mechanisms governing their expression and functions. Recent exciting potential breakthroughs include the observations that sucrose transporter multimerization, subcellular localization and activity are regulated by reduction/oxidation (redox) potentials, and the identification of a protein that physically interacts with multiple sugar transporters, modulating their activities. In addition, redox-regulation influences starch synthesis in both source and sink tissues. Tantalizing clues are emerging relating to redox-regulation of phloem function and of long-distance carbohydrate partitioning.

Lobo A K, De O M M, Lima Neto M C, Machado E C, Ribeiro R V, Silveira J A . Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity
J Plant Physiol, 2015,179:113-121.

DOI:10.1016/j.jplph.2015.03.007URLPMID:25863283 [本文引用: 1]
Photosynthetic modulation by sugars has been known for many years, but the biochemical and molecular comprehension of this process is lacking. We studied how the exogenous sucrose supplied to leaves could affect sugar metabolism in leaf, sheath and stalk and inhibit photosynthesis in four-month old sugarcane plants. Exogenous sucrose 50mM sprayed on attached leaves strongly impaired the net CO2 assimilation (PN) and decreased the instantaneous carboxylation efficiency (PN/Ci), suggesting that the impairment in photosynthesis was caused by biochemical restrictions. The photosystem II activity was also affected by excess sucrose as indicated by the reduction in the apparent electron transport rate, effective quantum yield and increase in non-photochemical quenching. In leaf segments, sucrose accumulation was related to increases in the activities of soluble acid and neutral invertases, sucrose synthase and sucrose phosphate synthase, whereas the contents of fructose increased and glucose slightly decreased. Changes in the activities of sucrose hydrolyzing and synthesizing enzymes in leaf, sheath and stalk and sugar profile in intact plants were not enough to identify which sugar(s) or enzyme(s) were directly involved in photosynthesis modulation. However, exogenous sucrose was able to trigger down-regulation in the Rubisco abundance, activation state and enzymatic activity. Despite the fact that PN/Ci had been notably decreased by sucrose, in vitro activity and abundance of PEPCase did not change, suggesting an in vivo modulation of this enzyme. The data reveal that sucrose and/or other derivative sugars in leaves inhibited sugarcane photosynthesis by down-regulation of Rubisco synthesis and activity. Our data also suggest that sugar modulation was not exerted by a feedback mechanism induced by the accumulation of sugars in immature sugarcane stalk.

Shiratake K . Genetics of sucrose transporter in plants
G3 (Bethesda), 2007,1:73-80.

[本文引用: 1]

Zhang Y, Mulpuri S, Liu A . High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop.
Photosynth Res, 2016,128:125-140.

DOI:10.1007/s11120-015-0206-xURLPMID:26589321 [本文引用: 1]
Abstract Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment.

张洋, 刘爱忠 . 蓖麻种子油脂累积与可溶性糖变化的关系
生物技术通报, 2016,32(6):120-129.

DOI:10.13560/j.cnki.biotech.bull.1985.2016.06.017URLMagsci [本文引用: 1]
通过高效液相色谱、RNA-seq测序和放射性碳同位素示踪等技术研究了蓖麻种子发育过程中可溶性糖代谢与油脂累积过程的关系。结果表明,蓖麻种子可溶性糖主要由葡萄糖、果糖和蔗糖构成。随着种子发育和油脂累积,可溶性糖含量呈现明显的下降趋势。其中蔗糖含量变化与油脂累积存在极显著的负相关性(<em>r</em>=0.980)。在种子发育早期,己糖/蔗糖比值较高,糖代谢相关基因大量表达,其中蔗糖合成酶在蔗糖代谢过程中起关键性作用;而在发育中后期,随着种子油脂快速累积,己糖/蔗糖比值和糖代谢水平下降,参与糖代谢的相关基因表达量下调,而脂肪酸合成与油脂累积相关基因表达量明显升高。通过<sup>14</sup>C蔗糖同位素示踪实验证实:降低种子蔗糖摄入量可以显著抑制糖类向油脂转化,限制蓖麻种子油脂累积。因此,可溶性糖代谢(主要是蔗糖)在蓖麻种子油脂累积过程中具有重要作用。
Zhang Y, Liu A Z . The correlation between soluble carbohydrate metabolism and lipid accumulation in castor seeds
Biotech Bull, 2016,32(6):120-129 (in Chinese with English abstract).

DOI:10.13560/j.cnki.biotech.bull.1985.2016.06.017URLMagsci [本文引用: 1]
通过高效液相色谱、RNA-seq测序和放射性碳同位素示踪等技术研究了蓖麻种子发育过程中可溶性糖代谢与油脂累积过程的关系。结果表明,蓖麻种子可溶性糖主要由葡萄糖、果糖和蔗糖构成。随着种子发育和油脂累积,可溶性糖含量呈现明显的下降趋势。其中蔗糖含量变化与油脂累积存在极显著的负相关性(<em>r</em>=0.980)。在种子发育早期,己糖/蔗糖比值较高,糖代谢相关基因大量表达,其中蔗糖合成酶在蔗糖代谢过程中起关键性作用;而在发育中后期,随着种子油脂快速累积,己糖/蔗糖比值和糖代谢水平下降,参与糖代谢的相关基因表达量下调,而脂肪酸合成与油脂累积相关基因表达量明显升高。通过<sup>14</sup>C蔗糖同位素示踪实验证实:降低种子蔗糖摄入量可以显著抑制糖类向油脂转化,限制蓖麻种子油脂累积。因此,可溶性糖代谢(主要是蔗糖)在蓖麻种子油脂累积过程中具有重要作用。

张凌云, 王小艺, 曹一博 . 油茶果实糖含量及代谢相关酶活性与油脂积累关系分析
北京林业大学学报, 2013,35(4):55-60.

URL [本文引用: 1]
为了探讨油茶果实发育过程中糖分积累、关键酶活性变化及其与油脂积累之间存在的关系,对油茶‘湘林11’果实发育过程中糖含量、蔗糖代谢相关酶活性进行了测定,并对上述指标与油脂积累进行了相关性分析。结果表明:果实发育初期可溶性糖含量较低,随果实发育升高,于6月中旬达到峰值,之后开始下降,8月中旬又略有回升;葡萄糖、果糖和蔗糖含量在7月中旬到9月中旬呈现较高水平;酸性转化酶(AI)活性在果实发育早期一直维持在较高水平,同细胞壁酸性转化酶(CAI)变化趋势相反,液泡酸性转化酶(SAI)活性在果实发育后期明显高于前期,显示此时蔗糖在液泡中贮藏转化功能的活跃;蔗糖合成酶(SS)和蔗糖磷酸合酶(SPS)变化趋势一致。相关性分析显示:油茶果实中可溶性总糖含量及葡萄糖含量与油茶籽含油率均呈显著负相关,蔗糖含量与油茶籽含油率呈极显著负相关;SAI和CAI活性与油脂积累呈极显著正相关。油脂转化期伴随着活跃的糖代谢过程,应加强7月中旬以后田间管理,以提高种子含油率。
Zhang L Y, Wang X Y, Cao Y B . Soluble sugar content and key enzyme activity and the relationship between sugar metabolism and lipid accumulation in developing fruit ofCamellia oleifera.
J Beijing For Univ, 2013,35(4):55-60 (in Chinese with English abstract).

URL [本文引用: 1]
为了探讨油茶果实发育过程中糖分积累、关键酶活性变化及其与油脂积累之间存在的关系,对油茶‘湘林11’果实发育过程中糖含量、蔗糖代谢相关酶活性进行了测定,并对上述指标与油脂积累进行了相关性分析。结果表明:果实发育初期可溶性糖含量较低,随果实发育升高,于6月中旬达到峰值,之后开始下降,8月中旬又略有回升;葡萄糖、果糖和蔗糖含量在7月中旬到9月中旬呈现较高水平;酸性转化酶(AI)活性在果实发育早期一直维持在较高水平,同细胞壁酸性转化酶(CAI)变化趋势相反,液泡酸性转化酶(SAI)活性在果实发育后期明显高于前期,显示此时蔗糖在液泡中贮藏转化功能的活跃;蔗糖合成酶(SS)和蔗糖磷酸合酶(SPS)变化趋势一致。相关性分析显示:油茶果实中可溶性总糖含量及葡萄糖含量与油茶籽含油率均呈显著负相关,蔗糖含量与油茶籽含油率呈极显著负相关;SAI和CAI活性与油脂积累呈极显著正相关。油脂转化期伴随着活跃的糖代谢过程,应加强7月中旬以后田间管理,以提高种子含油率。

姜慧芳, 任小平, 王圣玉, 黄家权, 雷永, 廖伯寿 . 野生花生高油基因资源的发掘与鉴定
中国油料作物学报, 2010,32:30-34.

[本文引用: 1]
以花生属22个近缘野生物种87份种质为材料,系统鉴定和分析野生花生种子含油量。结果表明,野生花生中存在丰富的高油资源,其含油量最低值、最高值和平均值均高于栽培种花生资源的对应值。发掘出高油种质(含油量≥58%)12份,其中Arachis appressipila是目前所发现的花生资源中含量最高的种质,含油量达62.90%。不同物种以及同一物种不同资源的含油量差异很大,如A.appressipila的10-2含油量62.90%,11-7的含油量为55.92%。A.appressipila、A.macedoi和Arachissp的平均含油量较高,分别为57.54%,57.64%和57.68%。通过SSR分析表明,在所获得的高油野生花生材料中,四倍体野生种A.monticola与栽培种花生的亲缘关系最近,其次为花生区组的二倍体野生种A.villosa。根据SSR扩增结果,绘制了高油野生花生材料的指纹图谱。
Jiang H F, Ren X P, Wang S Y, Huang J Q, Lei Y, Liao B S . Identification and evaluation of high oil content in wild Arachis species.
Chin J Oil Crop Sci, 2010,32:30-34 (in Chinese with English abstract).

[本文引用: 1]
以花生属22个近缘野生物种87份种质为材料,系统鉴定和分析野生花生种子含油量。结果表明,野生花生中存在丰富的高油资源,其含油量最低值、最高值和平均值均高于栽培种花生资源的对应值。发掘出高油种质(含油量≥58%)12份,其中Arachis appressipila是目前所发现的花生资源中含量最高的种质,含油量达62.90%。不同物种以及同一物种不同资源的含油量差异很大,如A.appressipila的10-2含油量62.90%,11-7的含油量为55.92%。A.appressipila、A.macedoi和Arachissp的平均含油量较高,分别为57.54%,57.64%和57.68%。通过SSR分析表明,在所获得的高油野生花生材料中,四倍体野生种A.monticola与栽培种花生的亲缘关系最近,其次为花生区组的二倍体野生种A.villosa。根据SSR扩增结果,绘制了高油野生花生材料的指纹图谱。

姜慧芳, 任小平 . 我国栽培种花生资源农艺和品质性状的遗传多样性
中国油料作物学报, 2006,28:421-426.

DOI:10.3321/j.issn:1007-9084.2006.04.009URL [本文引用: 1]
通过对国家"七五"-"十五"科技攻关项目和农业部种质资源保护项目执行过程中收集的6 390份栽培种花生品种资源的农艺性状和种子品质性状的鉴定,分析我国保存的花生资源的遗传多样性.结果表明,我国保存的花生资源中,龙生型花生的单株生产力高、油酸含量高,普通型花生的油酸含量也很高.珍珠豆型花生的蛋白质含量和含油量高,普通型和龙生型花生资源的遗传多样性程度高于珍珠豆型和多粒型资源.安徽花生资源的单株生产力高,福建和江西花生资源的蛋白质含量高,河南和浙江花生的含油量高,四川和广西花生的油酸含量高,湖北、河南、广西花生资源的遗传多样性程度高于其它地区的花生资源.
Jiang H F, Ren X P . Genetic diversity of peanut resource on morphological characters and seed chemical components in China
Chin J Oil Crop Sci, 2006,28:421-426 (in Chinese with English abstract).

DOI:10.3321/j.issn:1007-9084.2006.04.009URL [本文引用: 1]
通过对国家"七五"-"十五"科技攻关项目和农业部种质资源保护项目执行过程中收集的6 390份栽培种花生品种资源的农艺性状和种子品质性状的鉴定,分析我国保存的花生资源的遗传多样性.结果表明,我国保存的花生资源中,龙生型花生的单株生产力高、油酸含量高,普通型花生的油酸含量也很高.珍珠豆型花生的蛋白质含量和含油量高,普通型和龙生型花生资源的遗传多样性程度高于珍珠豆型和多粒型资源.安徽花生资源的单株生产力高,福建和江西花生资源的蛋白质含量高,河南和浙江花生的含油量高,四川和广西花生的油酸含量高,湖北、河南、广西花生资源的遗传多样性程度高于其它地区的花生资源.

Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote K J, Hoogenboom G, Patanothai A . Classification of root distribution patterns and their contributions to yield in peanut genotypes under mid-season drought stress
Field Crops Res, 2012,127:181-190.

DOI:10.1016/j.fcr.2011.11.023URL [本文引用: 1]
Peanut root distribution patterns are not well understood and have not been studied extensively. There is a lack of information on the classification of root distribution patterns for many peanut genotypes and the relationship between rooting traits and yield under mid-season drought, which could be useful for breeding for drought tolerance. In this study the root distribution of 40 peanut genotypes with different drought tolerance levels and different sources of origin was evaluated during the dry seasons of 2007 and 2008 at Khon Kaen University, Thailand. A randomized complete block design with four replications was used in both years. All plots were well-irrigated except when water was withheld from 50 to 83 days after planting (DAP) during the first season and from 50 to 87 DAP during the second season to emulate a mid-season drought. Top dry weight was observed at the most water-stressed date and at harvest, while root data were measured at the most water-stressed date using the auger method. The soil was sampled to a depth of 90cm and was separated into the upper (0 30cm), middle (30 60cm) and deeper (60 90cm) soil layers. For each peanut genotype, the relative contribution to each layer was calculated and defined as root length density percentage (%RLD). Pod yield was observed at final harvest date and pod harvest index (PHI) was calculated as pod dry weight per unit of total biomass. The forty peanut genotypes were categorized as either high or low %RLD depending on the mean of %RLD in each layer for the three soil layers. These peanut genotypes were then categorized into six combinative groups, based on the high vs. low %RLD for each of the three layers. The relationship between %RLD in the lower soil layer and yield was significant and positive for both seasons, indicating that %RLD in the lower layer is an important trait that affects pod yield under mid-season drought conditions. There was a negative relationship to %RLD in the upper layer in one season and no relationship to %RLD in the middle soil layer for both seasons. The results from this study also indicated that PHI was an important trait that is associated with maintaining pod yield under mid-season drought.

Boote K J . Growth stages of peanut (Arachis hypogaea L.).
Peanut Sci, 1982,9:35-40.

[本文引用: 1]

Mason T G, Maskell E J . Studies on the transport of carbohydrates in the cotton plant. I. A study of diurnal variation in the carbohydrates of leaf, bark, and wood, and of the effects of ringing
Ann Bot-London, 1928,42:189-253.

[本文引用: 1]

Ottaviano E, Camussi A . Phenotypic and genetic relationships between yield components in maize
Euphytica, 1981,30:601-609.

DOI:10.1007/BF00038787URL [本文引用: 2]
Physiological components of kernel development — LAG period, effective filling period duration (EFPD) and grain filling rate (GFR) — ear moisture release (ΔU), ear size (row number and kernels per row), days from emergence to silking and number of leaves, were examinated on 45 F 1 hybrids (10×10 diallel cross) in order to study their genetic relationships with yield. Combining ability analysis revealed that all trait variability derived mainly from g.c.a. effects. LAG period and EFPD were the traits most affected by genotype-environment interaction.Covariation analysis (path method) based on mean phenotypic values and on g.c.a. effects yielded similar information. It is shown that GFR and EFPD are both related to plant yield, but GFR made the most important contribution. On the contrary, a significant relationship between yield and LAG was not detected. Ear size components were also positively related to yield and had negative effects on GFR. These results indicate that, for our material, the dry matter accumulation rate is the main limiting factor of yield.Considering s.c.a. effects, kernel number per row made the most important contribution.

吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒 . 粳型超级稻产量构成因素协同规律及超高产特征的研究
中国农业科学, 2010,43:266-276.

DOI:10.3864/j.issn.0578-1752.2010.02.006URL [本文引用: 1]
【目的】水稻是中国重要的粮食作物,实现水稻的超高产生产对保证中国粮食安全有重要作用。本研究旨在探讨粳型超级稻产量构成因素协同演进规律及超高产特征。【方法】以具有代表性的4个超级粳稻品种(武粳15、淮稻9号、徐稻3号和常优1号)为材料,对高产(8250--9750kg.hm^-2)、更高产(975O--11250kg.hm-2)和超高产(〉11250kg.hm^-2)3个产量等级群体的产量及其结构、群体库容量和群体库容的充实进行了系统的比较研究。【结果】由高产到更高产再到超高产,4个超级稻品种的群体颖花量不断提高(差异显著),而结实率、千粒重在3个产量等级问略有增减(差异不显著)。在安全成熟的情况下,群体颖花量与产量呈极显著正相关;群体颖花量的提高在由高产提高到更高产的水平上,主要依靠单位面积穗数的增加,而由更高产提高到超高产水平,则主要依靠足穗基础上增加每穗粒数。在安全成熟条件下,群体库容充实度在3个产量等级间因种略有增减,差异不显著,而群体库容实际充实量则随产量的增加而增加。【结论】以足量大穗构成群体安全大库容(安全成熟的群体高颖花量),通过保持正常的充实度(即保证常年的结实率与千粒重),从而提高群体库容总充实量,是粳型超级稻的超高产特征。
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H . Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice.
Sci Agric Sin, 2010,43:266-276 (in Chinese with English abstract).

DOI:10.3864/j.issn.0578-1752.2010.02.006URL [本文引用: 1]
【目的】水稻是中国重要的粮食作物,实现水稻的超高产生产对保证中国粮食安全有重要作用。本研究旨在探讨粳型超级稻产量构成因素协同演进规律及超高产特征。【方法】以具有代表性的4个超级粳稻品种(武粳15、淮稻9号、徐稻3号和常优1号)为材料,对高产(8250--9750kg.hm^-2)、更高产(975O--11250kg.hm-2)和超高产(〉11250kg.hm^-2)3个产量等级群体的产量及其结构、群体库容量和群体库容的充实进行了系统的比较研究。【结果】由高产到更高产再到超高产,4个超级稻品种的群体颖花量不断提高(差异显著),而结实率、千粒重在3个产量等级问略有增减(差异不显著)。在安全成熟的情况下,群体颖花量与产量呈极显著正相关;群体颖花量的提高在由高产提高到更高产的水平上,主要依靠单位面积穗数的增加,而由更高产提高到超高产水平,则主要依靠足穗基础上增加每穗粒数。在安全成熟条件下,群体库容充实度在3个产量等级间因种略有增减,差异不显著,而群体库容实际充实量则随产量的增加而增加。【结论】以足量大穗构成群体安全大库容(安全成熟的群体高颖花量),通过保持正常的充实度(即保证常年的结实率与千粒重),从而提高群体库容总充实量,是粳型超级稻的超高产特征。

Yan D, Zhu Y, Wang S, Cao W . A quantitative knowledge-based model for designing suitable growth dynamics in rice
Plant Prod Sci, 2006,9:93-105.

DOI:10.1626/pps.9.93URL [本文引用: 1]
Quantifying growth dynamics in rice (Oryza saliva L.) is important for precision design and diagnosis in Cultural management. The primary Objective Of this Study was to develop a general knowledge-based model to design the time-course growth dynamics including stem number, leaf area index (LAI) and aboveground dry, matter accumulation with desired tat-get yield tinder different conditions in rice. Driven by physiological development time (PDT)-based growing degree-days (GDD), the fundamental algorithms Of rice growth indices, which vary with the variety, environmental factors and production levels, were formulated from the existing literature and research data. The stem number curve was established according to the dynamic pattern Of the stem development and the principle of determining stein number from final particle number. Under the principle of realizing the maximal photosynthetic production during forty days before and after heading, we obtained the Optimum LAI at heading was calculated, and the LAI dynamic from the ratios of LAIs at different growth stages to optimum LAI at heading with linear interpolation method. The aboveground dry matter accumulation curve was described by a logistic curve. Case Studies with the typical data sets and variety types at different eco-sites indicated a good performance of the model system, with the root mean square error (RMSE) of 2.5 x 10(4) ha(-1), 0.37 and 700 kg ha(-1), for the stein number, LAI and aboveground dry matter accumulation, respectively. This model overcomes the weakness of poor spatial and temporal adaptation of traditional rice management patterns and expert systems.

Severini A D, Borrás L, Westgate M E, Cirilo A G . Kernel number and kernel weight determination in dent and popcorn maize
Field Crops Res, 2011,120:360-369.

DOI:10.1016/j.fcr.2010.11.013URL [本文引用: 1]
Yield formation in maize ( Zea mays L.) dent hybrids has been directly linked to the rate of plant biomass accumulation and partitioning of assimilates to the developing grain. Maize popcorn genotypes have been studied less extensively, but their kernels are known to differ in terms of endosperm structure and typical growth patterns. Our objective was to evaluate how variation in plant growth rate (PGR) at different stages of kernel formation and development affected kernel number per plant (KNP), individual kernel weight (KW) and rate and duration of kernel growth in popcorn genotypes, relative to dent ones. We conducted three experiments (two in Ames, Iowa, and one in Pergamino, Argentina) in which PGRs around flowering and during the linear phase of the grain-filling period of four dent and eight popcorn genotypes were altered by plant density, defoliations and thinning treatments. Yield per plant, KNP, KW, rate and duration of kernel growth all showed significant kernel type (popcorns vs. dents) effects ( p < 0.01). KNP was highly correlated with ear biomass accumulated around flowering in dents and popcorns, and popcorns showed a higher efficiency for setting kernels per unit of ear biomass accumulated around flowering ( p < 0.01). Popcorn inbred R18 in particular showed a significantly higher efficiency, consistent across experiments. Relationships between potential KW at early grain filling or kernel growth rate and the PGR per kernel around flowering were different for dent and popcorn genotypes. Most popcorns established a lower potential KW compared to dent genotypes at similar PGRs per kernel around flowering. Also, popcorn kernels were less prone to decrease KW in response to severe reductions in plant growth during the linear phase of the grain-filling period as promoted by defoliation treatments (significant kernel type source manipulation treatment interaction, p < 0.001). Despite different patterns of KNP and KW determination, yield variation across dent and popcorn genotypes and environments corresponded closely to the potential sink capacity established by the end of the lag phase 14 days after anthesis. This result emphasizes the importance of the flowering period to establish KN and KW across different maize germplasm.

纪洪亭, 冯跃华, 何腾兵, 李云, 武彪, 王小艳 . 两个超级杂交水稻品种物质生产的特性
作物学报, 2013,29:2238-2246.

DOI:10.3724/SP.J.1006.2013.02238URL [本文引用: 1]
In order to find foundations of high-yield cultivation in super hybrid rice (SHR), we modeled on dynamics of population indexes. A field experiment with two super hybrid cultivars (Zhunliangyou 527, Q you 6) and Control (II you 838) was conducted in 2011 and 2012, and dry matter accumulation (DMA) and leaf area index (LAI) were measured. The dynamic equations of DMA and relative leaf area index (RLAI) were established and the dynamic characteristics of crop growth rate (CGR), relative growth rate (RGR), leaf area duration (LAD), net assimilation rate (NAR), and Specific leaf area (LAR) were analyzed based on the equations. The DMA and its proportion to the total biomass at rapid growth stage were significantly higher than those of Control. In the process of time after transplanting, the tendency of CGR was expressed in a single peak curve, and CGR of two SHR was higher than that of Control in rapid growth stage. The RGR of Zhunliangyou 527 was higher than that of control from 23 d after transplanting to mature period. As compared with the RGR of Control, the RGR of Q you 6 was lower before 43 d after transplanting, higher from 43 d to 113 d after transplanting , and not much difference from 113 d after transplanting to maturity . A significant correlation was observed between gross LAD and LAD at rapid growth stage, and also between gross LAD and duration of LAI at rapid growth stage. Compared with Control, the RGR of SHR showed faster increasing and decreasing, and its peak value was higher. A single peak curve was available for the dynamic changes of NAR with its most high value from 43 d to 53 d after transplanting. The LAR of two SHR decreased fast from 23 d to 43 d after transplanting, moderately from 73 d to mature stage, and slowly from 43 d to 73 d after transplanting stage. The LAR of two SHR was higher in rapid growth stage than that of Control.
Ji H T, Feng Y H, He T B, Li Y, Wu B, Wang X Y . Dynamic characteristics of matter population in two super hybrid rice cultivars
Acta Agron Sin, 2013,39:2238-2246 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2013.02238URL [本文引用: 1]
In order to find foundations of high-yield cultivation in super hybrid rice (SHR), we modeled on dynamics of population indexes. A field experiment with two super hybrid cultivars (Zhunliangyou 527, Q you 6) and Control (II you 838) was conducted in 2011 and 2012, and dry matter accumulation (DMA) and leaf area index (LAI) were measured. The dynamic equations of DMA and relative leaf area index (RLAI) were established and the dynamic characteristics of crop growth rate (CGR), relative growth rate (RGR), leaf area duration (LAD), net assimilation rate (NAR), and Specific leaf area (LAR) were analyzed based on the equations. The DMA and its proportion to the total biomass at rapid growth stage were significantly higher than those of Control. In the process of time after transplanting, the tendency of CGR was expressed in a single peak curve, and CGR of two SHR was higher than that of Control in rapid growth stage. The RGR of Zhunliangyou 527 was higher than that of control from 23 d after transplanting to mature period. As compared with the RGR of Control, the RGR of Q you 6 was lower before 43 d after transplanting, higher from 43 d to 113 d after transplanting , and not much difference from 113 d after transplanting to maturity . A significant correlation was observed between gross LAD and LAD at rapid growth stage, and also between gross LAD and duration of LAI at rapid growth stage. Compared with Control, the RGR of SHR showed faster increasing and decreasing, and its peak value was higher. A single peak curve was available for the dynamic changes of NAR with its most high value from 43 d to 53 d after transplanting. The LAR of two SHR decreased fast from 23 d to 43 d after transplanting, moderately from 73 d to mature stage, and slowly from 43 d to 73 d after transplanting stage. The LAR of two SHR was higher in rapid growth stage than that of Control.

赵姣, 郑志芳, 方艳茹, 周顺利, 廖树华, 王璞 . 基于动态模拟模型分析冬小麦干物质积累特征对产量的影响
作物学报, 2013,39:300-308.

DOI:10.3724/SP.J.1006.2013.00300URL [本文引用: 1]
为揭示冬小麦产量形成与干物质积累的定量关系,2009—2011年利用3个田间试验建立了不同播种期、基本苗、底肥用量、追氮时期和用量、冬前灌水量、返青后灌水量和灌水时期等的冬小麦群体,分析了冬小麦干物质积累过程特征对产量及其构成因素的影响机制和定量关系。冬前干物质积累特征用单株干物重和冬前茎蘖数来表示,越冬后特征由基于相对积温(RGDDi)的Logistic曲线特征来描述。结果表明,群体干物质积累最大速率、干物质积累速率的2个拐点等特征量与产量及其构成因子有紧密的联系,所建立的关系模型均达到极显著水平(P〈0.01)。对有关模型进一步用独立样本进行配对t-检验,结果模拟值与实际值差异不显著(P〉0.05)。基于相对积温(RGDDi)的Logistic模型不仅能较好地描述小麦冬后干物质积累过程,而且其曲线特征也能用于分析冬小麦产量及其构成因素的形成规律,以此为基础的产量关系方程可用于冬小麦生产群体调控的理论分析。
Zhao J, Zheng Z F, Fang Y R, Zhou S L, Liao S H, Wang P . Effect of dry matter accumulation characteristics on yield of winter wheat analyzed by dynamic simulation model
Acta Agron Sin, 2013,39:300-308 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2013.00300URL [本文引用: 1]
为揭示冬小麦产量形成与干物质积累的定量关系,2009—2011年利用3个田间试验建立了不同播种期、基本苗、底肥用量、追氮时期和用量、冬前灌水量、返青后灌水量和灌水时期等的冬小麦群体,分析了冬小麦干物质积累过程特征对产量及其构成因素的影响机制和定量关系。冬前干物质积累特征用单株干物重和冬前茎蘖数来表示,越冬后特征由基于相对积温(RGDDi)的Logistic曲线特征来描述。结果表明,群体干物质积累最大速率、干物质积累速率的2个拐点等特征量与产量及其构成因子有紧密的联系,所建立的关系模型均达到极显著水平(P〈0.01)。对有关模型进一步用独立样本进行配对t-检验,结果模拟值与实际值差异不显著(P〉0.05)。基于相对积温(RGDDi)的Logistic模型不仅能较好地描述小麦冬后干物质积累过程,而且其曲线特征也能用于分析冬小麦产量及其构成因素的形成规律,以此为基础的产量关系方程可用于冬小麦生产群体调控的理论分析。

杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生 . 超高产水稻的干物质生产特性研究
中国水稻科学, 2001,15:265-270.

DOI:10.3321/j.issn:1001-7216.2001.04.006URL [本文引用: 1]
Physiological characteristics of super high yielding rice cultivars, which were bred recently, were studied in Longhai, Fujian and Taoyuan, Yunnan. The results showed that super high yielding rice cultivars accumulated high biomass production. The grain yield were raised with the increase of total dry matter accumulation. The grain yield resulted primarily from biomass production and harvest index contributed little to the grain yield. The production superiority of super high yielding rice was exhibited during the middle and late growth stages and the yield was increased with the increase of net dry matter accumulation during the two stages. The crop growth rate(CGR) of the cultivar during the middle and late growth stages had high positive correlation with the yield. However there was no close correlation between the CGR and the yield during the early stage. The average exportation amount of stem and leaf dry matter contributed 24%(Fujian) or 33%(Yunnan) to grain production. Both stem and leaf dry matter exportation amount and dry matter accumulation after heading had a very significant positive correlation with the grain yield. The contribution of CGR to dry matter accumulation was significantly larger than that of growth duration.
Yang H J, Li Y Z, Yang R C, Jiang Z W, Zheng J S . Dry matter production characteristics of super high yielding rice
Chin J Rice Sci, 2001,15:265-270 (in Chinese with English abstract).

DOI:10.3321/j.issn:1001-7216.2001.04.006URL [本文引用: 1]
Physiological characteristics of super high yielding rice cultivars, which were bred recently, were studied in Longhai, Fujian and Taoyuan, Yunnan. The results showed that super high yielding rice cultivars accumulated high biomass production. The grain yield were raised with the increase of total dry matter accumulation. The grain yield resulted primarily from biomass production and harvest index contributed little to the grain yield. The production superiority of super high yielding rice was exhibited during the middle and late growth stages and the yield was increased with the increase of net dry matter accumulation during the two stages. The crop growth rate(CGR) of the cultivar during the middle and late growth stages had high positive correlation with the yield. However there was no close correlation between the CGR and the yield during the early stage. The average exportation amount of stem and leaf dry matter contributed 24%(Fujian) or 33%(Yunnan) to grain production. Both stem and leaf dry matter exportation amount and dry matter accumulation after heading had a very significant positive correlation with the grain yield. The contribution of CGR to dry matter accumulation was significantly larger than that of growth duration.

梁晓艳, 李安东, 万书波, 王才斌, 孙奎香, 陈效东, 吴正锋 . 超高产夏直播花生生育动态及生理特性研究
作物杂志, 2011, ( 3):46-50.

DOI:10.3969/j.issn.1001-7283.2011.03.011URL [本文引用: 1]
在大田条件下,研究麦田夏直播地膜覆盖花生7 500kg/hm2产量水平下植株的生育动态及生理特性。结果表明,夏直播花生营养生长出现在结荚期之前,植株的主茎、侧枝、叶龄和分枝数的净增长速率均在出苗后30~40d达到高峰,出苗后70~80d基本不再增加。叶面积指数、光合势、叶绿素含量及干物质积累量均在结荚中期(出苗后60~70d)达到高峰;叶片SOD、POD和CAT 3种抗衰老酶活性及可溶性蛋白含量的变化基本一致,均呈现先升高后降低的单峰变化趋势,高峰期出现在结荚中期。MDA含量在整个生育期呈逐渐上升的趋势,从结荚中期开始上升速度明显加快。根据试验结果,提出了夏直播花生7 500kg/hm2的生育指标。
Liang X Y, Li A D, Wan S B, Wang C B, Sun K X, Chen X D, Wu Z F . Developmental dynamics and physiological characteristics of super high-yielding summer-planting peanut
Crops, 2011, ( 3):46-50 (in Chinese with English abstract).

DOI:10.3969/j.issn.1001-7283.2011.03.011URL [本文引用: 1]
在大田条件下,研究麦田夏直播地膜覆盖花生7 500kg/hm2产量水平下植株的生育动态及生理特性。结果表明,夏直播花生营养生长出现在结荚期之前,植株的主茎、侧枝、叶龄和分枝数的净增长速率均在出苗后30~40d达到高峰,出苗后70~80d基本不再增加。叶面积指数、光合势、叶绿素含量及干物质积累量均在结荚中期(出苗后60~70d)达到高峰;叶片SOD、POD和CAT 3种抗衰老酶活性及可溶性蛋白含量的变化基本一致,均呈现先升高后降低的单峰变化趋势,高峰期出现在结荚中期。MDA含量在整个生育期呈逐渐上升的趋势,从结荚中期开始上升速度明显加快。根据试验结果,提出了夏直播花生7 500kg/hm2的生育指标。

李晓丹, 曹应龙, 胡亚平, 肖玲, 武玉花, 吴刚, 卢长明 . 花生种子发育过程中脂肪酸累积模式研究
中国油料作物学报, 2009,31:157-162.

DOI:10.3321/j.issn:1007-9084.2009.02.009URL [本文引用: 1]
通过对花生种子脂肪酸累积模式的研究,揭示花生脂肪酸组成的形成规律。研究结果显示,下针后10d内的花生种子可检测到9种脂肪酸,C16∶1和C18∶3在发育过程中由高到低,逐渐消失,其他7种脂肪酸含量则随着花生种子的发育逐渐积累增高。成熟的花生种子中油酸和亚油酸含量占脂肪酸总含量的81%左右。脂肪酸总量在接近成熟时有所下降。不同脂肪酸在累积过程中显示了高度相关性,C16∶1和C18∶3之间呈正相关,属于第一类;其余7种脂肪酸之间也均呈正相关,属于第二类。第一和第二类脂肪酸之间呈负相关。主成份分析表明,9种脂肪酸可以分成三类:C18∶1与C18∶2各为一类,其他7种脂肪酸为另一类,C18∶1与C18∶2之比是花生脂肪酸组成的决定性因素。综合分析表明,决定花生脂肪酸组成的关键基因主要是脂肪酸去饱和酶FAD2基因和SAD基因,有目的地对这两个基因的表达进行调控对于花生脂肪酸组成的改良有着重要的价值和意义。
Li X D, Cao Y L, Hu Y P, Xiao L, Wu Y H, Wu G, Lu C M . Fatty acid accumulation pattern in developing seeds of peanut
Chin J Oil Crop Sci, 2009,31:157-162 (in Chinese with English abstract).

DOI:10.3321/j.issn:1007-9084.2009.02.009URL [本文引用: 1]
通过对花生种子脂肪酸累积模式的研究,揭示花生脂肪酸组成的形成规律。研究结果显示,下针后10d内的花生种子可检测到9种脂肪酸,C16∶1和C18∶3在发育过程中由高到低,逐渐消失,其他7种脂肪酸含量则随着花生种子的发育逐渐积累增高。成熟的花生种子中油酸和亚油酸含量占脂肪酸总含量的81%左右。脂肪酸总量在接近成熟时有所下降。不同脂肪酸在累积过程中显示了高度相关性,C16∶1和C18∶3之间呈正相关,属于第一类;其余7种脂肪酸之间也均呈正相关,属于第二类。第一和第二类脂肪酸之间呈负相关。主成份分析表明,9种脂肪酸可以分成三类:C18∶1与C18∶2各为一类,其他7种脂肪酸为另一类,C18∶1与C18∶2之比是花生脂肪酸组成的决定性因素。综合分析表明,决定花生脂肪酸组成的关键基因主要是脂肪酸去饱和酶FAD2基因和SAD基因,有目的地对这两个基因的表达进行调控对于花生脂肪酸组成的改良有着重要的价值和意义。

Hu Y, Zhang Y, Yu W, H?nninen H, Song L, Du X, Zhang R, Wu J . Novel insights into the influence of seed sarcotesta photosynthesis on accumulation of seed dry matter and oil content in Torreya grandis cv. “Merrillii”.
Front Plant Sci, 2018,8:2179.

DOI:10.3389/fpls.2017.02179URLPMID:29375592 [本文引用: 1]
Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation ofTorreya grandiscv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of theTorreyaseeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars.

Janila P, Manohar S S, Patne N, Variath M T, Nigam S N . Genotype × environment interactions for oil content in peanut and stable high-oil-yielding sources
Crop Sci, 2016,56:2506-2515.

DOI:10.2135/cropsci2016.01.0005URL [本文引用: 1]
Peanut (Arachis hypogaea L.) genotypes with superior and stable agronomic performance and high oil content were identified from testing of 160 advanced breeding lines over six seasons. The study revealed significant genotype and genotype 87 environment (G 87 E) interaction determining oil and protein content; shelling outturn; and pod, kernel, and oil yield in peanut. The variability among genotypes was high across the environments for pod yield (546– 7382 kg ha611), oil yield (301–2742 kg ha611), oil content (37–60%), 100-seed weight (21–127 g), and protein content (19–31%). The GGE biplot technique revealed that ICGV 05155 is a stable genotype for oil yield with an average oil yield of 1886 kg ha611. ICGV 05155 recorded highest average pod yield of 4928 kg ha611, kernel yield of 3420 kg ha611, and oil content of 55.1%. ICGV 06049, ICGV 06041, ICGV 06420, and ICGV 03043 were other genotypes with stable oil yield. Simple regression showed significant contributions of oil content (18–54%), and kernel yield (92–99%) to oil yield across the environments. Simultaneous improvement of kernel yield and oil content is feasible in breeding programs, as kernel yield had no negative association with oil content. The high oil content genotypes, ICGV 05155, ICGV 06049, ICGV 06041, ICGV 06420, and ICGV 03043, with stable oil yield were promoted to multilocation adaptive trials required for their release for cultivation and used as parents in breeding programs and development of mapping population to identify quantitative trait loci (QTL) governing oil content.

Meta H R, Monpara B A . Genetic variation and trait relationships in summer groundnut,
Arachis hypogaea L. J Oilseeds Res, 2010,26:186-187.

[本文引用: 1]

相关话题/物质 种子 经济 资源 生产