删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

油菜抗根肿病资源创新与利用的研究进展与展望

本站小编 Free考研考试/2021-12-26

江莹芬1,2, 战宗祥2,3, 朴钟云,3,*, 张椿雨,2,*1 安徽省农业科学院作物科学研究所, 安徽合肥230001
2 华中农业大学植物科学技术学院, 湖北武汉430070
3 沈阳农业大学园艺学院, 辽宁沈阳110866

Progresses and Prospects of Germplasms Innovation for Clubroot Resistance and Genetic Improvement in Brassica napus

JIANG Ying-Fen1,2, ZHAN Zong-Xiang2,3, PIAO Zhong-Yun,3,*, ZHANG Chun-Yu,2,*1 Institute of Crop Science, Anhui Academy of Agricultural Science, Hefei 230001, Anhui, China
2 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
3 College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China

通讯作者: 张椿雨, E-mail: zhchy@mail.hzau.edu.cn; 朴钟云, E-mail: zypiao@syau.edu.cn

第一联系人: E-mail: xiaoyingmm@126.com
收稿日期:2018-05-18接受日期:2018-08-20网络出版日期:2018-09-05
基金资助:本研究由国家重点研发计划项目(2018YFD0100501)和国家现代农业产业技术体系建设专项(nycytx00503)资助.2018YFD0100501
国家现代农业产业技术体系建设专项.nycytx00503


Received:2018-05-18Accepted:2018-08-20Online:2018-09-05
Fund supported: This study was supported by National Key Research and Development Program of China (2018YFD0100501).2018YFD0100501
the China Agriculture Research System .nycytx00503


摘要
根肿病是原生动物界根肿菌门根肿菌属芸薹根肿菌( Plasmodiophora brassicae Wor.)侵染引起, 并专性危害十字花科作物的一种传染性强的土传病害。近些年来, 加拿大和我国油菜的安全生产均受到根肿病的严重威胁。本文简要介绍了根肿菌的生物学特性、分类及主要防治途径, 重点总结了在根肿病抗性资源发掘、抗病基因遗传定位和克隆以及抗病育种等方面的进展, 分析了目前我国油菜根肿病综合防控过程中存在的主要问题, 并探讨与展望了相应的对策, 旨在为油菜抗根肿病遗传育种的高效顺利开展提供技术支持, 进而保障油菜产业的可持续发展。
关键词: 油菜;根肿病;资源发掘;抗性基因定位;抗根肿病育种;进展与展望

Abstract
Clubroot is one of the most serious soil-borne diseases caused by Plasmodiophora brassicae Woronin in oilseed rape ( Brassica napus). Being a major oil crop, the safe production for oilseed rape both in Canada and China is now facing severe threat from clubroot disease in recent years. In this review, after briefly introducing the biological features of this pathogen, the root symptoms after infection, pathogen-type differentiation, strategies usually employed in disease controlling process, and a strategy based on genetic breeding are highlighted in clubroot disease comprehensive control for oilseed rape; furthermore, for sustainable development of oilseed rape industry by avoiding damages caused by clubroot disease, major problems faced are pointed out and some prospects are addressed accordingly.
Keywords: Brassica napus;clubroot disease;germplasm innovation;resistant gene mapping;resistant breeding;progress and prospect


PDF (250KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
江莹芬, 战宗祥, 朴钟云, 张椿雨. 油菜抗根肿病资源创新与利用的研究进展与展望[J]. 作物学报, 2018, 44(11): 1592-1599. doi:10.3724/SP.J.1006.2018.01592
JIANG Ying-Fen, ZHAN Zong-Xiang, PIAO Zhong-Yun, ZHANG Chun-Yu. Progresses and Prospects of Germplasms Innovation for Clubroot Resistance and Genetic Improvement in Brassica napus[J]. Acta Agronomica Sinica, 2018, 44(11): 1592-1599. doi:10.3724/SP.J.1006.2018.01592


根肿病是由原生动物界根肿菌门根肿菌属芸薹根肿菌( Plasmodiophora brassicae Wor.)侵染引起, 并专性危害十字花科的一种传染性很强的土传病害, 每年引起十字花科作物产量降低10%~15%[1]。根肿菌在土壤中存活可达10年之久, 主要以流水、带病种苗运输和农事操作等方式传播[2]。芸薹属作物受根肿菌侵染后, 根部组织异常增生、肿大, 根的正常生理机能受损, 营养和水分吸收受阻, 小苗枯死或成株期植株生长迟缓、矮小, 从而产量下降、品质降低, 严重时整株死亡, 造成绝收[3]

从全球看, 加拿大自2003年在油菜中发现根肿病以来, 发病速度极快, 目前已成为加拿大油菜生产的主要病害[4]。日本、韩国十字花科蔬菜受根肿病危害较重。在我国, 最初是根肿病危害十字花科蔬菜, 近几年根肿病在油菜中迅速扩散, 已经蔓延到四川、云南、贵州、湖北、安徽等油菜主产区, 据不完全统计, 目前我国油菜根肿病发病面积在67万公顷以上, 并且随着机械化程度的不断提高, 发病区域还在迅速扩大。油菜是我国最重要的油料作物, 更是旅游观光农业的重要组成部分, 常年种植面积在670万公顷左右, 根肿病已经成为威胁油菜产业安全的头号杀手。

本文总结了根肿菌的生物学特性、根肿菌分类、根肿病防治途径、油菜抗根肿病资源创新与遗传育种等方面研究进展, 深入分析了油菜根肿病综合防控过程中存在的主要问题, 并探讨与展望了其相应的对策, 旨在有效防控根肿病, 保障油菜产业健康可持续发展。

1 根肿菌生物学特性

1.1 根肿菌的生活史

芸薹属根肿菌属原生动物界、根肿菌门、根肿菌纲、根肿菌目、根肿菌属[5]。目前认为其生活史包括两个世代(休眠孢子、原生质体)和三个阶段(土壤中存活阶段、根毛侵染阶段、皮层侵染阶段)[2]。当被根肿菌侵染形成的根肿裂解腐烂以后, 大量的厚壁休眠孢子释放进入土壤, 并能够在土壤中存活达10年以上。初侵染阶段也称为根毛侵染阶段, 休眠孢子受十字花科根际分泌物诱导萌发后形成具双鞭毛的初生游动孢子, 游动孢子靠近根毛完成初侵染过程 , 初侵染产生次生游动孢子, 成熟后再次释放到土壤中[6]。再侵染阶段也称为皮层侵染阶段, 次生游动孢子直接侵染根和下胚轴的皮层和中柱, 在植物真皮组织细胞内形成次生原生质团, 从而产生根肿组织[7]

1.2 影响根肿菌侵染的主要因素

温度是影响根肿菌初侵染阶段的关键因子, 19~25℃最有利于根肿菌初侵染, 低温或高于26℃均不利于根肿病的发生[8]。根肿菌偏爱pH小于6.5的酸性土壤环境, 高浓度的氢离子有利于根肿菌的侵染[9]。土壤水分也是影响根肿病发生的主要因素, 当土壤含水量为50%~90%时, 病害的发展非常快[10], 因此根肿病一般容易发生在低洼不易排水、土壤结构比较差的田块中。另外, 高浓度的钙能够减少根部细胞膜的渗透性进而影响根肿菌的生长发育与繁殖, 大量的钙离子添加还可以升高pH值进而抑制根肿菌的侵染发病[11]

2 根肿菌的分类

根肿菌是专性寄生菌, 存在生理小种分化[12]。鉴定根肿菌致病力分化的鉴别系统有4套, 即Williams系统[13]、欧洲根肿菌鉴别系统(European Clubroot Differential, ECD)[14]、Somé系统[15]和Kuginuki系统[16]。目前Williams和ECD两套根肿病生理小种鉴别系统被视为国际通用的鉴别系统[17]。其中Williams系统因其鉴别寄主少, 使用方便, 应用得最为广泛。Williams系统采用2个结球甘蓝(‘Jersey Queen’、‘Badger Shipper’) 和2个芜菁甘蓝品种( ‘Laurentian’、‘Wilhelmsburger’) 作为鉴别寄主, 理论上可以鉴别出16个生理小种。我国****采用该系统对我国分布的根肿菌鉴定发现, 存在2号、4号、5号、7号、8号、10号、11号、13号等生理小种, 其中以4号生理小种为主[18,19,20]。应用Williams系统时存在一定局限性, 因根肿菌存在几个生理小种混生的情况, 直接根据鉴别寄主对病菌的抗感反应结果会将混生菌中的优势种群错判为生理小种[21], 如李茜等[22]从原始种群为4号小种进行单孢分离, 分离出2号、4号、8号、11号4个小种[22]; 另外, 培养条件、孢子成熟水平都会影响接种结果。

ECD系统是欧洲目前比较通用的根肿菌鉴别系统, 包括 B. rapa B. napus B. oleracea三组材料的15个鉴别寄主。因其命名复杂, 鉴定工作量大, 再加上鉴别寄主冬性强, 很难得到种子, 在我国鲜有应用。

3 根肿病的主要防治途径

3.1 农业防治方法

为有效防控根肿病, ****们开展了一系列研究, 并取得一定效果。第一, 通过大豆、苦荞与油菜轮作可在一定程度上降低土壤中根肿菌休眠孢子浓度, 但由于休眠孢子在土壤中可存活10余年之久, 轮作在应用上受到了较大的限制; 第二, 通过施用生石灰升高土壤pH值也有一定效果, 但成本较高且易造成土壤板结, 另有研究表明, 在温度和湿度适宜发病且土壤中孢子浓度高的情况下, 撒石灰不起作用[23]; 第三, 施硼在蔬菜作物中也被认为能够降低根肿病发病程度, 其在根毛初侵染阶段能够抑制原生质团向孢子囊发展[10]; 此外, 在重病田块种植诱饵作物[24]; 在长江流域冬油菜区适当延迟播期[25]、净土育苗移栽、跨区作业农机具消毒等均对根肿病防治有一定效果。

3.2 生物、化学农药防治方法

使用化学农药(氟啶胺、氰霜唑、磺菌胺等)以及生物农药(枯草芽孢杆菌、粉红粘帚霉)在防控根肿病方面有一定效果(结合种子包衣技术)[26,27,28,29,30], 同时还有利用二硫代氨基甲基盐、威百亩水溶剂等熏剂进行土壤熏蒸等[31], 但是成本均较高, 在产值比较高的高山反季节蔬菜生产中, 结合育苗移栽等措施具有较好优势, 但对油菜根肿病而言, 生物防治和化学防治前景有限。

上述方法虽有一定防控效果, 但不能从根本上解决油菜根肿病的危害。实践证明, 种植抗性品种是防治根肿病最根本、最经济的途径。

4 抗根肿病资源发掘、抗性遗传研究进展

4.1 根肿病抗性资源的发掘

根肿菌存在生理小种分化, 相对应的其抗性基因也表现为生理小种特异性。为了开展抗根肿病育种, 对十字花科芸薹属白菜、甘蓝、油菜及其近缘种拟南芥、萝卜等大量筛选后获得了一些宝贵的抗病资源, 其中欧洲饲用芜菁( Brassica rapa ssp. rapifera, AA, 2 n = 20)中含有的抗病位点最多, 在抗病育种应用中也最为广泛。Yoshikawa[32]对1062份芸薹属种质资源进行筛选, 只在芜菁中发现了高抗的43份抗病品系, 如‘Siloga’、‘Gelria’、‘Milan White’、‘Debra’等。Peng等[33]也发现高抗或免疫的资源主要存在于 B. rapa中, 在芸薹属植物955份资源中只鉴定出4份高抗油菜材料。此外, 欧洲根肿病鉴别寄主系统(ECD)中的ECD01-04 (芜菁)对根肿病具有广泛抗性, ECD06、ECD08、ECD09和ECD10 (以上寄主均为油菜)也对部分根肿菌生理小种表现出抗性。刘勇等[34]对四川主栽的38个油菜品种和德国引进的8个品种的根肿病抗性筛选发现, 主栽油菜品种中无抗根肿病品种, 引进品种Lisek和Oase病情指数均小于30, 为高抗品种, 但没有筛选到免疫抗性的品种。Manzanares-Dauleux等[35]和Werner等[36]对几个甘蓝型油菜进行全基因组关联分析, 发现在甘蓝型油菜中有20多个抗性QTL。由于甘蓝型油菜是复合种, 其抗性基因被认为主要来源于A基因组。

相对于芸薹属A基因组抗源丰富, C基因组则抗源极少。Crisp等[37]对1000余份甘蓝( Brassica oleracea, CC, 2 n = 18)材料进行抗性筛选, 在羽衣甘蓝、卷心菜、花菜中只鉴定到一些低感的品系。Manzanares- Dauleux等[38] 在抗性筛选中也发现, 只有一些羽衣甘蓝对根肿病有较高水平的抗性, 所有的卷心菜和花椰菜都表现出感病。司军等[39]对19份结球甘蓝( Brassica oleracea var. capitata L., CC, 2 n = 18)材料的抗性鉴定中, 有3份材料对根肿病表现抗病, 认为其可以作为抗根肿病育种的供体材料。

另外, 从十字花科其他属中也筛选到根肿病抗源。如Kamei等[40]发现萝卜( Raphanus sativus, 2 n = 18, RR) 中有对根肿病免疫抗性的位点 Crs1。Chen等[41]通过萝卜( Raphanus sativus L., 2 n = 18, RR)与白花芥蓝( Brassica alboglabra Bailey, CC, 2 n = 18)杂交, 得到的萝卜-芥蓝异源四倍体( Raphano-brassica, RRCC 2 n = 36 )对根肿病部分生理小种也具有免疫抗性, 可作为改良油菜根肿病抗性的桥梁品系。拟南芥生态型Tsu-0和Ze-0有抗根肿病的单个显性位点 RPB1[42]

4.2 抗根肿病基因的遗传定位与克隆

迄今为止, 国内外发现的抗病基因主要存在于油菜的近缘种芜菁中, 主要为质量性状位点, 而在芸薹属的另一个基本种甘蓝中, 目前发现的抗病位点都是多基因控制的数量性状位点或不完全显性[43,44,45,46]。另外, 在十字花科萝卜中也发现了抗病位点, 已有的基因定位结果表明该抗病位点 Crs1分布在LG1染色体上, 表现为显性抗病[40]

目前在欧洲饲用芜菁中至少定位了11个主效基因或QTL。分别定位于A1、A2、A3、A6和A8染色体 [47,48,49,50,51,52,53,54,55,56,57,58,59,60,61]。如‘Siloga’中含有1个主效不完全显性抗病基因( Crr1, 位于A8染色体)、1个修饰基因( Crr2, 位于A1染色体), 和1个微效QTL ( Crr4, 位于A6染色体) [48,49,50,51] Crr1对根肿菌的抗性表现不完全显性, 只有纯合时才对致病性较弱的菌株有抗性, 但是当C rr1和C rr2同时存在时则对致病性较强的菌株表现出抗性, Crr2单独存在时不对任何生理小种起抗性作用, 因此认为 crr1可能在正常的抗病途径中起主要作用, 而 crr2则修饰 crr1的表达。Hirai等[52]研究指出芜菁品种‘Milan White’含有1个主效基因 Crr3 (位于A3染色体)。Matsumoto等[47]在饲用芜菁ECD02的A3染色体上定位了1个抗病位点 CRa; Sakamoto等[54]在‘Debra’中定位了2个抗病位点 CRk CRc, 分别定位于A3和A2染色体; Piao等[53]在一个抗病结球白菜‘Shinki’的A3染色体上定位了1个抗病位点 CRb。Chen等[55]利用抗病芜菁ECD04和感病大白菜杂交的BC1F1群体接种不同的生理小种并通过QTL定位, 在A1染色体上定位了抗病位点 PbBa1.1, 在A3染色体上定位了3个抗病位点 PbBa3.1 PbBa3.2 PbBa3.3, 在A8染色体上与 Crr1相同区域内定位了抗病位点 PbBa8.1。战宗祥等[62]通过将ECD04与甘蓝型油菜杂交后将抗病位点 PbBa8.1成功导入甘蓝型油菜, 遗传分析结果表明该位点表现为显性遗传模式, 因此认为该位点与A8染色体上的 Crr1 (表现为不完全显性遗传)可能互为不同或复等位位点。Chu等[56]在小白菜(pak choy) A3染色体上定位了一个主效抗病位点 Rcr1, 并指出 Rcr1可能是不同于 CRa CRb的新位点; Yu等[57]通过genotyping-by- sequencing (GBS)技术, 扫描到对6个生理小种具不同抗性的3个QTL, 其中2个QTL抗新的病原菌5X, 在A3染色体定位的位点 Rcr4, 抗2号、3号、5号、6号、8号生理小种。Pang等[63]在A3染色体 Crr3位点的上游定位了一个单基因显性抗病位点 CRd, 其抗性表现不同于 CRa CRb。由于A3染色体上定位到的位点众多, 并与一些共同标记相连锁, 表明这些基因之间可能是互为同一个等位或复等位基因, 或至少是紧密连锁。由于各实验室所用的抗病材料和病原菌不尽相同, 且这些抗病基因中的绝大多数都还没有被分离克隆, 因此抗病基因间的比较分析工作还有待进一步深入。

CRa是第一个被鉴定出来的抗性位点, 最初来源于ECD02[64]。Hatakeyama等[65]于2017年克隆了 CRb, 并且通过序列比较和功能分析表明, CRa CRb实际上是同一个基因。另一个被克隆的抗病基因是 crr1, crr1包含 crr1a和crr1b2个抗病位点, 其中 crr1a是主效位点, crr1b是微效位点, 来源于芜菁‘Siloga’ [51]。这2个基因均编码具有TIR-NBS-LRR结构的蛋白, 而这种结构的蛋白被认为在植物抗病防御反应中可专一性识别病原物释放的效应子(effector), 并解除其对宿主免疫反应的抑制作用, 从而确保植物能够有效地响应病原菌的入侵并及时启动免疫反应 [66], 但其具体到根肿病的抗病机制还有待进一步研究, 目前有关抗根肿病基因介导的抗病机制研究还比较初步, 一般都只从组学的角度进行了分析[67,68,69,70]

5 油菜抗根肿病育种研究进展

种间杂交是转移有利性状的有效途径, 因此, 通过定向转育方法, 将根肿病抗性基因导入油菜是选育抗病品种的最有效途径。

大白菜抗根肿病育种开始的比较早, 相对比较成熟。自1974年起, 日本国立蔬菜花卉研究中心以芜菁的抗病资源如‘Siloga’、‘Gelria’、‘Milan White’和‘Debra’为抗源, 通过连续回交选择方法把抗病基因导入到大白菜中[32]。此后, 自二十世纪八十年代起日本和韩国种苗企业相继培育出了大白菜抗病品种[71]。因油菜根肿病是近些年才发展起来的病害, 抗性品种选育起步较晚, 随着抗性资源的发掘与抗病基因定位工作的不断深入, 油菜的抗病育种也取得了较好进展。如Diederichsen等[72,73]利用ECD04和ECD15, 通过人工种间杂交, 然后染色体加倍, 创制出新型抗根肿病甘蓝型油菜资源。此后, 相继选育出油菜抗病品种‘Mendel’和‘Tosca’。

国内, 华中农业大学战宗祥等以ECD04为供体, 结合回交及分子标记辅助选择, 将ECD04中抗4号生理小种的位点 PbB8.1定向地转育到油菜常规品种‘华双5号’中, 由此培育出了我国首个甘蓝型油菜抗根肿病常规新品种‘华双5R’(原始命名为ZHE- 226)[62]; 李倩等(未发表)通过将含 CRb的大白菜与国审油菜品种‘华油杂62’的恢复系杂交, 经过回交、前景和背景筛选等过程最终培育出了我国首个抗根肿病油菜新杂交种‘华油杂62R’。田间抗病性鉴定结果表明, 这2个品种对四川、湖北、安徽等地的根肿菌均表现出免疫抗性。此外, Zhan等[74]通过远缘杂交已经成功地将萝卜-芥蓝异源四倍体(RRCC)中的根肿病抗性转育到油菜中。

以上抗病新品种或品系的获得为国内外有效抵御油菜根肿病, 保障油菜安全生产提供了重要的品种保障。

6 油菜根肿病综合防控过程中存在的主要问题与对策

6.1 目前存在的主要问题

我国在油菜抗根肿病资源创新与利用方面虽然取得了初步成效, 但与目前生产上存在的问题和重大需求相比, 油菜根肿病防控形势依然十分严峻, 产业发展仍面临许多亟待解决的重大科学与技术难题。

(1) 抗病资源的种类和育成的抗病品种数量和类型还很有限。目前的根肿病抗源主要来自芜菁, 抗病位点的种类非常有限, 且这些位点均为由少数基因控制的质量性状, 因此必须加大抗病资源的创新。另一方面, 抗病育种方法还有待进一步完善, 已育成抗病品种数量还不能满足不同生态区要求。

(2) 长期种植单一抗病品种容易导致抗性丧失。在白菜和油菜中均有抗性品种抗性丧失的报道[75,76]。根肿病质量抗性基因具生理小种专化性, 而根肿菌大多混生, 繁殖力强且变异快, 随着某一抗病品种的长期种植, 土壤中优势生理小种种群数量降低, 而混生的其他生理小种或变异的生理小种则逐渐成为新的优势种群, 从而造成抗病品种抗病性丧失, 给抗病育种带来了极大挑战。

(3) 抗病基因编码蛋白介导的抗病机制尚不清楚。从全球来看, 从事根肿病抗病机制研究科学家数量非常少, 截止目前尚无抗病基因所介导的抗病机制方面的报道, 这大大限制了通过分子手段创新油菜抗根肿病资源的能力。

(4) 根肿菌分类不清。根肿菌是活体专性寄生菌, 不能离体培养, 不同生理小种经常混生且变异速度快, 对不同生理小种的分类工作仍然处于较低水平, 这不利于有针对性地运用含不同抗病基因的油菜品种有效抵抗油菜根肿病工作的有序开展。

6.2 相应的主要对策

为了更好地推进油菜抗根肿病育种进程, 提高油菜根肿病综合防控水平, 针对上述面临的主要问题, 结合在生产和科研实践中所获得的经验以及对这些主要问题的思考, 提出以下主要对策和建议。

(1) 抗根肿病资源发掘。虽然发现了一些由多基因控制的耐病材料, 但当土壤中病菌浓度较高时这些材料一样表现出高感症状, 说明解决根肿病抗性的出路还在于筛选由质量基因控制的抗性。因此通过继续收集油菜及其近缘种资源、借助各类功能丧失型及功能获得型突变体库, 鉴定出更多质量基因控制的抗性资源并克隆相应抗性基因。鉴于不同抗性基因对不同生理小种的抗性有所差别, 重点筛选出对各种根肿病不同生理小种抗性均佳的抗病基因组合, 为有针对性开展抗性育种提供重要的支撑。

(2) 避病种质资源发掘。我国长江流域冬油菜区一般在9月底10月初播种, 而此时气温正好在25℃左右, 非常适合根肿菌侵染。因此在长江流域油菜产区筛选耐迟播资源, 培育适合在10月20日至11月初播种的耐迟播、耐密植品种以实现合理避病, 这是油菜根肿病综合防控措施中一个重要新生长点。

(3) 根肿菌的分类及分化研究。利用分离的抗病基因, 研究不同抗病基因、不同抗病基因组合与不同生理小种根肿菌的互作关系, 建立根肿菌生理小种鉴别新系统, 对不同根肿菌进行分类, 在建立根肿菌单孢分离技术体系基础上进行全基因组重测序, 鉴定出不同生理小种的差异位点, 为生理小种的分子分类提供重要依据。掌握抗病品种对不同生理小种的消长规律及同一生理小种的变异规律, 为不同病区有针对性地选择种植油菜抗病品种、以及延长品种抗病性提供科学依据。

(4) 抗病基因编码蛋白所介导的抗病机制研究。利用对不同生理小种具不同抗性反应的多种抗病基因类型, 利用蛋白组、转录组等组学技术, 深入研究其抗病代谢途径, 通过比较抗病机制差异与不同生理小种基因组序列差异间的关系, 深入解析不同抗病基因特异抗性产生的内在分子机制, 为通过基因工程手段培育抗根肿病油菜新品种提供理论依据。

(5) 根肿菌专性寄生十字花科植物的致病机制研究。根肿菌专性寄生十字花科植物, 因此探明根肿菌对不同植物致病差异产生的机制, 为利用其他植物的基因资源来改良油菜的抗根肿病特性具有重要意义。

(6) 油菜抗根肿病分子育种平台的创建及抗病品种培育。在油菜抗根肿病资源创新和深入了解其抗病机制的基础上, 建立成熟的抗病分子设计育种平台。根据不同抗病基因序列, 开发基因特异性分子标记, 建立分子标记辅助选择技术体系, 创建含不同抗性基因的油菜轮回选择群体, 结合小孢子培养技术, 通过改良获得一批含不同抗病基因(组合)的优良不育系、恢复系, 为配制优良抗病杂交新品种奠定重要基础; 根据抗病机制研究的最新结论, 利用基因工程技术, 创建具持久、广谱抗性的油菜新资源和新品种。

综上所述, 抗病育种在根肿病综合防治中占有重要地位, 但目前国内外在这方面的研究尚处于初步阶段。相比于加拿大, 我国在研究方向方面比较单一, 集中在资源发掘和利用方面, 缺乏长效的分工、组织协调机制, 相信随着对根肿病防控研究方向及其相互关系理解的不断深入, 在不久的将来定会建立一支分工明确、协作积极的创新团队, 为我国油菜根肿病综合防治及产业的可持续发展提供重要保障。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Dixon G R . The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease
J Plant Growth Reg, 2009,28:194-202

[本文引用: 1]

Kageyama K, Asano T, Dixon G R . Life cycle of Plasmodio phora brassicae
J Plant Growth Regul, 2009,28:203-211

[本文引用: 2]

王靖, 黄云, 李小兰, 黎怀忠 . 十字花科根肿病研究进展
植物保护, 2011,37(6):153-158

DOI:10.3969/j.issn.0529-1542.2011.06.031URL [本文引用: 1]
The symptoms, separation and detection of pathogens, pathogenicity and biological characteristics, disease development of clubroot were summarized. The control strategies including agricultural measures, chemical control, host disease resistance and biological control were introduced. Present situation and prospects of disease prevention were also discussed in this paper, which may provide a reference for further research.
Wang J, Huang Y, Li X L, Li H Z . Research progress in clubroot of crucifers
Plant Prot, 2011,37(6):153-158 (in Chinese with English abstract)

DOI:10.3969/j.issn.0529-1542.2011.06.031URL [本文引用: 1]
The symptoms, separation and detection of pathogens, pathogenicity and biological characteristics, disease development of clubroot were summarized. The control strategies including agricultural measures, chemical control, host disease resistance and biological control were introduced. Present situation and prospects of disease prevention were also discussed in this paper, which may provide a reference for further research.

Hwang S F, Strelkov S E, Feng J, Gossen B D, Howard R J . Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola( Brassica napus) crop
Mol Plant Pathol, 2012,13:105-113

[本文引用: 1]

Neuhauser S, Kirchmair M, Gleason F H . The ecological potentials of Phytomyxea (‘ plasmodiophorids’) in aquatic food webs
Hydrobiologia, 2011,659:23-25

[本文引用: 1]

Buczacki S T, Clay C M . Some observations on secondary zoospore development in Plasmodiophora brassicae
Trans Br Mycol Soc, 1984,82:339-342

[本文引用: 1]

Feng J, Xiao Q, Hwang S F, Strelkov S E, Gossen B D . Infection of canola by secondary zoospores of Plasmodiophora brassicae produced on a non-host plant
Eur J Plant Pathol, 2012,132:309-315

[本文引用: 1]

Sharma K, Gossen B D , McDonald M R . Effect of temperature on cortical infection by Plasmodiophora brassicae and clubroot severity
Phytopathology, 2011,101:1424-1432

[本文引用: 1]

Dixon G R . Clubroot ( Plasmodiophora brassicae Woronin): an agricultural and biological challenge worldwide
Can J Plant Pathol, 2014,36(suppl. 1):5-18

[本文引用: 1]

Dixon G R . Plasmodiophora brassicae in its environment
. J Plant Growth Reg, 2009,28:212-228

[本文引用: 2]

Gossen B D, Deora A, Peng G, Hwang S F , McDonald M R . Effect of environmental parameters on clubroot development and the risk of pathogen spread
Can J Plant Pathol, 2014,36(suppl. 1):37-48

DOI:10.1080/07060661.2013.859635URL [本文引用: 1]
Clubroot (Plasmodiophora brassicae) was initially discovered on canola (Brassica napus) in western Canada near Edmonton, Alberta in 2003. Since then, the disease has spread rapidly but is still most common and most destructive on the heavy, slightly acidic soils in the region where the first infested fields were identified. However, there was (and is) concern that the pathogen might continue to spread and become a constraint to canola production across the Canadian prairies. To assess the risk of continued spread, the effect of factors such as temperature and soil type, pH and micronutrients on clubroot development were examined. Temperatures below 17 C were shown to slow or inhibit the development of P. brassicae at all stages of its life cycle. Alkaline pH also reduced infection and symptom development in both controlled environment and field situations, but alkaline pH did not eliminate clubroot when other conditions were conducive for infection. Differences in the concentration of boron and other micronutrients in soil were shown to affect clubroot development on canola, but the effect of these differences was unlikely to limit the development of clubroot in situations where inoculum concentration was high. Soil moisture, especially in the rhizosphere during primary and secondary infection, had an important impact on clubroot development, but is a difficult factor for most growers to manipulate. Soil type had a small effect on clubroot severity in controlled environment studies, but a strong interaction of soil type with soil moisture is extremely likely under field conditions. Assessment of the interaction of environmental factors affecting infection success with the mechanisms of pathogen dispersal indicated that clubroot on canola has the potential to spread across large portions of the Canadian prairies.

Honig F. Der Kohlkropferreger ( Plasmodiophora brassicae Wor.) Eine Monographie
Gartenbauwissenschaft, 1931,5:116-225

[本文引用: 1]

Williams P H . A system for detemination of races of Plasmodiophora bassicae that infect cabbage and rutabaga
Phytopathol, 1966,56:624-626

[本文引用: 1]

Buczacki S T, Toxopeus H, Mattusch P, Johnston T D, Dixon G R, Hobolth L A . Study of physiologic specialization in Plasmodiophora brassicae: proposals for attempted rationalization through an international approach
Trans Br Mycol Soc, 1975,65:295-303

[本文引用: 1]

Somé A, Manzanares M J, Laurens F, Baron F , Thomas G and Rouxel F. Variation for virulence on Brassica napus among Plasmodiophora brassicae collections from France and derived single-spore isolates
Plant Pathol, 1996,45:432-439

[本文引用: 1]

Kuginuki Y, Hiroaki Y, Hirai M . Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage( Brassica rapa L. spp. pekinensis)
Eur J Plant Pathol, 1999,105:327-332

[本文引用: 1]

刘勇, 罗一帆, 黄小琴, 张蕾, 刘红雨, 张敏 . 芸薹根肿菌生理小种鉴别方法研究进展
中国油料作物学报, 2011,33:420-426

URL [本文引用: 1]
本文综述了芸薹根肿菌生理小种鉴别方法和国际通用的根肿病生理小种鉴别系统及鉴别寄主,详细介绍了Williams和ECD根肿病鉴别系统的优缺点及适用范围,分析了分子生物学鉴定根肿病生理小种的技术,以期为抗病品种选育和持续控制根肿病提供准确的抗病鉴定方法
Liu Y, Luo Y F, Huang X Q, Zhang L, Liu H Y, Zhang M . Research progress of physiological race distinction systems on Plasmodiophora brassicae Wor
. Chin J Oil Crop Sci, 2011, 33:420-426 (in Chinese with English abstract)

URL [本文引用: 1]
本文综述了芸薹根肿菌生理小种鉴别方法和国际通用的根肿病生理小种鉴别系统及鉴别寄主,详细介绍了Williams和ECD根肿病鉴别系统的优缺点及适用范围,分析了分子生物学鉴定根肿病生理小种的技术,以期为抗病品种选育和持续控制根肿病提供准确的抗病鉴定方法

沈向群, 聂凯, 吴琼, 张玉光, 孟星河 . 大白菜根肿病主要生理小种种群分化鉴定初报
中国蔬菜, 2009,1(8):59-62

Magsci [本文引用: 1]
<FONT face=Verdana>采用Williams法的4个鉴别寄主(Jersey Queen、Badger Shipper、Laurentian 、Wilhelmsburger),对采自国内15个大白菜根肿病主要发病区域的病原菌进行了生理小种种群的鉴定。结果表明:辽宁沈阳新民大民屯、辽宁沈阳西窑、辽宁大连水师营、辽宁丹东振安,山东青岛农业科学院、山东苍山小林村,云南江川,四川郫县,吉林乌拉街东窑村、吉林乌拉街旧街村、吉林梨树镇11个地区的根肿病菌为4号生理小种;辽宁本溪桓仁的根肿病菌为2号生理小种;四川彭州地区的根肿病菌为7号生理小种;四川西昌地区的根肿病菌为10号生理小种;辽宁沈阳农业大学根肿病菌为11号生理小种。</FONT>
Shen X Q, Nie K, Wu Q, Zhang Y G, Meng X H . Initial research report on differentiation identification of Chinese cabbage clubroot main physiological races
China Veg, 2009,1(8):59-62 (in Chinese with English abstract)

Magsci [本文引用: 1]
<FONT face=Verdana>采用Williams法的4个鉴别寄主(Jersey Queen、Badger Shipper、Laurentian 、Wilhelmsburger),对采自国内15个大白菜根肿病主要发病区域的病原菌进行了生理小种种群的鉴定。结果表明:辽宁沈阳新民大民屯、辽宁沈阳西窑、辽宁大连水师营、辽宁丹东振安,山东青岛农业科学院、山东苍山小林村,云南江川,四川郫县,吉林乌拉街东窑村、吉林乌拉街旧街村、吉林梨树镇11个地区的根肿病菌为4号生理小种;辽宁本溪桓仁的根肿病菌为2号生理小种;四川彭州地区的根肿病菌为7号生理小种;四川西昌地区的根肿病菌为10号生理小种;辽宁沈阳农业大学根肿病菌为11号生理小种。</FONT>

季海雯, 任莉, 陈坤荣, 徐理, 刘凡, 孙超超, 李俊, 刘胜毅, 方小平 . 油菜根肿病病原主要生理小种和品种抗病性鉴定
中国油料作物学报, 2013,35:301-306

[本文引用: 1]

Ji H W, Ren L, Chen K R, Xu L, Liu F, Sun C C, Li J, Liu S Y, Fang X P . Identification of physiological races of clubroot and resistance of rape cultivars to Plasmodiophora brassicae
Chin J Oil Crop Sci, 2013,35:301-306 (in Chinese with English abstract)

[本文引用: 1]

费维新 , Hwang S F, 王淑芬, 吴晓芸, 高智谋, 李强生, 侯树敏, 荣松柏, 江莹芬, 雷伟侠, 郝仲萍, 胡宝成. 根肿菌生理小种鉴定与甘蓝型油菜品种资源的抗性评价
中国油料作物学报, 2016,38:626-639

DOI:10.7505/j.issn.1007-9084.2016.05.013URL [本文引用: 1]
为了鉴定评价油菜根肿病菌致病性的分化与甘蓝型油菜品种资源的抗性,利用Williams鉴别寄主系统鉴定了分离自安徽等6个省病区的16个根肿病菌菌株的生理小种(致病型),并利用温室人工接种技术鉴定评价了12份油菜抗性材料的差异、病圃鉴定了176份油菜品种资源的抗性。结果表明,来自安徽(休宁、黟县、广德)、湖北(沙阳、当阳)、四川(广汉、眉县、邛崃)和贵州金沙的油菜根肿病菌菌株为4号小种,安徽宁国、云南楚雄、湖南桃江、辽宁沈阳和黑龙江阿城的菌株为2号小种,安徽绩溪的菌株为5号小种,湖北黄陂的菌株为7号小种。在温室人工接种条件下,12份抗性资源对2号、4号和5号小种等表现出不同程度的抗性,其中抗性材料CR5对来自安徽休宁、黟县、广德和四川广汉的4号小种、安徽宁国2号小种和安徽绩溪5号小种均表现出完全的免疫抗性。田间病圃鉴定结果表明种都油998和蓉油9号两个品种表现抗病(R),富油杂118等11个品种表现中抗(MR)。
Fei W X, Hwang S F, Wang S F, Wu X Y, Gao Z M, Li Q S, Hou S M, Rong S B, Jiang Y F, Lei W X, Hao Z P, Hu B C . Pathotype identification of Plasmodiophora brassicae and resistance of rapeseed variety resources to clubroot disease
Chin J Oil Crop Sci, 2016,38:626-639 (in Chinese with English abstract)

DOI:10.7505/j.issn.1007-9084.2016.05.013URL [本文引用: 1]
为了鉴定评价油菜根肿病菌致病性的分化与甘蓝型油菜品种资源的抗性,利用Williams鉴别寄主系统鉴定了分离自安徽等6个省病区的16个根肿病菌菌株的生理小种(致病型),并利用温室人工接种技术鉴定评价了12份油菜抗性材料的差异、病圃鉴定了176份油菜品种资源的抗性。结果表明,来自安徽(休宁、黟县、广德)、湖北(沙阳、当阳)、四川(广汉、眉县、邛崃)和贵州金沙的油菜根肿病菌菌株为4号小种,安徽宁国、云南楚雄、湖南桃江、辽宁沈阳和黑龙江阿城的菌株为2号小种,安徽绩溪的菌株为5号小种,湖北黄陂的菌株为7号小种。在温室人工接种条件下,12份抗性资源对2号、4号和5号小种等表现出不同程度的抗性,其中抗性材料CR5对来自安徽休宁、黟县、广德和四川广汉的4号小种、安徽宁国2号小种和安徽绩溪5号小种均表现出完全的免疫抗性。田间病圃鉴定结果表明种都油998和蓉油9号两个品种表现抗病(R),富油杂118等11个品种表现中抗(MR)。

Jones D R, Ingram D S, Dixon G R . Factors affecting tests for differential pathogenicity in populations of Plasmodiophora brassicae
. Plant Pathol, 1982,31:229-238

[本文引用: 1]

李茜, 沈向群, 耿新翠, 李林 . 芸薹根肿菌( Plasmodiophora brassicae)单孢分离接种及生理小种的鉴定
植物保护, 2012,38(3):95-101

[本文引用: 2]

Li Q, Shen X Q, Geng X C, Li L . Separate inoculation of single resting spores and identification of Plasmodiophora brassicae races
Plant Prot, 2012,38(3):95-101 (in Chinese with English abstract)

[本文引用: 2]

Gossen B D, Kasinathan H, Cao T, Manolii V P, Strelkov S E, Hwang S F , McDonald M R . Influence of pH and temperature on infection and symptom development of clubroot in canola
Can J Plant Pathol, 2013,35:294-303

DOI:10.1080/07060661.2013.804882URL [本文引用: 1]

Friberg H, Lagerlof J, Ramert B . Germination of Plasmodiophora brassicae resting spores stimulated by a non-host plant
Eur J Plant Pathol, 2005,113:275-281

[本文引用: 1]

费维新, 王淑芬, 李强生, 吴晓芸, 陈凤祥, 侯树敏, 荣松柏, 郝仲萍, 高智谋, 胡宝成 . 冬油菜适当迟播有效减轻油菜根肿病
中国油料作物学报, 2016,38:502-507

[本文引用: 1]

Fei W X, Wang S F, Li Q S, Wu X Y, Chen F X, Hou S M, Rong S B, Hao Z P, Gao Z M, Hu B C . Reducing clubroot disease by late sowing of winter rapeseed
Chin J Oil Crop Sci, 2016,38:502-507 (in Chinese with English abstract)

[本文引用: 1]

杨进, 殷丽琴, 王晓, 付绍红, 王学贵, 李云, 王继胜, 邹琼, 陶兰蓉, 康泽明, 唐蓉 . 4种杀菌剂对油菜根肿病的防治潜力及对幼苗防御酶活性的影响
中国油料作物学报, 2017,39:546-550

DOI:10.7505/j.issn.1007-9084.2017.04.017URL [本文引用: 1]
为在生产上防控油菜根肿病,测定4种杀菌剂对根肿菌孢子萌发抑制情况,并采用灌根处理评价了4种杀菌剂对盆栽幼苗根肿病防治效果及对3种防御酶活性的影响。结果表明,50%氟啶胺乳油对休眠孢子萌发的抑制率为38.1%,显著高于其他处理;而喹啉铜、五氯硝基苯和多菌灵处理的抑制效果较低(9.5%-15.0%),3种药剂处理间差异不显著。药剂灌根对油菜苗期根肿病防治效果结果表明,5.5mg/L 50%氟啶胺乳油对盆栽油菜根肿病防治效果为86.1%,显著高于其他杀菌剂;0.62mg/L喹啉铜的效果次之,其盆栽根肿病防治效果为73.2%;多菌灵和五氯硝基苯的防治效果较弱。防御酶活性测定结果表明,5.5mg/L 50%氟啶胺乳油在施药后油菜幼苗的苯丙氨酸解氨酶、过氧化物酶、多酚氧化酶活性均最强。因此,氟啶胺对油菜根肿病的防治效果值得在油菜生产中进一步研究。
Yang J, Yin L Q, Wang X, Fu S H, Wang X G, Li Y, Wang J S, Zou Q, Tao L R, Kang Z M, Tang R . Preventive potential of 4 fungicides on clubroot ( Plasmodiophora brassicae) and rapeseed defense enzyme activity
. Chin J Oil Crop Sci, 2017,39:546-550 (in Chinese with English abstract)

DOI:10.7505/j.issn.1007-9084.2017.04.017URL [本文引用: 1]
为在生产上防控油菜根肿病,测定4种杀菌剂对根肿菌孢子萌发抑制情况,并采用灌根处理评价了4种杀菌剂对盆栽幼苗根肿病防治效果及对3种防御酶活性的影响。结果表明,50%氟啶胺乳油对休眠孢子萌发的抑制率为38.1%,显著高于其他处理;而喹啉铜、五氯硝基苯和多菌灵处理的抑制效果较低(9.5%-15.0%),3种药剂处理间差异不显著。药剂灌根对油菜苗期根肿病防治效果结果表明,5.5mg/L 50%氟啶胺乳油对盆栽油菜根肿病防治效果为86.1%,显著高于其他杀菌剂;0.62mg/L喹啉铜的效果次之,其盆栽根肿病防治效果为73.2%;多菌灵和五氯硝基苯的防治效果较弱。防御酶活性测定结果表明,5.5mg/L 50%氟啶胺乳油在施药后油菜幼苗的苯丙氨酸解氨酶、过氧化物酶、多酚氧化酶活性均最强。因此,氟啶胺对油菜根肿病的防治效果值得在油菜生产中进一步研究。

尚慧, 杨佩文, 董丽英, 刘树芳, 俞华根, 李家瑞 . 大白菜根肿病化学防治技术
植物保护, 2009,35:157-159

DOI:10.3969/j.issn.0529-1542.2009.06.036URL [本文引用: 1]
在大白菜的不同生育期,采用多种杀菌剂和不同的防治方法防治大白菜根肿病,试验结果表明:50%氟啶胺和10%氰霜唑能有效防治大白菜根肿病,其防治效果优于其他化学药剂。在播种前用10%氰霜唑悬浮剂2000倍液浸种,再用50%氟啶胺悬浮剂300倍液对苗床土壤和大田土壤进行消毒处理,对大白菜根肿病的防治效果可达85.70%,比清水对照增产42.32%。
Shang H, Yang P W, Dong L Y, Liu S F, Yu H G, Li J R . Chemical control strategy against Chinese cabbage clubroot
Plant Prot, 2009,35:157-159 (in Chinese with English abstract)

DOI:10.3969/j.issn.0529-1542.2009.06.036URL [本文引用: 1]
在大白菜的不同生育期,采用多种杀菌剂和不同的防治方法防治大白菜根肿病,试验结果表明:50%氟啶胺和10%氰霜唑能有效防治大白菜根肿病,其防治效果优于其他化学药剂。在播种前用10%氰霜唑悬浮剂2000倍液浸种,再用50%氟啶胺悬浮剂300倍液对苗床土壤和大田土壤进行消毒处理,对大白菜根肿病的防治效果可达85.70%,比清水对照增产42.32%。

陈坤荣, 任莉, 刘凡, 徐理, 孙超超, 方小平 . 三种杀菌剂防治油菜根肿病技术研究
中国油料作物学报, 2013,35:424-427

[本文引用: 1]

Chen K R, Ren L, Liu F, Xu L, Sun C C, Fang X P . Controlling effects of three fungicides on rapeseed clubroot
Chin J Oil Crop Sci, 2013,35:424-427 (in Chinese with English abstract)

[本文引用: 1]

Peng G, Lahlali R, Hwang S F . Crop rotation, cultivar resistance, and fungicides/biofungicides for managing clubroot ( Plasmodiophora brassicae) on canola
Can J Plant Pathol, 2014,36(suppl. 1):99-112

[本文引用: 1]

Peng G, Pageau D, Strelkov S E, Lahlali R, Hwang S F, Hynes R K . Assessment of crop rotation, cultivar resistance and Bacillus subtilis biofungicide for control of clubroot on canola
Acta Hort, 2013,1005(suppl. 2-3):591-598

[本文引用: 1]

Hwang S F, Howard R J, Strelkov S E, Gossen B D, Peng G . Management of clubroot, on canola, in western Canada
Can J Plant Pathol, 2014,36(suppl):49-65

DOI:10.1080/07060661.2013.863806URL [本文引用: 1]

Yoshikawa H . Studies on breeding of clubroot resistance in cole crops
Bull Natl Res Inst Veg Ornam Plants Tea, 1993,A7:1-165

[本文引用: 2]

Peng G, Falk K C, Gugel R K, Franke G, Yu F, James B, Strelkov S E, Hwang S F , McGregor L. Sources of resistance to Plasmodiophora brassicae( clubroot) pathotypes virulent on canola
. Can J Plant Pathol, 2014,36

DOI:10.1080/07060661.2013.863805URL [本文引用: 1]
A collection of 955 Brassica accessions including B. rapa (718), B. napus (94), B. juncea (93), B. oleracea (30), B. carinata (12) and B. nigra (8) was screened against Plasmodiophora brassicae pathotype 3 (1 0103 106 resting spores cc0908081 growth medium), the predominant strain of the pathogen on canola in western Canada. A total of 35 accessions (mostly B. rapa) showed at least 50% reduced clubroot severity relative to a susceptible control, with 15 showing complete resistance (clubroot-free). Ten resistant accessions representing Brassica A-, B- and C-genome species were tested further using a 10-fold higher pathogen inoculum dose (1 0103 107 resting spores cc0908081 growth medium) and by testing them against the five pathotypes (2, 3, 5, 6 and 8) of P. brassicae found in Canada. One B. nigra, two B. oleracea and four B. rapa (oriental vegetable) accessions maintained a high level of resistance under the higher pathogen inoculum pressure, while one B. nigra and two B. rapa (turnip) accessions showed moderate resistance. Most of the selected clubroot-resistant accessions showed consistent resistance to each of the five P. brassicae pathotypes found in Canada, except for one B. nigra and two turnip accessions, which varied slightly against different pathotypes. Several promising sources of clubroot resistance were identified in this study that can be used to develop new canola germplasm with a diverse clubroot resistance background for potentially more durable clubroot resistance.

刘勇, 黄小琴, 柯绍英, 刘红雨 . 四川主栽油菜品种根肿病抗性研究
. 中国油料作物学报, 2009,31:90-93

[本文引用: 1]

Liu Y, Huang X Q, Ke S Y, Liu H Y . Evaluation of resistance of rapeseed varieties to clubroot infected by Plasmodiophora brassicae in Sichuan
Chin J Oil Crop Sci, 2009,31:90-93 (in Chinese with English abstract)

[本文引用: 1]

Manzanares-Dauleux M J, Deloureme R, Baron F, Thomas G . Mapping of one major gene and of QTL involved in resistance to clubroot in Brassica napus
Theor Appl Genet, 2000,101:885-891

[本文引用: 1]

Werner S, Diederichsen E, Frauen M, Schondelmaier J, Jung C . Genetic mapping of clubroot resistance genes in oilseed rape
Theor Appl Genet, 2008,116:363-372

DOI:10.1007/s00122-007-0674-2URLPMID:18040658 [本文引用: 1]
Clubroot caused by the obligate biotrophic protist Plasmodiophora brassicae is a major disease of Brassica species. Clubroot resistances introduced from B. oleracea var. ‘B02hmerwaldkohl’ and resistance from B. rapa ECD-04 were genetically mapped in oilseed rape ( B. napus L.). A doubled haploid (DH) population of rape seed was developed by crossing a resistant DH-line derived from a resynthesized B. napus with the susceptible cultivar ‘Express’. The DH population was tested in the greenhouse against seven P. brassicae isolates showing low and high virulence toward B. oleracea or/and B. rapa . DH-lines with highest or lowest disease scores were used in a bulked segregant analysis (BSA), and 43 polymorphic AFLPs were identified. A genetic map of the whole genome was constructed using 338 AFLP and 156 anchored SSR markers. Nineteen QTL were detected on chromosomes N02, N03, N08, N13, N15, N16 and N19 giving resistance to seven different isolates. Race-specific effects were observed for all QTL, none of the QTL conferred resistance to all isolates. The phenotypic variance explained by the respective QTL ranged between 10.3 and 67.5%. All QTL could be assigned to both ancestral genomes of B. napus . In contrast to previous reports, a clear differentiation into major QTL from B. rapa and minor QTL from B. oleracea could not be found. Composite interval mapping confirmed the linkage relationships determined by BSA, thus demonstrating that markers for oligogenic traits can be selected by merely testing the distributional extremes of a segregating population.

Crisp P, Crute I R, Sutherland R A, Angell S M, Bloor K, Burgess H, Gordon P L . The exploitation of genetic resources of Brassica oleracea in breeding for resistance to clubroot( Plasmodiophora brassicae)
Euphytica, 1989,42:215-226

[本文引用: 1]

Manzanares-Dauleux M J, Divaret I, Baron F, Thomas G . Evaluation of French Brassica oleracea landraces for resistance to Plasmodiophora brassicae
Euphytica, 2000,113:211-218

[本文引用: 1]

司军, 李成琼, 宋洪元, 任雪松, 宋明, 王小佳 . 结球甘蓝对根肿病的抗性鉴定与评价
西南大学学报: 自然科学版, 2009,31(6):26-30

URL [本文引用: 1]
分别利用室内人工接种鉴定、田间人工接种鉴定、田间自然诱发鉴定3种方法,对19份甘蓝材料的抗性进行鉴定,并进行了综合评价,结果表明:‘日本甘蓝’、‘皱叶甘蓝’、‘大楠木’3份材料对根肿病表现为抗病,可以作为抗病育种的材料.3份材料‘天津圆球甘蓝’、‘北黑大平头’、‘小楠木’对根肿病表现为感病.
Si J, Li C Q, Song H Y, Ren X S, Song M, Wang X J . Identification and evaluation of resistance to clubroot in cabbage ( Brassica oleracea var. capitata L.)
. J Southwest Univ ( Nat Sci Edn), 2009,31(6):26-30 (in Chinese with English abstract)

URL [本文引用: 1]
分别利用室内人工接种鉴定、田间人工接种鉴定、田间自然诱发鉴定3种方法,对19份甘蓝材料的抗性进行鉴定,并进行了综合评价,结果表明:‘日本甘蓝’、‘皱叶甘蓝’、‘大楠木’3份材料对根肿病表现为抗病,可以作为抗病育种的材料.3份材料‘天津圆球甘蓝’、‘北黑大平头’、‘小楠木’对根肿病表现为感病.

Kamei A, Tsuro M, Kubo N , Hayashi T Wang N, Fujimura T, Hirai M. QTL mapping of clubroot resistance in radish (
Raphanus sativus L.). Theor Appl Genet, 2010,1209:1021-1027

[本文引用: 2]

Chen H G, Wu J S . Characterization of fertile amphidiploid between Raphanus sativus and Brassica alboglabra and the crossability with Brassica species
Genet Resour Crop Evol, 2008,55:143-150

[本文引用: 1]

Fuchs H, Sacristán M D . Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot( Plasmodiophora brassicae) and characterization of the resistance response
Mol Plant Microbe Interact, 1996,9:91-97

[本文引用: 1]

Nagaoka T, Doullah M A, Matsumoto S, Kawasaki S, Ishikawa T, Hori H . Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea
Theor Appl Genet, 2010,120:1335-1346

[本文引用: 1]

Tomita H, Shimizu M, Doullah M A, Fujimoto R , Okazaki K. Accumulation of quantitative trait loci conferring broadspectrum clubroot resistance in Brassica oleracea
Mol Breed, 2013, 32:889-900

[本文引用: 1]

Voorrips R E, Jongerius M C, Kanne H J . Mapping of two genes for resistance to clubroot ( Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers
Theor Appl Genet, 1997,94:75-82

[本文引用: 1]

Lee J, Izzah N K, Choi B S, Joh H J, Lee S C, Perumal S . Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage ( Brassica oleracea L.)
DNA Res, 2015,23:29-41

[本文引用: 1]

Matsumoto E, Yasui C, Ohi M, Tsukada M . Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage ( Brassica rapa ssp. pekinensis)
Euphytica, 1998,104:79-86

[本文引用: 2]

Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M . Identification of two loci for resistance to clubroot ( Plasmodiophora brassicae Woronin) in Brassica rapa L
Theor Appl Genet, 2003,107:997-1002

[本文引用: 2]

Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S . Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance
Genetics, 2006,173:309-319

[本文引用: 2]

Suwabe K, Suzuk G, Nunome T, Hatakeyama K, Mukai Y, Fukuoka H, Matsumoto S . Microstructure of a Brassica rapa genome segment homologous to the resistance gene cluster on Arabidopsis chromosome 4
Breed Sci, 2012,62:170-177

[本文引用: 2]

Hatakeyama K, Suwabe K, Tomita R N, Kato T, Nunome T, Fukuoka H, Matsumoto S . Identification and characterization of Crr1a, a gene for resistance to clubroot disease( Plasmodiophora brassicae Woronin) in Brassica rapa L
PLoS One, 2013, 8:e54745

[本文引用: 3]

Hirai M, Harada T, Kubo N, Tsukada M, Suwabe K, Matsumoto S . A novel locus for clubroot resistance in Brassica rapa and its linkage markers
Theor Appl Genet, 2004,108:639-643

DOI:10.1007/s00122-003-1475-xURLPMID:14551685 [本文引用: 2]
An inbred turnip ( Brassica rapa syn. campestris ) line, N-WMR-3, which carries the trait of clubroot resistance (CR) from a European turnip, Milan White, was crossed with a clubroot-susceptible doubled haploid line, A9709. A segregating F 3 population was obtained by single-seed descent of F 2 plants and used for a genetic analysis. Segregation of CR in the F 3 population suggested that CR is controlled by a major gene. Two RAPD markers, OPC11-1 and OPC11-2, were obtained as candidates of linkage markers by bulked segregant analysis. These were converted to sequence-tagged site markers, by cloning and sequencing of the polymorphic bands, and named OPC11-1S and OPC11-2S, respectively. The specific primer pairs for OPC11-1S amplified a clear dominant band, while the primer pairs for OPC11-2S resulted in co-dominant bands. Frequency distributions and statistical analyses indicate the presence of a major dominant CR gene linked to these two markers. The present marker for CR was independent of the previously found CR loci, Crr1 and Crr2 . Genotypic distribution and statistical analyses did not show any evidence of CR alleles on Crr1 and Crr2 loci in N-WMR-3. The present study clearly demonstrates that B . rapa has at least three CR loci. Therefore, the new CR locus was named Crr3 . The present locus may be useful in breeding CR Chinese cabbage cultivars to overcome the decay of present CR cultivars.

Piao Z Y, Deng Y Q, Choi S R, Park Y J, Lim Y P . SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage( Brassica rapa ssp. pekinensis)
Theor Appl Genet, 2004,108:1458-1465

[本文引用: 2]

Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E . Mapping of isolate-specific QTL for clubroot resistance in Chinese cabbage ( Brassica rapa L. ssp. pekinensis)
Theor Appl Genet, 2008,117:759-767

[本文引用: 2]

Chen J, Jing J, Zhan Z, Zhang T, Zhang C, Piao Z . Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa
PLoS One, 2013,8:e85307

[本文引用: 2]

Chu M, Song T, Falk K C, Zhang X, Liu X, Chang A , Lahlali, R, McGregor L, Gossen B D, Yu F, Peng G. Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae
BMC Genomics, 2014,15:1166

[本文引用: 2]

Yu F, Zhang X, Peng G, Falk K C, Strelkov S E, Gossen B D . Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa
Sci Rep, 2017,7:4516

[本文引用: 2]

Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M . Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa
Theor Appl Genet, 2006,114:81-91

[本文引用: 1]

Zhang T, Zhao Z, Zhang C, Pang W, Choi S R, Lim Y P, Piao Z . Fine genetic and physical mapping of the CRb gene conferring resistance to clubroot disease in Brassica rapa
. Mol Breed, 2014,34:1173-1183

[本文引用: 1]

Kato T, Hatakeyama K, Fukino N, Matsumoto S . Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa
Breed Sci, 2013,63:116-124

[本文引用: 1]

Zhang H, Feng J, Hwang S H, Strelkov S E, Falak I, Huang X, Sun R . Mapping of clubroot ( Plasmodiophora brassicae) resistance in canola( Brassica napus)
Plant Pathol, 2016,65:435-440

[本文引用: 1]

战宗祥, 江莹芬, 朱紫媛, 张春沙, 杨庆勇, 李倩, 侯照科, 龚建芳, 程雨贵, 吴江生, 傅廷栋, 周永明, 朴钟云, 张椿雨 . 与位点 PbBa8.1紧密连锁分子标记的开发及甘蓝型油菜根肿病抗性育种
中国油料作物学报, 2015,37:772-779

DOI:10.7505/j.issn.1007-9084.2015.06.005URL [本文引用: 2]
为培育抗根肿病的甘蓝型油菜新品系,提高油菜抗根肿病能力,以抗病芜菁ECD04(Brassica rapa,AA,2n=20)为供体,结合回交及分子标记辅助选择,将ECD04中抗根肿菌4号生理小种的位点Pb Ba8.1定向地转育到油菜常规品种华双5号(Brassica napus,AACC,2n=38)的遗传背景中。通过将所获得的抗病新品系在多个田间天然病圃进行测试,发现该位点对安徽黄山、湖北枝江、巴东地区的生理小种均表现为单基因显性抗病,由此培育出了ZHE-226抗病新品系。此外,通过借助二代测序技术及比较基因组学研究,还开发了与抗病基因更加紧密连锁的分子标记A08-300。
Zhan Z X, Jiang Y F, Zhu Z Y, Zhang C S, Yang Q Y, Li Q, Hou Z K, Gong J F, Cheng Y G, Wu J S, Fu T D, Zhou Y M, Piao Z Y, Zhang C Y . Development of close linked marker to PbBa8.1 conferring canola resistance to Plasmodiophora brassicae
Chin J Oil Crop Sci, 2015,37:772-779 (in Chinese with English abstract)

DOI:10.7505/j.issn.1007-9084.2015.06.005URL [本文引用: 2]
为培育抗根肿病的甘蓝型油菜新品系,提高油菜抗根肿病能力,以抗病芜菁ECD04(Brassica rapa,AA,2n=20)为供体,结合回交及分子标记辅助选择,将ECD04中抗根肿菌4号生理小种的位点Pb Ba8.1定向地转育到油菜常规品种华双5号(Brassica napus,AACC,2n=38)的遗传背景中。通过将所获得的抗病新品系在多个田间天然病圃进行测试,发现该位点对安徽黄山、湖北枝江、巴东地区的生理小种均表现为单基因显性抗病,由此培育出了ZHE-226抗病新品系。此外,通过借助二代测序技术及比较基因组学研究,还开发了与抗病基因更加紧密连锁的分子标记A08-300。

Pang W, Fu P, Li X, Zhan Z, Yu S, Piao Z . Identification and Mapping of the Clubroot Resistance Gene CRd in Chinese Cabbage( Brassica rapa ssp
pekinensis). Front Plant Sci, 2018,9:653

[本文引用: 1]

Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N . Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa
Plant Mol Biol, 2012,80:621-629

DOI:10.1007/s11103-012-9971-5URLPMID:23054353 [本文引用: 1]
Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage ( Brassica rapa L. ssp. pekinensis ), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa . This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa .

Hatakeyama K, Niwa T, Kato T, Ohara T, Kakizaki T, Matsumoto S . The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L
. Mol Genet Genomics, 2017,292:397-405

[本文引用: 1]

Jones J D, Dangl J L . The plant immune system
Nature, 2006,444:323-329

DOI:10.1038/nature05286URL [本文引用: 1]

Chen J, Pang W, Chen B, Zhang C, Piao Z . Transcriptome analysis of Brassica rapa Near-Isogenic Lines carrying clubroot- resistant and -susceptible alleles in response to Plasmodiophora brassicae during early infection
Front Plant Sci, 2016,6:1183

[本文引用: 1]

Yu F, Zhang X, Huang Z, Chu M, Song T, Falk K, Deora A, Chen Q, Zhang Y , McGregor L, Gossen B D, McDonald M R, Peng G. Identification of genome-wide variants and discovery of variants associated with Brassica rapa clubroot resistance gene Rcr1 through bulked segregant RNA sequencing
PLoS One, 2016,11:e0153218

[本文引用: 1]

Song T, Chu M, Lahlali R, Yu F, Peng G . Shotgun Label-free proteomic analysis of clubroot ( Plasmodiophora brassicae) resistance conferred by the gene Rcr1 in Brassica rapa
Front Plant Sci, 2016,7:1013

[本文引用: 1]

Li H, Li X, Xuan Y, Jiang J, Wei Y, Piao Z . Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa
Front Plant Sci, 2018,9:207

[本文引用: 1]

Matsumoto E, Ueno H, Aruga D, Sakamoto K, Hayashida N . Accumulation of three clubroot resistance genes through marker-assisted selection in Chinese cabbage ( Brassica rapa ssp. pekinensis)
J Jpn Soc Hortic Sci, 2012,81:184-190

[本文引用: 1]

Diederichsen E, Beckmann J, Schondelmeier J, Dreyer F . Genetics of clubroot resistance in Brassica napus ‘Mendel’
Acta Hort, 2006,706:307-312

[本文引用: 1]

Diederichsen E, Frauen M, Linders E G, Hatakeyama K, Hirai M . Status and perspectives of clubroot resistance breeding in crucifer crops
J Plant Growth Regul, 2009,28:265-281

DOI:10.1007/s00344-009-9100-0URL [本文引用: 1]
Clubroot disease is a major threat to crops belonging to the Brassicaceae. It is controlled most effectively by the use of resistant cultivars. Plasmodiophora brassicae , the causal agent, shows a wide variation for pathogenicity, which can be displayed by using differential host sets. Except for Brassica juncea and B. carinata , resistant accessions can be found in all major crops. Most resistance sources are race-specific, despite some race-independent resistant accessions which can be found in B. oleracea . European field isolates from P. brassicae display great variation and show a tendency to overcome different resistance sources from either B. rapa or B. oleracea . At present, resistance genes from stubble turnips ( B. rapa ) are most effective and most widely used in resistance breeding of different Brassica crops. Resistance to P. brassicae from turnips was introduced into Chinese cabbage, oilseed rape, and B. oleracea . Although most turnips carry more than one resistance gene, the resistant cultivars from other crops received primarily a single, dominant resistance gene having a race-specific effect. Populations of P. brassicae that are compatible against most of the used resistance sources have been present in certain European areas for many decades. Such pathogen populations appeared in Japanese Chinese cabbage crops only a few years after the introduction of resistant cultivars. As the spread of virulent P. brassicae pathotypes seems to be slow, resistant cultivars are still a very effective method of control in many cropping areas. Mapping studies have revealed the presence of several clubroot-resistance genes in the Brassica A and C genomes; most of these genes are showing race specificity. Only in B. oleracea was one broad-spectrum locus detected. Two loci from the A genome confer resistance to more than one pathotype, but not to all isolates. Progress made in the determination of resistance loci should be used to formulate and introduce an improved differential set. Future efforts for breeding P. brassicae resistance will focus on durability by broadening the genetic basis of clubroot resistance by using either natural variation or transgenic strategies.

Zhan Z, Nwafor C C, Hou Z, Gong J, Zhu B, Jiang Y, Zhou Y, Wu J, Piao Z, Tong Y, Liu C, Zhang C . Cytological and morphological analysis of hybrids between Brassica raphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L
PLoS One, 2017,12:e0177470

[本文引用: 1]

Matsumoto E, Ueno H, Aruga D, Sakamoto K, Hayashida N . Accumulation of three clubroot resistance genes through marker-assisted selection in Chinese cabbage ( Brassica rapa ssp. pekinensis)
Engei Gakkai Zasshi, 2012,81:184-190

[本文引用: 1]

Diederichsen E, Frauen M, Ludwig-Müller J . Clubroot disease management challenges from a German perspective
Can J Plant Pathol, 2014,36(suppl. 1):85-98

DOI:10.1080/07060661.2013.861871URL [本文引用: 1]
Clubroot research in Germany addresses a broad range of aspects of this disease, including host resistance and its genetic basis, different means of integrated control and basic studies of the physiological alterations in the host during infection. The intimate relationship between Plasmodiophora brassicae Wor. and its host leads to a dramatic change in hormone status, cellular development and source-sink relations. Apart from plant growth-promoting hormones, such as auxins and cytokinins, changes in secondary metabolites were also found to be associated with club development, exhibiting their effect either directly on growth hormones or indirectly via their general bioactive properties. Clubroot resistance is another focus of German research programmes. While clubroot has been a major concern of vegetable growers, now the disease has a significant impact on oilseed rape (Brassica napus L.). Accordingly, recent research addresses different aspects of clubroot control in this crop. The release of the clubroot resistant oilseed rape cultivar 090004Mendel090005 by a German breeding company has been a milestone in clubroot management in oilseed rape worldwide. The efficacy of this resistance source is of key relevance and studies are being undertaken to characterize pathogenic variation. In addition to cultivar resistance, agronomical approaches, such as application of calcium cyanamide, are available, and integrated pest management strategies can address the prevention of the multiplication of P. brassicae inoculum. Clubroot resistance has been studied also in the model plant Arabidopsis thaliana. This work has resulted in the cloning of the resistance locus RPB1.
相关话题/生理 基因 鉴定 资源 材料