删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响

本站小编 Free考研考试/2021-12-26

赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强,*甘肃省干旱生境作物学重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070

Effects of Water-Nitrogen Coupling Patterns on Dry Matter Accumulation and Yield of Wheat under No-tillage with Previous Plastic Mulched Maize

ZHAO Cai, WANG Qiao-Mei, GUO Yao, YIN Wen, FAN Zhi-Long, HU Fa-Long, YU Ai-Zhong, CHAI Qiang,*Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China

通讯作者: 柴强, E-mail: chaiq@gsau.edu.cn

收稿日期:2018-02-6接受日期:2018-07-20网络出版日期:2018-08-08
基金资助:本研究由国家公益性行业(农业)科研项目.201503125-3


Received:2018-02-6Accepted:2018-07-20Online:2018-08-08
Fund supported: This study was supported by the China Special Fund for Agro-scientific Research in the Public Interest.201503125-3


摘要
前茬地膜玉米免耕种植后茬小麦水氮高效利用生产技术是绿洲灌区作物高效生产的新型农田管理技术。为构建该区地膜减量和水氮高效生产技术, 2015—2017年通过3年田间试验, 研究两种耕作方式、2种灌水水平和3个施氮量组合对小麦干物质积累和产量及产量构成的协同效应, 其中耕作方式为覆膜玉米茬免耕直播(NT)和玉米茬传统耕作(CT), 灌水量为传统灌水(I2)和传统灌水减量20% (I1), 施氮量为纯N 225 kg hm -2 (N3)、180 kg hm -2 (N2)和135 kg hm -2 (N1)。结果表明, 耕作方式、灌水水平、施氮量对小麦群体生长速率、干物质积累量均有显著影响。与CT相比, NT显著增大全生育期生长速率, 提高22.0%~28.0%, NT促进小麦地上干物质积累, 提高6.4%~7.4%, 收获期生物产量提高5.4%~15.1%。免耕低灌(NTI1)较传统耕作高灌(CTI2)的生长速率增大7.7%~13.4%, 干物质积累量提高3.1%~5.9%, 收获期生物产量提高8.7%~10.5%。免耕低灌中施氮(NTI1N2)较传统耕作高灌中、高施氮(CTI2N2、CTI2N3) 生长速率分别增大6.9%~20.5%与4.1%~14.0%, 收获期生物产量分别提高7.8%~9.7%与4.8%~10.2%。NT比CT增产10.1%~10.4%, NTI1较CTI2、CTI1分别增产13.0%~14.8%与9.4%~10.1%, NTI1N2比CTI2N2、CTI2N3分别增产3.7%~9.8%与15.2%~22.0%。从产量构成因素分析, NTI1N2提高了单位面积成穗数、穗粒数和千粒重, NTI1N2处理组合更有利于穗数、千粒重的增加。通径分析进一步证明, NTI1N2增产的主要原因是增加了单位面积穗数和千粒重。因此, 在施氮量为180 kg hm -2的基础上, 玉米茬地膜再利用免耕技术组装减少20%灌溉量(1920 m 3 hm -2)轮作小麦模式是河西灌区小麦高效生产的可行措施。
关键词: 春小麦;水氮耦合;耕作措施;干物质积累;作物生产力

Abstract
The high-efficient utilization of water and nitrogen in wheat production under no tillage with previous plastic mulched maize is a new field management technology in oasis irrigation areas. In order to construct the efficient production technology of water and nitrogen in this area, a three-year field experiment was conducted in 2015 to 2017 to determine synergetic effect on dry matter accumulation, yield and its components under two kinds of tillage practices for previous plastic mulched maize (no tillage with plastic mulching, NT; conventional tillage with plastic mulching, CT), two irrigation levels (conventional irrigation, I2; reduced 20% irrigation, I1) and three nitrogen levels (225 kg ha -1, N3; 180 kg ha -1, N2; 135 kg ha -1, N1). The tillage practices, irrigation and nitrogen application had significant effect on crop growth rate and dry matter accumulation of wheat. Compared with CT practice, NT significantly increased crop growth rate and dry matter accumulation of wheat by 22.0% to 28.0% and 6.4% to 7.4%, respectively, during the entire growth period; and improved biomass yield at harvesting stage by 5.4% to 15.1%. Similarly, no tillage with low irrigation (NTI1) increased crop growth rate and dry matter accumulation of wheat by 7.7% to 13.4% and 3.1 to 5.9%, respectively, during the entire growth period, and improved biomass yield at harvesting stage by 8.7% to 10.5%, as compared with conventional tillage with high irrigation (CTI2). No tillage with low irrigation and moderate nitrogen application (NTI1N2) improved crop growth rate by 6.9% to 20.5% and 4.1% to 14.0%, and enhanced biomass yield at harvesting stage by 7.8% to 9.7% and 4.8% to 10.2%, respectively, in comparison to conventional tillage with high irrigation and moderate, high nitrogen (CTI2N2, CTI2N3). Thus, NT practice had greater grain yield of 10.1% to 10.4% more than CT, NTI1 boosted grain yield by 13.0% to 14.8% and 9.4% to 10.1% over CTI2 and CTI1 patterns, respectively. NTI1N2 enhanced grain yield by 3.7% to 9.8% and 15.2% to 22.0%, in comparison to CTI2N2 and CTI2N3 treatments, respectively. In addition, the NTI1N2 treatment significantly increased spike number (SN), kernel number per spike (KNS) and thousand-kernel weight (TKW), and especially SN and TKW of the NTI1N2 treatment were higher than these of other treatments. The path analysis further confirmed that the increase of SN and TKW was the main reason for boosting grain yield of wheat under NTI1N2 treatment. Therefore, the model under no-tillage and previous plastic mulched maize combined with low irrigation (1920 m 3 ha -1) and moderate nitrogen (180 kg ha -1) is feasible for high-efficient production of wheat in an arid oasis irrigation area.
Keywords:spring wheat;water-nitrogen coupling;tillage practice;dry matter accumulation;crop productivity


PDF (347KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703. doi:10.3724/SP.J.1006.2018.01694
ZHAO Cai, WANG Qiao-Mei, GUO Yao, YIN Wen, FAN Zhi-Long, HU Fa-Long, YU Ai-Zhong, CHAI Qiang. Effects of Water-Nitrogen Coupling Patterns on Dry Matter Accumulation and Yield of Wheat under No-tillage with Previous Plastic Mulched Maize[J]. Acta Agronomica Sinica, 2018, 44(11): 1694-1703. doi:10.3724/SP.J.1006.2018.01694


水肥是农业生产的主要限制因子, 适量灌水和施肥可以提高作物产量, 水肥过量则导致水资源浪费和肥料淋失, 降低资源利用率, 而在水分亏缺条件下, 也会降低肥料利用率, 加重环境污染[1]。水氮运筹效应在促进作物高产、资源高效利用等方面具有重要作用[2,3]。通过优化灌溉方式和制度[4,5]、耕作方式[6]、覆盖措施[7]、施肥制度[8]、水肥一体化[9]等技术, 提高作物的水肥高效利用, 其中地膜覆盖技术应用最广[10], 通过改善土壤水热肥等生态因子而调节地温、保持土壤水分、增强作物对深层水肥利用、降低养分流失, 抑制水分蒸发, 提高产量和水肥利用效率[11]。然而, 传统覆盖方式在作物收获后翻耕及休闲期地表裸露, 加重了土壤水分无效蒸发, 且大量地膜残留于土壤造成环境污染[12], 而周年覆膜方式可通过蓄水保墒而增产[13]。另外, 连作导致病虫害严重、产量和品质下降等问题, 也是粮食主产区面临的挑战[14]。作物轮作倒茬具有改善土壤理化性状、平衡土壤水分和养分、减少病虫害、增产以及提高农业资源转化率的优势, 被认为是可持续种植模式之一[15]。因此, 将免耕、地膜覆盖与轮作倒茬集成在同一栽培体系中, 有望同步优化农田土壤水热环境, 调控作物生长发育动态, 提高作物生长水肥需求与农艺调控效应间的吻合度, 建立适用于资源性缺水区作物高效生产的农田管理技术。

西北绿洲灌区是典型的资源性缺水地区, 而且过量施肥在该地区也很普遍。在全面推行非膜不植的生产背景下, 为弱化地膜造成的白色污染, 地膜减量化或残膜再利用技术亟待研发。在小麦生产过程中充分发挥留膜覆盖免耕配套轮作倒茬技术的优势, 是当地粮食产业可持续发展的重要研究方向之一。本研究主要针对西北绿洲灌区粮食产量不稳定等突出问题, 探讨玉米前茬地膜覆盖免耕对后茬小麦光合产物积累的影响, 并分析耕作方式、水分管理和施氮水平三因素协同作用, 为本区小麦高产高效栽培提供理论依据。

1 材料与方法

1.1 试验区概况

甘肃农业大学绿洲农业科研教学基地(37o30′N, 103o5′E)位于河西走廊东端, 为典型的大陆性荒漠气候区, 天然降水少, 年均约150 mm, 年蒸发量约2000~3500 mm, 资源性缺水严重, 种植模式单一, 小麦、玉米作为该区的主要粮食作物, 玉米生产存在“非膜不植”的现状, 小麦露地条播, 普遍连作, 以传统深翻耕为主, 秸秆移出农田。试验区土壤为典型的灌淤土, 2016年传统翻耕处理0~20 cm土层播前含有机质量17.82 g kg-1、全氮0.79 g kg-1、碱解氮106.52 g kg-1、速效钾174.33 mg kg-1、速效磷27.14 mg kg-1; 免耕地膜覆盖处理0~20 cm土层播前含有机质18.00 g kg-1、全氮0.93 g kg-1、碱解氮108.14 g kg-1、速效钾184.51 mg kg-1、速效磷30.92 mg kg-1

1.2 试验设计

2015—2017连续3年进行田间试验, 其中2015年为预备试验, 覆膜玉米灌水、施肥等田间管理措施保持一致。覆膜免耕处理小区在2015年玉米收获后免耕, 保持地膜的完整度在70%以上; 传统耕作处理为玉米收获后回收残膜, 并深翻耕; 2016年免耕直接穴播小麦。同时, 布置2017年免耕种植小麦的预备试验, 覆膜玉米灌水、施肥等田间管理措施与2015年保持一致; 2017年免耕直接穴播小麦。

设三因素裂区试验, 主区为耕作方式, 包括覆膜玉米免耕直播(NT)和玉米茬传统耕作(CT), 裂区为灌水处理, 包括传统灌水(I2, 2400 m3 hm-2)和传统灌水减量20% (I1, 1920 m3 hm-2), 裂-裂区为施氮水平, 分别是低氮(N1, 135 kg hm-2)、中氮(N2, 180 kg hm-2)和高氮(N3, 225 kg hm-2)。3次重复, 共36个小区, 小区面积52 m2。地膜厚0.008 mm, 宽1.4 m。

供试春小麦品种为“陇春30”。播种日期为2016年3月28日和2017年3月26日, 收获日期为2016年7月21日和2017年7月20日。采用简易滚动播种器播种、施肥, 播种密度465万株 hm-2。氮、磷肥(P2O5 150 kg hm-2)全部做基肥施用。按当地灌水习惯, 冬储水1200 m3 hm-2, 苗期、孕穗期和灌浆期各灌水一次, I2分别灌750、900和750 m3 hm-2, I1分别灌600、720和600 m3 hm-2

1.3 生物量和产量相关指标测定方法

自小麦出苗20 d开始, 每15~20 d, 随机取30株, 地上部按器官分开, 105℃烘箱内杀青30 min后, 于85℃下烘至恒重, 测定各部分干重。

CGR = (W2 - W1)/(T2 - T1)

式中, CGR代表群体生长率(kg hm-2 d-1), T2T1为测定时期, W2W1分别为T2T1时期的干重(kg hm-2)。

成熟期随机取每小区30株, 测定穗粒数、千粒重。随机调查每小区3.0 m ×1.2 m面积上的穗数, 折合成每公顷穗数。实收每小区全部植株测产。

1.4 统计分析

采用Microsoft Excel 2010整理和汇总数据, 然后在SPSS 19.0中进行显著性分析 (Duncan’s multiple range tests)、主效应检验、互作效应分析, 以及相关性与通径分析。

2 结果与分析

2.1 不同处理对小麦干物质积累的影响

2.1.1 干物质积累动态 除了灌浆期灌水水平对小麦干物质重无显著影响外, 其他生育时期均受耕作措施(PT < 0.05)、灌水水平(PI < 0.05)、施氮量(PN < 0.05)影响, 且两两交互(PT*I < 0.05、PT*N < 0.05和PI*N < 0.05)及三者交互作用(PT*I*N < 0.05)对其影响显著(图1)。拔节期(5月23日)以前, 小麦干物质积累量在免耕地膜两年利用条件下较传统耕作增加9.6%~9.8%。免耕一膜两年用措施下, 减量灌水较传统灌水降低11.6%~13.1%, 但较传统耕作减量灌水增加6.0%~7.5%; 干物质积累量随着施氮量的减小而降低, 低施氮较中、高施氮分别降低7.8%~8.8%、12.8%~13.1%, 中施氮较高施氮降低4.7%~5.4%。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同耕作措施及水氮耦合模式下小麦干物质积累动态

NT: 免耕地膜两年利用; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); 传统施氮减量40% (135 kg hm-2)。误差线表示标准差(n = 3)。
Fig. 1Dynamic of dry matter accumulation of wheat in different tillage practices and water-nitrogen coupling patterns

NT: no tillage with plastic mulching; CT: conventional tillage with plastic mulching; I2: conventional irrigation (2400 m3 hm-2); I1: reduced 20% irrigation (1920 m3 hm-2); N3: conventional nitrogen application (225 kg hm-2); N2: reduced 20% nitrogen (180 kg hm-2); N1: reduced 40% nitrogen (135 kg hm-2). The error bar indicates standard error (n = 3).


拔节期至孕穗期(5月23日至6月9日), 免耕较传统耕作小麦干物质增加4.1%~19.0%。免耕一膜两年用措施下, 2016年度减量灌水较传统灌水降低10.3%~10.6%, 但较传统耕作减量灌水增加14.2%~33.9%; 干物质积累量随着施氮量的减小而降低, 低施氮较中、高施氮分别降低6.9%~16.2%、12.5%~23.7%, 中施氮较高施氮降低6.0%~10.8%。

灌浆期初期至成熟期(6月22日至7月20日), 免耕较传统耕作小麦干物质增加5.4%~15.1%。免耕一膜两年用措施下, 减量与传统灌水小麦干物质重无显著差异, 但较传统耕作减量及高灌水分别增加7.6%~18.8%、6.2%~10.5%; 小麦干物质积累量随着施氮量的减小而降低, 低施氮较中、高施氮分别降低4.0%~8.9%、4.9%~12.2%, 中、高施氮差异不显著。

以上结果说明, 与传统耕作相比, 免耕地膜两年用配套减量灌水、减量施氮措施仍具有保持较高干物质积累的潜力。特别是减量20%灌水及施肥条件下保持小麦生殖生长期较大的生物量, 为其高产奠定基础。

2.1.2 不同处理的群体生长率 小麦拔节期之前(5月23日), 群体生长率受耕作方式、施氮水平影响显著, 耕作方式与施氮量的交互作用显著(表1)。免耕较传统耕作群体生长率提高13.6%~25.2%。免耕条件下, 低灌较高灌2016年度群体生长率增大15.9%, 但2017年降低9.5%, 比较传统耕作减量灌水增加21.4%~54.0%。小麦群体生长率随着施氮量的降低而降低, 免耕低施氮较中、高施氮分别降低5.8%~6.4%、12.2%~19.1%, 中施氮较高施氮降低6.2%~14.1%, 但免耕中施氮较传统耕作高施氮提高6.3%~15.0%。2016年度, 与传统耕作高灌水高施氮处理相比, 免耕低灌水低、中施氮群体生长率分别提高5.7%、20.7%。

Table 1
表1
表1不同耕作措施及水氮耦合模式下不同生育阶段小麦群体生长速率
Table 1Wheat growth rate of in various growing stages under different tillage practices and water-nitrogen coupling patterns (kg hm-2 d-1)
耕作措施
Tillage practice
灌水水平
Irrigation
level
施氮水平
Fertilizer
level
苗期-拔节期
Seedling to
jointing
拔节-孕穗期
Jointing to booting
孕穗-灌浆初期
Booting to early-filling
灌浆初期-中期
Early-filling to mid-filling
灌浆中期-收获期
Mid-filling to
harvesting
2016
NTI2N3151 b380 a269 g393 a170 d
N2140 cd349 b287 f387 a105 f
N1135 d264 e368 cd241 c196 c
I1N3193 a302 cd406 b213 e230 b
N2156 b279 de352 d302 b253 a
N1144 c226 g409 b298 b87 g
CTI2N3148 bc314 c353 d230 cd143 e
N2130 d296 d319 e223 d232 b
N1136 d280 de314 e183 f139 e
I1N3109 e270 e425 a200 e81 h
N2110 e271 e358 d217 de103 f
N1102 f244 f383 c208 e78 h
2017
NTI2N3112 a297 bc353 de335 b194 c
N297 b337 a346 e384 a184 d
N181 ef299 bc357 de306 c167 e
I1N384 cde327 a378 d347 b206 b
N287 cd281 de426 c305 c219 a
N191 c224 f475 a316 c195 c
CTI2N399 b304 b342 ef244 f209 b
N285 cd298 bc337 ef308 c222 a
N186 cd295 c331 f276 d160 f
I1N374 f309 b449 b273 de183 d
N288 cd277 e463 ab313 c198 bc
N154 g291 cd446 b254 ef130 g
显著性值 (P)
耕作措施 Tillage practice (T)0.002NSNS0.0000.000
灌水水平 Irrigation level (I)NS0.0070.0000.0400.032
施氮量 Nitrogen level (N)0.0000.0000.0000.0000.000
耕作措施×灌水水平 T×INSNSNSNSNS
耕作措施×施氮量 T×N0.0010.0090.0240.0020.000
灌水水平×施氮量 I×NNS0.0040.0000.0000.015
耕作措施×灌水水平×施氮量 T×I×NNS0.0160.0100.038NS
Values followed by different letters are significantly different within the same year among the treatments at the 0.05 probability level. NT: no tillage with plastic mulching; CT: conventional tillage with plastic mulching; I2: conventional irrigation (2400 m3 hm-2); I1: reduced 20% irrigation (1920 m3 hm-2); N3: conventional nitrogen application (225 kg hm-2); N2: reduced 20% nitrogen (180 kg hm-2); N1: reduced 40% nitrogen (135 kg hm-2).
数据后不同字母表示同一年度中所有处理在 0.05 概率水平下差异显著。NT: 免耕地膜两年利用; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); N1: 传统施氮减量40% (135 kg hm-2)。

新窗口打开|下载CSV

灌水、施氮及灌水与施氮、耕作方式与施氮及三者交互作用对小麦拔节至灌浆初期的群体生长率影响显著(表1)。其中拔节至孕穗期(5月23日至6月9日), 减量20%灌水较传统灌水处理群体生长率降低6.5%~15.5%。免耕低灌较高灌降低10.7%~ 18.8%, 较传统高灌降低7.0%~9.4%, 但与传统低灌差异不显著。免耕低施氮较中、高施氮群体生长率分别降低15.2%~22.0%、16.2%~28.1%, 高、中施氮差异不显著, 但免耕中施氮比传统高施氮提高7.7%~9.1%。与前一生育阶段相反, 孕穗至灌浆初期(6月9日至6月22日), 减量20%灌水较传统灌水群体生长率增大22.0%~27.6%。免耕条件下, 相同灌水水平下群体生长率随着施氮量的降低而增大, 传统耕作条件下则相反。特别是免耕低灌中施氮较传统高灌高中施氮提高10.1%~26.6%。

灌浆初期至成熟期(6月22日至7月20日), 小麦群体生长率受耕作方式、灌溉、施氮的显著影响及耕作与施氮、灌溉与施氮交互作用的影响(表1)。该生育阶段, 免耕较传统耕作群体生长率提高13.9%~41.3%。免耕低灌水较高灌水降低5.5%~ 20.2%, 但较传统高、低灌水分别提高4.9%~28.0%与15.2%~118.6%。免耕低施氮较中、高施氮分别降低8.8%~29.0%与9.7%~21.7%, 但免耕中施氮较传统高施氮群体生长率提高33.0%~60.2%。免耕低灌中施氮比传统高灌高施氮群体生长率提高27.8%~ 77.0%。

综上所述, 与传统耕作相比, 覆膜免耕配套减量灌水减量施氮(180 kg hm-2)措施促进小麦拔节至灌浆期群体生长速率, 特别是灌浆期覆膜免耕配合减量施氮与灌水保持较高的群体生长速率, 促进了小麦灌浆, 利于高产。

2.2 不同处理对小麦籽粒产量及产量构成因素的影响

2.2.1 小麦的籽粒产量表现 耕作措施、灌水水平、施氮量以及灌水水平与施氮量二者的互作效应皆对小麦籽粒产量有显著影响(表2)。与传统耕作相比, 免耕地膜两年用处理小麦增产10.1%~10.4%; 低灌较高灌增产2.4%~4.3%, 低施氮较中、高施氮分别减产10.0%~13.6%与6.1%~11.4%, 中施氮与传统高施氮处理间差异不显著。比较相同耕作措施下不同水氮互作的小麦籽粒产量, 传统灌水施氮减量20%处理与低灌水传统高、中施氮处理差异不显著。免耕低灌较传统耕作高、低灌分别增产13.0%~ 14.8%与9.4%~10.1%。免耕低施氮较中、高施氮分别减产8.7%~13.7%与7.9%~10.8%, 但免耕中施氮较传统中、高施氮分别增产6.5%~11.1%与13.0%~ 15.2%。尤其是免耕低灌中施氮比传统耕作高灌中、高施氮分别增产3.7%~9.8%与15.2%~22.0%。免耕一膜两年用减量灌水减量施氮可达到与传统灌水等量施氮水平相当的籽粒产量, 较传统耕作高灌水高施氮具有增产效应, 说明在免耕地膜两年利用措施下, 减量灌水减量施氮具有实现高产的可行性。

Table 2
表2
表2不同耕作措施及水氮耦合模式下小麦的产量及产量构成因素
Table 2Grain yield and yield components of wheat under different tillage practices and water-nitrogen coupling patterns
耕作措施
Tillage practice
灌水水平
Irrigation level
施氮水平
Nitrogen level
籽粒产量
Grain yield
(kg hm-2)
产量构成因素 Yield component
穗数 SN
(×104 hm-2)
穗粒数
KNS
千粒重TKW (g)
2016
NTI2N38734 abc811.1 c45.8 b46.0 de
N28979 ab852.8 b46.1 b51.1 ab
N17908 def783.3 e45.2 b44.7 de
I1N39133 a875.0 a49.7 a51.9 a
N29046 ab861.1 ab50.2 a50.4 abc
N18553 abcd805.6 cd45.5 b47.1 cd
CTI2N37416 ef722.2 g44.3 b45.8 de
N28731 abc794.4 de43.1 bc46.3 de
N17132 f706.9 h39.7 c42.9 e
I1N38227 cde798.6 cde44.9 b48.2 bcd
N28189 cde758.3 f44.6 b47.6 bcd
N17866 def729.2g43.0 bc45.0 de
2017
NTI2N38485 b783 cde41.3 abc45.0 cde
N29148 a840 ab44.3 a49.2 a
N17667 e755 de40.2 abc42.8 def
I1N38927 a846 ab43.6 ab47.4 abc
N28851 a859 a44.7 a48.8 ab
N17863 de774 cde42.2 ab45.7 bcd
CTI2N37685 e745 e40.3 abc42.3 def
N28062 cd739 ef41.4 abc44.4 cde
N16945 f693 f37.5 c40.5 f
I1N38238 bc809 abc41.9 abc45.1 cd
N28141 cd806 bcd41.2 ac47.1 abc
N17060 f764 cde39.0 bc41.6 ef
显著性值 (P)
耕作措施 Tillage practice (T)0.0000.0000.0000.000
灌水水平 Irrigation level (I)0.0000.0130.0000.004
施氮量 Nitrogen level (N)0.0000.0020.0030.000
耕作措施×灌水水平 T×INSNSNSNS
耕作措施×施氮量 T×NNSNSNSNS
灌水水平×施氮量 I×N0.000NSNS0.003
耕作措施×灌水水平×施氮量 T×I×NNSNSNSNS
Values followed by different letters are significantly different (P < 0.05) among the treatments in the same year. NT: no tillage with plastic mulching; CT: conventional tillage with plastic mulching; I2: conventional irrigation (2400 m3 hm-2); I1: reduced 20% irrigation (1920 m3 hm-2); N3: conventional nitrogen application (225 kg hm-2); N2: reduced 20% nitrogen (180 kg hm-2); N1: reduced 40% nitrogen (135 kg hm-2). SN: spike number; KNS: kernel number per spike; TKW: thousand-kernel weight.
数据后不同字母表示同一年度中不同处理差异显著(P < 0.05)。NT: 免耕地膜两年利用; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); N1: 传统施氮减量40% (135 kg hm-2)。SN: 穗数; KNS: 穗粒数; TKW: 千粒重。

新窗口打开|下载CSV

2.2.2 小麦的产量构成因素 耕作措施、灌水及施氮水平对地膜玉米种植后茬小麦单位面积穗数均有显著影响, 且灌水与施氮量交互作用显著(表2)。免耕地膜两年用较传统耕作小麦单位面积穗数提高6.6%~10.6%; 与传统灌水相比, 减量灌水20%单位面积穗数增加5.5%~6.6%; 低施氮较中、高施氮穗数分别减少7.4%~8.0%与6.2%~8.5%, 中施氮与传统高施氮处理间差异不显著。免耕低灌比高灌穗数增多4.3%~7.9%, 比传统耕作高、低灌水穗数分别增多13.9%~18.8%与4.3%~15.6%。免耕低施氮较中、高施氮穗数分别减少7.3%~10.0%与6.1%~11.0%, 但免耕中施氮较传统中、高施氮提高穗数分别达到10.0%~10.4%与9.4%~12.7%。尤其是, 免耕低灌中施氮比传统耕作高灌中、高施氮穗数分别提高8.4%~16.2%与15.3%~19.2%。说明减量灌水减量施氮集成于免耕地膜两年利用可提高小麦单位面积穗数。

就穗粒数而言, 耕作措施与施氮水平对地膜玉米轮作小麦均有显著影响, 但灌水水平及三因素间的交互作用影响不显著(表2)。免耕地膜两年用较传统耕作的小麦穗粒数提高5.2%~8.8%; 减量灌水较传统灌水穗粒数增多3.2%~5.2%; 低施氮较中、高施氮穗粒数分别减少5.8%~7.5%与4.9%~6.1%, 中施氮与传统高施氮处理间差异不显著。免耕低灌比高灌穗粒数增多3.8%~6.1%, 比传统耕作高、低灌水分别增多9.5%~14.3%与6.9%~9.7%。免耕低施氮较中施氮穗粒数减少5.8%~7.4%, 免耕中施氮较传统中、高施氮提高穗粒数分别达到7.7%~9.8%与7.9%~8.3%。免耕低灌中施氮比传统耕作高灌中、高施氮穗粒数分别增多8.0%~16.3%与10.9%~13.2%。说明在免耕地膜两年利用措施下, 减量灌水、施氮仍可提高小麦穗粒数。

就千粒重而言, 耕作措施、灌水与施氮水平对地膜玉米轮作小麦均有显著影响, 三者互作效应无显著影响(表2)。免耕较传统耕作的小麦千粒重提高5.6%~7.0%; 减量灌水20%比传统灌水小麦千粒重增大4.4%~4.9%; 低施氮较中、高施氮千粒重分别降低8.1%~10.0%与5.2%~6.3%, 中施氮与传统高施氮处理间差异不显著。免耕低灌比高灌千粒重增大3.6%~5.4%, 比传统耕作高、低灌水分别增重10.6%~11.5%与6.0%~6.2%。免耕低施氮比中、高施氮千粒重分别减小9.5%~9.8%与4.2%~6.3%, 免耕中施氮较传统中、高施氮增重分别达到7.2%~8.0%与8.0%~12.1%。免耕低灌中施氮比传统耕作高灌中、高施氮分别增重8.8%~10.0%与10.1%~15.3%。说明在前茬地膜玉米免耕集成减量灌水、施氮可增大后茬小麦千粒重。

综上所述, 前茬玉米收割后免耕利于后茬小麦穗数、穗粒数及千粒重的提高, 在灌水及施氮均减量20%条件下小麦产量性状指标提高幅度较大, 是小麦高产的主要缘由之一。

2.3 产量构成因素间的效应机制分析

2016与2017年度, 前茬地膜玉米在不同水氮耦合模式下种植后茬小麦的籽粒产量与穗数、穗粒数、粒重的相关分析和通径分析结果表明, 小麦籽粒产量与穗数、千粒重呈极显著正相关, 与穗粒数在2016年达到显著正相关(表3)。通过籽粒产量与上述指标的直接通径系数可以看出, 两个试验年度, 不同耕作方式及水氮耦合模式对小麦籽粒产量构成因素的影响有差异, 2016年为穗数>千粒重>穗粒数, 2017年为千粒重>穗数>穗粒数; 通过籽粒产量与上述产量构成因素的间接通径系数可知, 穗数通过粒重对籽粒产量的贡献率最大, 千粒重通过穗数对籽粒产量的间接贡献最大。由此说明, 在覆膜玉米茬免耕措施及适宜水氮耦合模式下, 只有保证一定的单位面积穗数才能保证高产, 千粒重的增大是提高籽粒产量的主要途径。

Table 3
表3
表3不同处理小麦籽粒产量与产量因素的相关系数和通径系数
Table 3Correlation coefficient and path coefficient of wheat between grain yield and yield components
年份
Year
指标
Parameter
与籽粒产量的简单相关系数
Correlation coefficient with yield
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient
穗数 SN穗粒数 KSN千粒重 TKW
2016穗数 SN0.764**0.551**-0.1120.325
穗粒数KNS0.391*-0.1630.3810.173
千粒重TKW0.781**0.428**0.419-0.066
2017穗数 SN0.747**0.336*0.0760.335
穗粒数KNS0.635**0.1120.2280.296
千粒重TKW0.786**0.488**0.2310.068
***分别表示0.01与 0.05概率水平下显著。SN: 穗数; KNS: 穗粒数; TKW: 千粒重。
** and * mean significant at the 0.01 and 0.05 probability levels, respectively. SN: spike number; KNS: kernel number per spike; TKW: thousand- kernel weight.

新窗口打开|下载CSV

3 讨论

3.1 小麦干物质积累对不同农艺措施的响应

作物生产中, 干物质累积与分配是高产的重要因素[16,17], 纵观整个作物生长过程, 灌浆期大部分干物质积累主要用于籽粒的形成, 前期贮存于叶片和茎杆中的光合产物所占比例较小[17]。因此, 促进前期茎、叶生长的同时, 加强后期小麦生长至关重要, 即作物生育前期扩源后期壮穗。本研究中, 小麦拔节期之前, 覆膜免耕较传统耕作小麦具有较大的群体生长速率及较高的干物质积累量, 提高比例分别达到13.6%~25.2%与9.6%~9.8%, 而拔节至孕穗期, 耕作措施对群体生长率无显著影响, 但提高了干物质累积量, 特别是小麦灌浆期, 免耕覆膜较传统耕作群体生长率及干物质重分别提高13.9%~ 41.3%与5.4%~15.1%, 提高幅度高于生育前期, 以致于收获期免耕具有较高的生物产量, 说明免耕较传统耕作进一步优化了群体的生长发育动态。其主要原因是, 苗期至拔节期, 大气温度较低, 覆膜较传统露地栽培具有较高的土壤温度, 同时地膜两年利用可提高播前土壤含水量[18], 加快了群体生长; 拔节后, 随着大气温度快速回升, 旧膜免耕较传统耕作土壤温度变化幅度相对较小, 土壤表层墒情较好, 使叶面积系数增加、光合势提高, 降低作物叶片水分饱和亏, 增加植株叶片光合速率和蒸腾速率, 提高植株茎秆伤流量, 进而增加净同化率, 促进了光合产物的形成[19,20]。本研究中, 较传统灌溉、施氮均减量20%的灌水、施氮水平集成于免耕覆膜措施中, 其小麦群体生长率及干物质积累量均高于传统耕作高灌水中、高施氮, 且随着生育期的推进, 提高幅度呈上升趋势。这是因为, 第一, 适量灌水降低了土壤水分无效蒸发, 提高了作物根系对土壤水分的吸收速率, 有利于土壤水分消耗从物理向生理过程的转化, 从无效耗水向有效耗水转化, 增加作物后期蒸腾, 从而促进了干物质的积累, 使作物正常灌浆[21]; 第二, 与传统施氮相比, 减量施氮(180 kg hm-2)会增强小麦根系活力, 促进地上部茎叶生长, 延长叶片、茎、叶鞘等的功能期, 增加叶绿素含量和增大叶面积系数, 通过增强光合作用而提高光合产物合成量[21,22]; 第三, 过量的水分投入使作物生育前期营养生长过旺, 延长作物营养生长期, 出现贪青晚熟现象, 作物不能正常成熟, 营养物质不能及时转移到生殖器官中导致减产, 甚至可能因施肥量过高导致营养器官吸收的养分浓度较高, 一定程度上抑制了植株的生长, 进而影响产量[23,24]。本研究结果与已有研究一致[25], 适当减少作物生育后期供水, 为作物建立良好的冠层结构提高保障, 进而降低冠层温度、增大湿度, 促进了小麦后期干物质积累。说明覆膜免耕结合减量灌水20%、减量施氮(180 kg hm-2), 并利用三者的协同效应既对小麦生长速率和干物质累积产生了显著的促进作用, 也为实现高产奠定了基础。以肥调水、以水促肥是提高有限水肥利用效率的重要农艺措施之一, 在土壤干旱条件下, 科学灌水施氮可以促进作物根系对深层土壤水分的利用、发挥水氮耦合效应, 达到增产目的。

3.2 地膜再利用免耕方式和水氮运筹对小麦产量及构成因素的影响

本研究发现, 覆膜免耕方式下减量灌水20%的减量施氮和传统施氮均获得最高籽粒产量, 且二者差异不显著; 覆膜免耕的籽粒产量显著高于传统耕作, 说明试区小麦生产中采用覆膜免耕结合减量灌水20%、施氮量180 kg hm-2水平下可获得良好的增产效果, 证实减量灌水施氮耦合模式集成于免耕措施的可行性。覆膜免耕显著增产其原因在于, 覆膜免耕方式优化了土壤理化特性, 为小麦后期生长提供了良好的土壤水热环境[10,11], 加之适宜水氮供应, 利于后期小麦光合产物向生殖器官的转运, 同时延长灌浆时间, 增加灌浆强度, 促使籽粒大而饱满, 最终实现增产[21,22]

作物产量是单位面积穗数、穗粒数、粒重等产量性能指标相互协调发展的结果[26]。本研究中, 覆膜免耕减量灌水20%在减量施氮、传统施氮处理下较传统耕作显著提高了单位面积成穗数、千粒重, 这与其苗期保温保墒促出苗, 旺盛生长阶段降温防早衰, 提高土壤养分供应能力的作用密切相关[10,19-20]。免耕覆盖[27]和适量灌水[28]对增大作物穗数和千粒重有显著作用; 减少施氮量可增加小麦穗数、千粒重, 而后期适当干旱有利于提高收获时期小麦千粒重[21]。通过籽粒产量与其产量构成因素的通径分析进一步证明, 免耕留膜方式及水氮运筹提高小麦产量主要因为穗数、千粒重的提高。因此, 在河西绿洲灌区, 保证小麦需氮量(180 kg hm-2)的同时, 旧膜再利用免耕方式集成减量灌水措施能够较好地协调产量构成, 获得较高的籽粒产量, 达到节本增效的目的。

4 结论

与传统耕作的高灌水高施氮模式相比, 免耕地膜2年利用集成减量灌溉(1920 m3 hm-2, 减量灌水20%)、减量施氮 (180 kg hm-2, 减量施氮20%)可提高小麦群体生长速率, 有利于干物质的积累, 获得较高的生物产量。该集成模式有利于小麦单位面积穗数、千粒重的提高, 最终获得较高籽粒产量。在轮作倒茬免耕覆膜基础上, 集成组装减量灌溉、减量施氮的水氮耦合模式是河西灌区实现节水、节肥和地膜减量的小麦高产高效生产的可行技术。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

徐振剑, 华珞, 蔡典雄, 高月亮, 耿琪鹏, 何婷婷 . 农田水肥关系研究现状
首都师范大学学报: 自然科学版, 2007,28:83-88

[本文引用: 1]

Xu Z J, Hua L, Cai D X, Gao Y L, Geng Q P, He T T . Research of relationship between water and fertilizers on dry land
J Capital Norm Univ( Nat Sci Edn), 2007,28:83-88 (in Chinese with English abstract)

[本文引用: 1]

何海兵, 杨茹, 廖江, 武立权, 孔令聪, 黄义德 . 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展
中国农业科学, 2016,49:305-318

DOI:10.3864/j.issn.0578-1752.2016.02.011URL [本文引用: 1]
随着人们对稻米需求量日益增加,水稻(特别是优质稻米)产出需保持逐年增长趋势,但水资源紧缺及水稻生产中过量氮肥投入致环境承载压力增大等因素均阻碍水稻生产。因此,水稻生产当前面临的矛盾是如何在减少资源(水分和氮素)投入条件下产出更多优质稻米,节水省氮栽培模式下获得高产优质稻米是未来水稻生产走可持续发展道路的重要保障。笔者回顾水分管理制度(节水栽培模式、灌溉模式及土壤含水量)、氮肥管理制度(施氮量和施氮方法)及水氮协同管理对灌区水稻产量、品质和水/氮资源利用效率的调控效应,阐明水氮互作对优质高产高效水稻的生理生态调控机制,提出灌区优质高产高效水稻实现过程中潜在的关注点及相应的研究构想。
He H B, Yang R, Liao J, Wu L Q, Kong L C, Huang Y D . Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region
Sci Agric Sin, 2016,49:305-318 (in Chinese with English abstract)

DOI:10.3864/j.issn.0578-1752.2016.02.011URL [本文引用: 1]
随着人们对稻米需求量日益增加,水稻(特别是优质稻米)产出需保持逐年增长趋势,但水资源紧缺及水稻生产中过量氮肥投入致环境承载压力增大等因素均阻碍水稻生产。因此,水稻生产当前面临的矛盾是如何在减少资源(水分和氮素)投入条件下产出更多优质稻米,节水省氮栽培模式下获得高产优质稻米是未来水稻生产走可持续发展道路的重要保障。笔者回顾水分管理制度(节水栽培模式、灌溉模式及土壤含水量)、氮肥管理制度(施氮量和施氮方法)及水氮协同管理对灌区水稻产量、品质和水/氮资源利用效率的调控效应,阐明水氮互作对优质高产高效水稻的生理生态调控机制,提出灌区优质高产高效水稻实现过程中潜在的关注点及相应的研究构想。

Wang Q, Li F, Zhao L, Zhang E, Shi S, Zhao W, Song W, Vance M M . Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland
Plant Soil, 2010,337:325-339

DOI:10.1007/s11104-010-0530-zURL [本文引用: 1]

赵建红, 李玥, 孙永健, 李应洪, 孙加威, 代邹, 谢华英, 徐徽, 马均 . 灌溉方式和氮肥运筹对免耕厢沟栽培杂交稻氮素利用及产量的影响
植物营养与肥料学报, 2016,22:609-617

DOI:10.11674/zwyf.15067URL [本文引用: 1]
【目的】免耕厢沟是四川重点推广的水稻栽培模式。研究该模式下不同灌溉方式和氮肥运筹对水稻干物质累积、转运和氮素利用效率等的影响,可为免耕厢沟水稻栽培水肥管理提供依据。【方法】以杂交中稻F优498为试验材料,采用两因素裂区设计,主区为传统水层灌溉(W1)和干湿交替灌溉(W2)两种灌溉方式,副区为氮肥运筹模式,在总施氮量为150 kg/hm2条件下,设置基肥:蘖肥:穗肥分别为6:2:2(N1)、4:2:4(N2)、2:2:6(N3)等3种氮肥运筹模式,以不施氮(N0)为对照,研究免耕厢沟模式下,杂交稻在齐穗期、成熟期各处理下干物质氮素积累、茎鞘的干物质转运、产量及其构成因子以及氮素利用效率。【结果】灌溉方式和氮肥运筹对水稻主要生育期干物质量和氮吸收、转运及产量具显著影响及互作效应。干湿交替灌溉能扩"库"增"源",保证足够的穗数,提高干物质积累量;淹水灌溉无效分蘖较多,群体质量变差,对干物质积累、氮素吸收、产量造成不利影响。适宜的前氮后移能为水稻整个生育期提供比较平衡的氮素供应,促进氮素的吸收、提高氮素积累、协调氮素分配;N2模式下氮素表观利用率达69%以上,氮肥的农学利用效率、表观利用率比N1(6:2:2)和N3(2:2:6)分别高4.50%36.85%、8.09%28.54%,增产7.47%15.76%。合理的水氮管理显著提高各生育期的氮素积累量,促进齐穗后叶和茎鞘氮素向穗的运转量。【结论】干湿交替灌溉(W2)和氮肥运筹4:2:4(N2)为本试验条件下的最优水氮运筹模式,其充分发挥了水氮耦合优势,促进齐穗后"源"(茎鞘、叶)氮素向"库"(穗)的运转,有利于高产群体构建,有效提高氮素利用率,提高水稻每穗实粒数和结实率,增产效果显著。
Zhao J H, Li Y, Sun Y J, Li Y H, Sun J W, Dai Z, Xie H Y, Xu H, Ma J . Effects of irrigation and nitrogen management on nitrogen use efficiency and yield of hybrid rice cultivated in ditches under no-tillage
Plant Nutr Fert Sci, 2016,22:609-617 (in Chinese with English abstract)

DOI:10.11674/zwyf.15067URL [本文引用: 1]
【目的】免耕厢沟是四川重点推广的水稻栽培模式。研究该模式下不同灌溉方式和氮肥运筹对水稻干物质累积、转运和氮素利用效率等的影响,可为免耕厢沟水稻栽培水肥管理提供依据。【方法】以杂交中稻F优498为试验材料,采用两因素裂区设计,主区为传统水层灌溉(W1)和干湿交替灌溉(W2)两种灌溉方式,副区为氮肥运筹模式,在总施氮量为150 kg/hm2条件下,设置基肥:蘖肥:穗肥分别为6:2:2(N1)、4:2:4(N2)、2:2:6(N3)等3种氮肥运筹模式,以不施氮(N0)为对照,研究免耕厢沟模式下,杂交稻在齐穗期、成熟期各处理下干物质氮素积累、茎鞘的干物质转运、产量及其构成因子以及氮素利用效率。【结果】灌溉方式和氮肥运筹对水稻主要生育期干物质量和氮吸收、转运及产量具显著影响及互作效应。干湿交替灌溉能扩"库"增"源",保证足够的穗数,提高干物质积累量;淹水灌溉无效分蘖较多,群体质量变差,对干物质积累、氮素吸收、产量造成不利影响。适宜的前氮后移能为水稻整个生育期提供比较平衡的氮素供应,促进氮素的吸收、提高氮素积累、协调氮素分配;N2模式下氮素表观利用率达69%以上,氮肥的农学利用效率、表观利用率比N1(6:2:2)和N3(2:2:6)分别高4.50%36.85%、8.09%28.54%,增产7.47%15.76%。合理的水氮管理显著提高各生育期的氮素积累量,促进齐穗后叶和茎鞘氮素向穗的运转量。【结论】干湿交替灌溉(W2)和氮肥运筹4:2:4(N2)为本试验条件下的最优水氮运筹模式,其充分发挥了水氮耦合优势,促进齐穗后"源"(茎鞘、叶)氮素向"库"(穗)的运转,有利于高产群体构建,有效提高氮素利用率,提高水稻每穗实粒数和结实率,增产效果显著。

赵良菊, 肖洪浪, 李新荣, 罗芳, 李守中 . 灌水量对土壤水肥分布与春小麦水分利用效率的影响
中国沙漠, 2005,25:256-261

DOI:10.3321/j.issn:1000-694X.2005.02.015URL [本文引用: 1]
The optimal irrigation quota was estimated for spring wheat planted in Shapotou hiberarchy soil, through measuration of soil water and nutrient in soil profile, field evapotranspiration, water use efficiency and bio-indices of spring wheat under conditions of different irrigation quota. The results indicated that: (1) Soil water distributing depth increased obviously with the increase of irrigation quota in jointing and flowering stages of spring wheat; (2) The ranges of distributing peak values of soluble nutrient varied about 0~20 cm, with diminished concentrations along with the increasing of irrigation quota in the jointing stage of spring wheat. In flowering stage, with the increasing of irrigation quota, the depth of the distributing peak values of soluble nutrient moved downwards with maximal soluble nutrient concentration under the 500 m·hm irrigation; (3) Consumed water of spring wheat and field actual evaportranspiration increased with the increasing of the irrigation quota, but the water use efficiency(WUE) changed inversely. Compared with the WUE under 500 m·hm irrigation quota, the WUE of grain under 750 m·hm and (1 000) m·hm decreased 83.33% and 147.50%, respectively. So the optimal irrigation quot was about 500 m·hm for planting spring wheat on this type soil, which would hold about 40% of field maximal capacity.
Zhao L J, Xiao H L, Li X R, Luo F, Li S Z . Effect of different irrigation quota on water-nutrient distribution in soil profile and water use efficiency of spring wheat
J Desert Res, 2005,25:256-261 (in Chinese with English abstract)

DOI:10.3321/j.issn:1000-694X.2005.02.015URL [本文引用: 1]
The optimal irrigation quota was estimated for spring wheat planted in Shapotou hiberarchy soil, through measuration of soil water and nutrient in soil profile, field evapotranspiration, water use efficiency and bio-indices of spring wheat under conditions of different irrigation quota. The results indicated that: (1) Soil water distributing depth increased obviously with the increase of irrigation quota in jointing and flowering stages of spring wheat; (2) The ranges of distributing peak values of soluble nutrient varied about 0~20 cm, with diminished concentrations along with the increasing of irrigation quota in the jointing stage of spring wheat. In flowering stage, with the increasing of irrigation quota, the depth of the distributing peak values of soluble nutrient moved downwards with maximal soluble nutrient concentration under the 500 m·hm irrigation; (3) Consumed water of spring wheat and field actual evaportranspiration increased with the increasing of the irrigation quota, but the water use efficiency(WUE) changed inversely. Compared with the WUE under 500 m·hm irrigation quota, the WUE of grain under 750 m·hm and (1 000) m·hm decreased 83.33% and 147.50%, respectively. So the optimal irrigation quot was about 500 m·hm for planting spring wheat on this type soil, which would hold about 40% of field maximal capacity.

李友军, 黄明, 吴金芝, 姚宇卿, 吕军杰 . 不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响
水土保持学报, 2006,20:42-45

DOI:10.3321/j.issn:1009-2242.2006.02.011URL [本文引用: 1]
In order to filtrate the feasible tillage technology in sloping farmland of Yuxi dryland area,four tillages including reduce tillage,no-till,subsoiling tillage and conventional tillage were studied on the content of soil water and soil nutrient and its utilization and run off complexion.The results showed as following:with subsoiling tillage and no-till,the soil water storage were increased and the content of the soil organic quality,N,P and K content were evidently higher than conventional tillage,especially the effects of the whole N and alkali solution N in upper soil layer and the available P and soon effect K in deeper soil layer were more obvious,and the times and content of water run-off were reduced effectively,and soil nutrient run-off were reduced too.Therefore,the use efficiency of soil water and the production efficiency of soil nutrient can be improved after with subsoiling tillage and no-till.Compared with conventional tillage,the water use efficiency,the N,P,K production efficiency,the yield of winter wheat and the economic benefit increased by 16.37%,17.40%,19.80%, 19.44%,23.22% and 29.36% respectively after with subsoiling tillage and those items also improved by 10.62%,10.27%,12.54%,12.19%,15.38% and 21.13% after with no-till.
Li Y J, Huang M, Wu J Z, Yao Y Q, Lyu J J . Effects of different tillage on utilization and run-off of water and nutrient in sloping farmland of Yuxi dryland area
J Soil Water Conserv, 2006,20:42-45 (in Chinese with English abstract)

DOI:10.3321/j.issn:1009-2242.2006.02.011URL [本文引用: 1]
In order to filtrate the feasible tillage technology in sloping farmland of Yuxi dryland area,four tillages including reduce tillage,no-till,subsoiling tillage and conventional tillage were studied on the content of soil water and soil nutrient and its utilization and run off complexion.The results showed as following:with subsoiling tillage and no-till,the soil water storage were increased and the content of the soil organic quality,N,P and K content were evidently higher than conventional tillage,especially the effects of the whole N and alkali solution N in upper soil layer and the available P and soon effect K in deeper soil layer were more obvious,and the times and content of water run-off were reduced effectively,and soil nutrient run-off were reduced too.Therefore,the use efficiency of soil water and the production efficiency of soil nutrient can be improved after with subsoiling tillage and no-till.Compared with conventional tillage,the water use efficiency,the N,P,K production efficiency,the yield of winter wheat and the economic benefit increased by 16.37%,17.40%,19.80%, 19.44%,23.22% and 29.36% respectively after with subsoiling tillage and those items also improved by 10.62%,10.27%,12.54%,12.19%,15.38% and 21.13% after with no-till.

李强, 王朝辉, 戴健, 李富翠, 李孟华, 赵护兵, 曹群虎 . 氮肥调控与地表覆盖对旱地冬小麦氮素吸收及残留淋失的影响
中国农业科学, 2013,46:1380-1389

DOI:10.3864/j.issn.0578-1752.2013.07.008URL [本文引用: 1]
【Objective】Since water deficiency and unreasonable nitrogen (N) fertilization are the key factors impacting crop production in dryland area of Northwest China, it is of great importance to work on fertilization and cultivation management for increasing crop yield, water and fertilizer efficiency in this area.【Method】Long term field experiments were carried out to study the effects of topdressing at early spring, N fertilizer regulation, ridge-mulching and furrow seeding, seeding density and straw mulching during summer fallow on winter wheat yield, N uptake, residual nitrate-N after crop harvest and its leaching, and soil N mineralization during summer fallow.【Result】Results showed that compared with conventional fertilization, topdressing at early spring, N fertilizer regulation and topdressing at early spring, N fertilizer regulation and ridge mulching with furrow seeding, N fertilizer regulation and ridge mulching with furrow seeding at high seeding density increased winter wheat yield by 15.7%, 22.2%, 38.6% and 22.4%, N uptake by 25.0%, 32.0%, 36.4% and 6.4%, and N harvest index by 3.8%, 3.3%, 5.7% and 6.8%,but decreased residual nitrate-N in current season by 30.9%, 20.0%, 59.5% and 68.2%, and also decreased leaching of nitrate-N to deep soil layers below 60 cm by 27.5%, 24.6%, 42.3% and 24.3% during summer fallow. 【Conclusion】Thus, topdressing at early spring, N fertilizer regulation and topdressing at early spring, N fertilizer regulation and ridge mulching with furrow seeding, N fertilizer regulation and ridge mulching with furrow seeding at high seeding density increased winter wheat yield while promoting plant N uptake and decreasing residual nitrate-N in Weibei arid areas. The practice of N fertilizer regulation and ridge mulching with furrow seeding combined with covering soil surface by straw mulching during summer fallow increased the water storage in summer fallow while preventing nitrate-N leaching to deep soil, thus is recommended in dryland area of Northwest China.
Li Q, Wang Z H, Dai J, Li F C, Li M H, Zhao H B, Cao Q H . Effects of nitrogen fertilizer regulation and soil surface mulching on nitrogen use by winter wheat and its residue and leaching in dryland soil
Sci Agric Sin, 2013,46:1380-1389 (in Chinese with English abstract)

DOI:10.3864/j.issn.0578-1752.2013.07.008URL [本文引用: 1]
【Objective】Since water deficiency and unreasonable nitrogen (N) fertilization are the key factors impacting crop production in dryland area of Northwest China, it is of great importance to work on fertilization and cultivation management for increasing crop yield, water and fertilizer efficiency in this area.【Method】Long term field experiments were carried out to study the effects of topdressing at early spring, N fertilizer regulation, ridge-mulching and furrow seeding, seeding density and straw mulching during summer fallow on winter wheat yield, N uptake, residual nitrate-N after crop harvest and its leaching, and soil N mineralization during summer fallow.【Result】Results showed that compared with conventional fertilization, topdressing at early spring, N fertilizer regulation and topdressing at early spring, N fertilizer regulation and ridge mulching with furrow seeding, N fertilizer regulation and ridge mulching with furrow seeding at high seeding density increased winter wheat yield by 15.7%, 22.2%, 38.6% and 22.4%, N uptake by 25.0%, 32.0%, 36.4% and 6.4%, and N harvest index by 3.8%, 3.3%, 5.7% and 6.8%,but decreased residual nitrate-N in current season by 30.9%, 20.0%, 59.5% and 68.2%, and also decreased leaching of nitrate-N to deep soil layers below 60 cm by 27.5%, 24.6%, 42.3% and 24.3% during summer fallow. 【Conclusion】Thus, topdressing at early spring, N fertilizer regulation and topdressing at early spring, N fertilizer regulation and ridge mulching with furrow seeding, N fertilizer regulation and ridge mulching with furrow seeding at high seeding density increased winter wheat yield while promoting plant N uptake and decreasing residual nitrate-N in Weibei arid areas. The practice of N fertilizer regulation and ridge mulching with furrow seeding combined with covering soil surface by straw mulching during summer fallow increased the water storage in summer fallow while preventing nitrate-N leaching to deep soil, thus is recommended in dryland area of Northwest China.

杨君林, 马忠明, 张立勤, 王智琦, 连彩云, 薛亮 . 施氮量对河西绿洲灌区垄作春小麦土壤水氮动态及吸收利用的影响
麦类作物学报, 2015,35:1262-1268

DOI:10.7606/j.issn.1009-1041.2015.09.13URL [本文引用: 1]
为给河西绿洲灌区春小麦垄作栽 培中的合理施氮提供参考依据,设置0、150、300kg·hm-2三个施氮水平,研究了施氮量对垄作春小麦土壤水氮动态及吸收利用的影响。结果表明,从 垄作春小麦播种到收获,土壤含水量持续降低,各生育时期0~200cm土壤含水量均随施氮量的增加而降低。施氮量越大,土壤硝态氮累积越多,且在垂直方向 上施氮300kg·hm-2时土壤硝态氮累积下界面由60cm土层下移到200cm深处,施150kg·hm-2时土壤硝态氮累积下界面由60cm土层下 移到140cm深处。随施氮量的增加,产量先增后降,施氮300kg·hm-2时氮肥利用率和氮素残留率分别为21.14%和73.84%,而施氮 150kg·hm-2时分别为25.80%和51.93%,两个施氮处理间氮肥利用率差异不显著(P0.05),而氮素残留率差异达到极显著水平 (P0.01)。可见,适量施氮有利于垄作春小麦生长,而过量施氮不仅会导致小麦减产,而且会使大量氮素残留在土壤中,从而加大硝态氮淋溶及污染地下水的 危险性。
Yang J L, Ma Z M, Zhang L Q, Wang Z Q, Lian C Y, Xue L . Effect of nitrogen fertilizer rate on soil water-nitrogen dynamics and absorption and utilization of ridge culture spring wheat in Hexi oasis irrigation distract
J Triticeae Crops, 2015,35:1262-1268 (in Chinese with English abstract)

DOI:10.7606/j.issn.1009-1041.2015.09.13URL [本文引用: 1]
为给河西绿洲灌区春小麦垄作栽 培中的合理施氮提供参考依据,设置0、150、300kg·hm-2三个施氮水平,研究了施氮量对垄作春小麦土壤水氮动态及吸收利用的影响。结果表明,从 垄作春小麦播种到收获,土壤含水量持续降低,各生育时期0~200cm土壤含水量均随施氮量的增加而降低。施氮量越大,土壤硝态氮累积越多,且在垂直方向 上施氮300kg·hm-2时土壤硝态氮累积下界面由60cm土层下移到200cm深处,施150kg·hm-2时土壤硝态氮累积下界面由60cm土层下 移到140cm深处。随施氮量的增加,产量先增后降,施氮300kg·hm-2时氮肥利用率和氮素残留率分别为21.14%和73.84%,而施氮 150kg·hm-2时分别为25.80%和51.93%,两个施氮处理间氮肥利用率差异不显著(P0.05),而氮素残留率差异达到极显著水平 (P0.01)。可见,适量施氮有利于垄作春小麦生长,而过量施氮不仅会导致小麦减产,而且会使大量氮素残留在土壤中,从而加大硝态氮淋溶及污染地下水的 危险性。

张国桥, 王静, 刘涛 , William G, 褚贵新. 水肥一体化施磷对滴灌玉米产量、磷素营养及磷肥利用效率的影响
植物营养与肥料学报, 2014,20:1103-1109

[本文引用: 1]

Zhang G Q, Wang J, Liu T, William G, Chu G X . Effect of water and P fertilizer coupling on corn yield, P uptake, and P utilization efficiency with drip irrigation in a calcareous soil
Plant Nutr Fert Sci, 2014,20:1103-1109 (in Chinese with English abstract)

[本文引用: 1]

殷文, 陈桂平, 柴强, 赵财, 冯福学, 于爱忠, 胡发龙, 郭瑶 . 前茬小麦秸秆处理方式对河西走廊地膜覆盖玉米农田土壤水热特性的影响
中国农业科学, 2016,49:2898-2908

[本文引用: 3]

Yin W, Chen G P, Chai Q, Zhao C, Feng F X, Yu A Z, Hu F L, Guo Y . Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi Corridor
Sci Agric Sin, 2016,49:2898-2908 (in Chinese with English abstract)

[本文引用: 3]

Wu Y, Huang F, Jia Z, Ren X, Cai T . Response of soil water, temperature, and maize (Zea may L.
) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Till Res, 2017,166:113-121

[本文引用: 2]

赵财, 柴强, 冯福学, 殷文, 胡发龙, 周文斌 . 不同灌水水平下一膜两年覆盖间作农田耗水特征及经济效益研究
中国生态农业学报, 2016,24:744-752

DOI:10.13930/j.cnki.cjea.151041URL [本文引用: 1]
以河西走廊区主导间作模式玉米|豌豆间作系统为研究对象,在高(7 200 m3·hm-2)、中(6 450 m3·hm-2)、低(5 700 m3·hm-2)3种灌水水平下,研究了一膜两年覆盖、秋免耕春覆膜和传统耕作覆膜对间作群体耗水量和棵间蒸发的影响,以期为间作种植模式的优化耕作措施、地膜再利用、提高水分利用效率等提供理论依据。结果表明,不同灌水水平对间作群体生育期棵间蒸发量存在显著影响,随灌水水平的提高棵间蒸发量增大;但在相同灌水水平下不同覆膜方式间差异不明显,且互作效应不显著;不同处理豌豆收获前、后,间作农田棵间蒸发在玉米带和豌豆带存在显著差异,不同处理收获前、后豌豆带棵间蒸发量平均值较玉米带分别高68.51%和69.30%;豌豆带是造成间作农田系统蒸发耗水大的主要因素,占地60%的玉米带棵间蒸发量只占农田蒸发总量的44.47%,而占地仅为40%的豌豆带蒸发量却占55.53%;玉米间作豌豆农田棵间蒸发主要发生在豌豆收获以后,豌豆收获前的棵间蒸发仅占总蒸发量的26.98%。一膜两年覆盖可显著提高单方水效益,不同灌水处理平均值较秋免耕春覆膜和传统耕作覆膜方式分别提高7.39%和31.33%,且在中等灌水条件下一膜两年覆盖的单方水效益最高,达2.51元·m-3。研究结果表明相同灌水水平下一膜两年覆盖玉米带抑制农田棵间蒸发、减少水分无效损失的效果与传统覆膜方式相当;农田棵间蒸发量、耗水结构(E/ET)与灌水水平间呈正相关关系;在中等灌水水平下一膜两年覆盖可获得较高的经济效益。
Zhao C, Chai Q, Feng F X, Yin W, Hu F L, Zhou W B . Characteristics and economic benefits of water consumption in intercropping fields with one plastic film mulching for two years and different irrigation levels
Chin J Eco-Agric, 2016,24:744-752 (in Chinese with English abstract)

DOI:10.13930/j.cnki.cjea.151041URL [本文引用: 1]
以河西走廊区主导间作模式玉米|豌豆间作系统为研究对象,在高(7 200 m3·hm-2)、中(6 450 m3·hm-2)、低(5 700 m3·hm-2)3种灌水水平下,研究了一膜两年覆盖、秋免耕春覆膜和传统耕作覆膜对间作群体耗水量和棵间蒸发的影响,以期为间作种植模式的优化耕作措施、地膜再利用、提高水分利用效率等提供理论依据。结果表明,不同灌水水平对间作群体生育期棵间蒸发量存在显著影响,随灌水水平的提高棵间蒸发量增大;但在相同灌水水平下不同覆膜方式间差异不明显,且互作效应不显著;不同处理豌豆收获前、后,间作农田棵间蒸发在玉米带和豌豆带存在显著差异,不同处理收获前、后豌豆带棵间蒸发量平均值较玉米带分别高68.51%和69.30%;豌豆带是造成间作农田系统蒸发耗水大的主要因素,占地60%的玉米带棵间蒸发量只占农田蒸发总量的44.47%,而占地仅为40%的豌豆带蒸发量却占55.53%;玉米间作豌豆农田棵间蒸发主要发生在豌豆收获以后,豌豆收获前的棵间蒸发仅占总蒸发量的26.98%。一膜两年覆盖可显著提高单方水效益,不同灌水处理平均值较秋免耕春覆膜和传统耕作覆膜方式分别提高7.39%和31.33%,且在中等灌水条件下一膜两年覆盖的单方水效益最高,达2.51元·m-3。研究结果表明相同灌水水平下一膜两年覆盖玉米带抑制农田棵间蒸发、减少水分无效损失的效果与传统覆膜方式相当;农田棵间蒸发量、耗水结构(E/ET)与灌水水平间呈正相关关系;在中等灌水水平下一膜两年覆盖可获得较高的经济效益。

Su Z, Zhang J, Wu W, Cai D, Lyu J, Jiang G, Huang J, Gao J, Hartmann R, Gabriels D . Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China
Agric Water Manage, 2007,87:307-314

DOI:10.1016/j.agwat.2006.08.005URL [本文引用: 1]

卢秉林, 包兴国, 张久东, 胡志桥, 杨新强, 曹卫东, 杨文玉, 李全福 . 河西绿洲灌区玉米与绿肥间作模式对作物产量和经济效益的影响
中国土壤与肥料, 2014, ( 2):67-71

DOI:10.11838/sfsc.20140214URL [本文引用: 1]
通过田间试验,研究河西绿洲灌区玉米与绿肥间作模式对作物产量和经济效益的影响。结果表明,3行玉米间作2行针叶豌豆时的玉米生物产量和籽粒产量均为最高,分别高于对应的不间作绿肥处理0.2%和0.95%,但差异不显著。2行玉米间作3行毛苕子时的绿肥干草产量最高,2年的平均产量为3 901 kg·hm-2,显著高于其它处理。2行玉米间作3行针叶豌豆时的绿肥豆类籽粒产量最高,2年的平均产量为2 225 kg·hm-2,同样显著高于其它处理。3行玉米间作3行针叶豌豆时的经济效益最高,为35 038元·hm-2,比2行玉米不间作绿肥处理每公顷增值7 848元,增收28.86%,比3行玉米不间作绿肥处理每公顷增值5 853元,增收20.05%。因此,在河西绿洲灌区进行玉米种植时,若以收获玉米籽粒为主,则适宜采用3行玉米间作2行针叶豌豆种植模式;若以经济效益为主,则适宜采用3行玉米间作3行针叶豌豆的种植模式。
Lu B L, Bao X G, Zhang J D, Hu Z Q, Yang X Q, Cao W D, Yang W Y, Li Q F . Effects of different intercropping systems of corn and green manure on crop yield and economic benefit in Hexi Oasis Irrigation
China Soils Fert, 2014, ( 2):67-71 (in Chinese with English abstract)

DOI:10.11838/sfsc.20140214URL [本文引用: 1]
通过田间试验,研究河西绿洲灌区玉米与绿肥间作模式对作物产量和经济效益的影响。结果表明,3行玉米间作2行针叶豌豆时的玉米生物产量和籽粒产量均为最高,分别高于对应的不间作绿肥处理0.2%和0.95%,但差异不显著。2行玉米间作3行毛苕子时的绿肥干草产量最高,2年的平均产量为3 901 kg·hm-2,显著高于其它处理。2行玉米间作3行针叶豌豆时的绿肥豆类籽粒产量最高,2年的平均产量为2 225 kg·hm-2,同样显著高于其它处理。3行玉米间作3行针叶豌豆时的经济效益最高,为35 038元·hm-2,比2行玉米不间作绿肥处理每公顷增值7 848元,增收28.86%,比3行玉米不间作绿肥处理每公顷增值5 853元,增收20.05%。因此,在河西绿洲灌区进行玉米种植时,若以收获玉米籽粒为主,则适宜采用3行玉米间作2行针叶豌豆种植模式;若以经济效益为主,则适宜采用3行玉米间作3行针叶豌豆的种植模式。

G??b T, ?cigalska B, ?abuz B . Effect of crop rotation on the root system morphology and productivity of triticale (Triticosecale Wittm)
J Agric Sci, 2014,152:642-654

DOI:10.1017/S0021859613000282URL [本文引用: 1]

Bidinger F, Musgrave R B, Fischer R A . Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley
Nature, 1977,270:431-433

DOI:10.1038/270431a0URL [本文引用: 1]

Chen L, Qiao Z J, Wang J J . Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet
Agri Sci Tech, 2015,16:1425-1428

[本文引用: 2]

赵财, 陈桂平, 柴强, 于爱忠, 殷文 . 不同灌水水平下少耕地膜覆盖对玉米农田土壤温度和水分利用效率的影响
干旱地区农业研究, 2017,35:152-157

[本文引用: 1]

Zhao C, Chen G P, Chai Q, Yu A Z, Yin W . The effect of minimum tillage and mulching on soil temperature and WUE of maize under different irrigation levels
Agric Res Arid Areas, 2017,35:152-157 (in Chinese with English abstract)

[本文引用: 1]

苏永中, 张珂, 刘婷娜, 王婷 . 免耕旧膜再利用对玉米产量及灌溉水生产力的影响
农业环境科学学报, 2016,33:491-498

DOI:10.13254/j.jare.2016.0055URL [本文引用: 2]
在河西走廊中段边缘绿洲安排田间试验,明确保护性耕作地膜再利用栽培对玉米产量及灌溉水生产力的影响,探讨降低农田残膜污染、节本增效和可持续土地利用的耕作栽培管理方式。试验涉及3种不同质地与肥力水平的土壤,设3个处理:(1)传统耕作与冬灌、覆新膜栽培(NM);(2)免耕少冬灌、旧膜直播(RM);(3)免耕少冬灌、旧膜直播行间秸秆覆盖(RMS)。结果表明,在玉米播种后至拔节期前,日平均土壤温度2个免耕旧膜直播处理较传统覆新膜处理仅低0.61.0℃(5 cm土层)和0.50.8℃(15 cm土层),表明旧膜直播仍具地膜覆盖提高地温的效应。玉米产量免耕旧膜直播较覆新膜降低4.4%-10.6%,但节省了耕作和地膜投入,收益增加。免耕旧膜直播结合秸秆覆盖栽培方式玉米产量与新覆膜栽培持平,净收入提高12.5%-17.1%。免耕旧膜直播栽培减少了冬灌量,灌溉水生产力提高。土壤质地与肥力水平对作物吸氮量、灌溉水生产力影响显著。在水资源紧缺的干旱区绿洲,适时进行保护性耕作地膜再利用栽培技术是节本增效、土地可持续利用的一种选择。
Su Y Z, Zhang K, Liu T N, Wang T . Effects of no-tillage combined with reused plastic film mulching on maize yield and irrigation water productivity
J Agro-Environ Sci, 2016,33:491-498 (in Chinese with English abstract)

DOI:10.13254/j.jare.2016.0055URL [本文引用: 2]
在河西走廊中段边缘绿洲安排田间试验,明确保护性耕作地膜再利用栽培对玉米产量及灌溉水生产力的影响,探讨降低农田残膜污染、节本增效和可持续土地利用的耕作栽培管理方式。试验涉及3种不同质地与肥力水平的土壤,设3个处理:(1)传统耕作与冬灌、覆新膜栽培(NM);(2)免耕少冬灌、旧膜直播(RM);(3)免耕少冬灌、旧膜直播行间秸秆覆盖(RMS)。结果表明,在玉米播种后至拔节期前,日平均土壤温度2个免耕旧膜直播处理较传统覆新膜处理仅低0.61.0℃(5 cm土层)和0.50.8℃(15 cm土层),表明旧膜直播仍具地膜覆盖提高地温的效应。玉米产量免耕旧膜直播较覆新膜降低4.4%-10.6%,但节省了耕作和地膜投入,收益增加。免耕旧膜直播结合秸秆覆盖栽培方式玉米产量与新覆膜栽培持平,净收入提高12.5%-17.1%。免耕旧膜直播栽培减少了冬灌量,灌溉水生产力提高。土壤质地与肥力水平对作物吸氮量、灌溉水生产力影响显著。在水资源紧缺的干旱区绿洲,适时进行保护性耕作地膜再利用栽培技术是节本增效、土地可持续利用的一种选择。

高翔, 龚道枝, 顾峰雪, 郝卫平, 梅旭荣 . 覆膜抑制土壤呼吸提高旱作春玉米产量
农业工程学报, 2014,30(6):62-70

Magsci [本文引用: 2]
为从农田碳通量角度揭示地膜覆盖种植方式的增产增效机理,于2011年在山西寿阳旱作农业野外试验站对覆膜和露地春玉米田,进行了表层土壤温湿度、土壤呼吸和净碳交换规律及作物生长发育规律的研究和分析。结果表明:与露地处理相比较,覆膜处理全生育期表层土壤含水率提高了18.7%,前期可平均提高表层土壤温度1.67℃。覆膜和露地处理土壤呼吸变化规律总体一致,但前者的温度敏感系数Q10比后者低,且中后期前者排放的碳仅为后者的61.7%,说明采用覆盖地膜种植方式有利于农田土壤碳管理。前期和中期覆膜处理绿叶面积指数比露地处理平均高0.81 m2/m2,后期覆膜处理衰老较快,收获时比露地处理低1.00 m2/m2;露地处理在前期和中期日均净碳通量平均比覆膜处理大0.04 mg/(m2·s),而后期仅小0.02 mg/(m2·s),这是造成2处理最终生物产量和经济产量差异的根本原因。在地上干物质积累和地下干物质积累方面,覆膜处理始终比露地处理高,收获时差值分别为269.7和38.6 g/m2。露地处理每公顷少收春玉米籽粒1 348 kg。由此可见,覆膜种植可提高表层土壤温湿度,促进作物生长发育,抑制土壤呼吸,促进碳积累,增加农民收入的同时更有利于土壤碳管理。
Gao X, Gong D Z, Gu F X, Hao W P, Mei X R . Inhibiting soil respiration and improving yield of spring maize in fields with plastic film mulching
Trans CSAE, 2014,30(6):62-70 (in Chinese with English abstract)

Magsci [本文引用: 2]
为从农田碳通量角度揭示地膜覆盖种植方式的增产增效机理,于2011年在山西寿阳旱作农业野外试验站对覆膜和露地春玉米田,进行了表层土壤温湿度、土壤呼吸和净碳交换规律及作物生长发育规律的研究和分析。结果表明:与露地处理相比较,覆膜处理全生育期表层土壤含水率提高了18.7%,前期可平均提高表层土壤温度1.67℃。覆膜和露地处理土壤呼吸变化规律总体一致,但前者的温度敏感系数Q10比后者低,且中后期前者排放的碳仅为后者的61.7%,说明采用覆盖地膜种植方式有利于农田土壤碳管理。前期和中期覆膜处理绿叶面积指数比露地处理平均高0.81 m2/m2,后期覆膜处理衰老较快,收获时比露地处理低1.00 m2/m2;露地处理在前期和中期日均净碳通量平均比覆膜处理大0.04 mg/(m2·s),而后期仅小0.02 mg/(m2·s),这是造成2处理最终生物产量和经济产量差异的根本原因。在地上干物质积累和地下干物质积累方面,覆膜处理始终比露地处理高,收获时差值分别为269.7和38.6 g/m2。露地处理每公顷少收春玉米籽粒1 348 kg。由此可见,覆膜种植可提高表层土壤温湿度,促进作物生长发育,抑制土壤呼吸,促进碳积累,增加农民收入的同时更有利于土壤碳管理。

宋明丹, 李正鹏, 冯浩 . 不同水氮水平冬小麦干物质积累特征及产量效应
农业工程学报, 2016,32(2):119-126

Magsci [本文引用: 4]
为了阐明灌水施氮对冬小麦干物质积累和产量形成的影响机制,通过2012-2014年在关中平原进行的3个灌水水平、4个施氮水平的田间试验,采用Richards生长曲线对干物质积累过程进行拟合,定量分析了干物质积累过程的动态特征和产量效应。结果表明灌越冬水和拔节水均能显著延长干物质积累的总时间,使最大干物质量由雨养下的10 831提高到灌两水条件下的13 813 kg/hm2。氮肥显著提高了干物质积累过程的平均速率和最大速率,缩短了达到最大速率的时间,使最大干物质量由8 001(不施氮)提高到14 112 kg/hm2(施氮210 kg/hm2)。年份主要通过控制进入快速生长期和达到最大速率的时间来影响干物质量积累过程。灌水的产量效应年际变异较大,在2013和2014年分别通过增加千粒质量和每平方米粒数来影响产量,2013年千粒质量由雨养下的35.8提高到灌两水下的41.7 g,2014年每平方米粒数由雨养下的13 833增加到灌两水条件下的15 749粒/m2。氮肥主要是通过增加每平方米粒数来提高产量,由不施氮下的10 414增大到施氮210 kg/hm2条件下的15 911粒/m2,继续增施氮肥对产量及产量构成要素影响不大。产量和每平方米粒数均与干物质积累过程的平均速率和最大速率呈显著正相关性,表明在该研究地区小麦产量主要受氮肥限制。该研究为干旱半干旱地区合理调控水肥措施,实现作物高产高效提供科学依据。
Song M D, Li Z P, Feng H . Effects of irrigation and nitrogen regimes on dry matter dynamic accumulation and yield of winter wheat
Trans CSAE, 2016,32(2):119-126 (in Chinese with English abstract)

Magsci [本文引用: 4]
为了阐明灌水施氮对冬小麦干物质积累和产量形成的影响机制,通过2012-2014年在关中平原进行的3个灌水水平、4个施氮水平的田间试验,采用Richards生长曲线对干物质积累过程进行拟合,定量分析了干物质积累过程的动态特征和产量效应。结果表明灌越冬水和拔节水均能显著延长干物质积累的总时间,使最大干物质量由雨养下的10 831提高到灌两水条件下的13 813 kg/hm2。氮肥显著提高了干物质积累过程的平均速率和最大速率,缩短了达到最大速率的时间,使最大干物质量由8 001(不施氮)提高到14 112 kg/hm2(施氮210 kg/hm2)。年份主要通过控制进入快速生长期和达到最大速率的时间来影响干物质量积累过程。灌水的产量效应年际变异较大,在2013和2014年分别通过增加千粒质量和每平方米粒数来影响产量,2013年千粒质量由雨养下的35.8提高到灌两水下的41.7 g,2014年每平方米粒数由雨养下的13 833增加到灌两水条件下的15 749粒/m2。氮肥主要是通过增加每平方米粒数来提高产量,由不施氮下的10 414增大到施氮210 kg/hm2条件下的15 911粒/m2,继续增施氮肥对产量及产量构成要素影响不大。产量和每平方米粒数均与干物质积累过程的平均速率和最大速率呈显著正相关性,表明在该研究地区小麦产量主要受氮肥限制。该研究为干旱半干旱地区合理调控水肥措施,实现作物高产高效提供科学依据。

马东辉, 王月福, 周华, 孙虎 . 氮肥和花后土壤含水量对小麦干物质积累、运转及产量的影响
麦类作物学报, 2007,27:847-851

DOI:10.3969/j.issn.1009-1041.2007.05.021URL [本文引用: 2]
为给小麦高产栽培中的水肥科学管理提供依据,在防雨池栽条件下,采用施纯氮10、15、20 kg/667 m2(分别用N1、N2和N3表示)和40%~50%、60%~70%、80%~90%三种土壤相对含水量(分别用W1、W2、W3表示)进行处理,研究了氮肥和花后土壤含水量对小麦干物质积累运转及产量的影响。结果表明,增施氮肥显著提高了小麦旗叶的净光合速率、叶绿素含量和叶面积系数,干物质积累量增加,而花前营养器官贮藏物质的转移率和对穗粒重的贡献率却下降,施氮肥过多的N3处理比N2处理产量略有下降,说明施氮肥过多不利于产量的提高。花后土壤相对含水量在60%~70%时,小麦旗叶的净光合速率、叶绿素含量和叶面积系数最大,干物质积累量、花前营养器官贮藏物质转移率和产量最高,说明花后土壤含水量过高或过低均导致减产。从本试验结果看,获得高产的最佳水氮配合为施氮肥15 kg/667 m2和花后土壤相对含水量为60%~70%。
Ma D H, Wang Y F, Zhou H, Sun H . Effect of postanthesis soil water status and nitrogen on grain yield and canopy biomass accumulation and transportation of winter wheat
J Triticeae Crops, 2007,27:847-851 (in Chinese with English abstract)

DOI:10.3969/j.issn.1009-1041.2007.05.021URL [本文引用: 2]
为给小麦高产栽培中的水肥科学管理提供依据,在防雨池栽条件下,采用施纯氮10、15、20 kg/667 m2(分别用N1、N2和N3表示)和40%~50%、60%~70%、80%~90%三种土壤相对含水量(分别用W1、W2、W3表示)进行处理,研究了氮肥和花后土壤含水量对小麦干物质积累运转及产量的影响。结果表明,增施氮肥显著提高了小麦旗叶的净光合速率、叶绿素含量和叶面积系数,干物质积累量增加,而花前营养器官贮藏物质的转移率和对穗粒重的贡献率却下降,施氮肥过多的N3处理比N2处理产量略有下降,说明施氮肥过多不利于产量的提高。花后土壤相对含水量在60%~70%时,小麦旗叶的净光合速率、叶绿素含量和叶面积系数最大,干物质积累量、花前营养器官贮藏物质转移率和产量最高,说明花后土壤含水量过高或过低均导致减产。从本试验结果看,获得高产的最佳水氮配合为施氮肥15 kg/667 m2和花后土壤相对含水量为60%~70%。

王国兴, 徐福利, 王渭玲, 于丹, 王伟东 . 氮磷钾及有机肥对马铃薯生长发育和干物质积累的影响
干旱地区农业研究, 2013,31(3):106-111

DOI:10.3969/j.issn.1000-7601.2013.03.017URL [本文引用: 1]
采取田间试验,探讨不同施肥处理对马铃薯生长发育及干物质积累的影响。结果表明,N1PKM处理(氮300 kg.hm-2,磷200 kg.hm-2,钾200 kg.hm-2,有机肥17.5 t.hm-2)的马铃薯叶片叶绿素含量最高,比对照处理的叶片叶绿素a、b、总量分别高出15.12%、18.18%和36.37%。施用磷肥有效促进了叶面积的增加,N1PKM、N1P、N1PK、P处理的叶面积比对照分别高出27.78%,24.57%,20.26%和20.16%。其中施用磷肥促进马铃薯根系生长的效果最明显,而单施钾肥、有机肥对根长发育的影响不明显。氮、磷、钾、有机肥配比施用可以促进马铃薯地上及地下部的生长,采用氮磷钾与有机肥配合施用时,马铃薯干物质累积总量N1PKMN1PKN1KN1P。N1PKM处理的马铃薯生物量较对照显著提高了117.1%,可以作为旱地马铃薯的施肥方案。
Wang G X, Xu F L, Wang W L, Yu D, Wang W D . Effects of N-P-K and organic fertilizers on growth and dry matter accumulation of potato
Agric Res Arid Areas, 2013,31(3):106-111 (in Chinese with English abstract)

DOI:10.3969/j.issn.1000-7601.2013.03.017URL [本文引用: 1]
采取田间试验,探讨不同施肥处理对马铃薯生长发育及干物质积累的影响。结果表明,N1PKM处理(氮300 kg.hm-2,磷200 kg.hm-2,钾200 kg.hm-2,有机肥17.5 t.hm-2)的马铃薯叶片叶绿素含量最高,比对照处理的叶片叶绿素a、b、总量分别高出15.12%、18.18%和36.37%。施用磷肥有效促进了叶面积的增加,N1PKM、N1P、N1PK、P处理的叶面积比对照分别高出27.78%,24.57%,20.26%和20.16%。其中施用磷肥促进马铃薯根系生长的效果最明显,而单施钾肥、有机肥对根长发育的影响不明显。氮、磷、钾、有机肥配比施用可以促进马铃薯地上及地下部的生长,采用氮磷钾与有机肥配合施用时,马铃薯干物质累积总量N1PKMN1PKN1KN1P。N1PKM处理的马铃薯生物量较对照显著提高了117.1%,可以作为旱地马铃薯的施肥方案。

张东昱, 成军花, 夏叶, 张文斌, 张爱霞, 陈修斌, 李翊华 . 河西走廊加工型马铃薯水肥耦合效应量化管理指标研究
土壤, 2012,44:987-990

[本文引用: 1]

Zhang D Y, Cheng J H, Xia Y, Zhang W B, Zhang A X, Chen X B, Li Y H . Study on quantitative management indicators of water-fertilizer coupling effect for Hexi Corridor processing potato
Soils, 2012,44:987-990 (in Chinese with English abstract)

[本文引用: 1]

王平, 陈举林, 王均华, 闫保罗, 李平海, 侯玮, 宗燕 . 灌水模式对夏玉米耗水特性和干物质积累及分配的影响
中国农学通报, 2013,29:20-27

DOI:10.3969/j.issn.1000-6850.2013.24.006URL [本文引用: 1]
Water resource deficiency is one of major problems in maize (Zea mays) production in North Plain of China. In this study, five soil water amount treatments (T1: 90%-100%; T2: 80%-90%; T3: 70%-80%; T4: 60%-70%; T5: 50%-60%) were used under rain sheltered pot-cultivated cultivation in 2009 growing seasons. The results showed that, the yield and the dry matter accumulation of were the highest at 80% soil water amount treatments. In this study, three irrigation treatments (W0: rain-fed; W1: soil water amount were 80%; W2: flooding) were used under high yielding cultivation in 2010 growing seasons (with precipitations of 446.2 mm) to reveal the effects of irrigation amount on water consumption characteristics and dry matter accumulations in various organs. The results showed that, the yield of W0, W1, W2 were 9255.85, 9747.29, 9635.72 kg/hm2 respectively, and W1 and W2 were higher than W0. The yield of treatment W1 was the highest. The WUE of treatment W1 was significantly higher than that of W2, 21.47, 19.39 kg/(hm2?mm) respectively. The dry matter accumulation amount of W0, W1, W2 were 310.83, 321.5, 325.59 g/plant respectively. Compared with treatment W1, dry matter accumulation amount of W2 treatment was higher, but the contribution of that to grains was lower. So the grain yield of W1 was higher than that of W2. When the precipitation was 446.2 mm from sowing to maturity, although W0 got the lowest total consumption and the highest WUE, the grain number of ear and grain weight were lower than W1 and W2. We can see that irrigation plays an important role to obtain high grain yield and quality. In this paper, based on comprehensive consideration of grain yield and total consumption, optimal irrigation method was to maintain 80% soil water amount.
Wang P, Chen J L, Wang J H, Yan B L, Li P H, Hou W, Zong Y . The effect of irrigation treatments on water consumption characteristic and dry matter accumulationin summer maize (
Zea mays). Chin Agric Bull, 2013,29:20-27 (in Chinese with English abstract)

DOI:10.3969/j.issn.1000-6850.2013.24.006URL [本文引用: 1]
Water resource deficiency is one of major problems in maize (Zea mays) production in North Plain of China. In this study, five soil water amount treatments (T1: 90%-100%; T2: 80%-90%; T3: 70%-80%; T4: 60%-70%; T5: 50%-60%) were used under rain sheltered pot-cultivated cultivation in 2009 growing seasons. The results showed that, the yield and the dry matter accumulation of were the highest at 80% soil water amount treatments. In this study, three irrigation treatments (W0: rain-fed; W1: soil water amount were 80%; W2: flooding) were used under high yielding cultivation in 2010 growing seasons (with precipitations of 446.2 mm) to reveal the effects of irrigation amount on water consumption characteristics and dry matter accumulations in various organs. The results showed that, the yield of W0, W1, W2 were 9255.85, 9747.29, 9635.72 kg/hm2 respectively, and W1 and W2 were higher than W0. The yield of treatment W1 was the highest. The WUE of treatment W1 was significantly higher than that of W2, 21.47, 19.39 kg/(hm2?mm) respectively. The dry matter accumulation amount of W0, W1, W2 were 310.83, 321.5, 325.59 g/plant respectively. Compared with treatment W1, dry matter accumulation amount of W2 treatment was higher, but the contribution of that to grains was lower. So the grain yield of W1 was higher than that of W2. When the precipitation was 446.2 mm from sowing to maturity, although W0 got the lowest total consumption and the highest WUE, the grain number of ear and grain weight were lower than W1 and W2. We can see that irrigation plays an important role to obtain high grain yield and quality. In this paper, based on comprehensive consideration of grain yield and total consumption, optimal irrigation method was to maintain 80% soil water amount.

赵明, 李建国, 张宾, 董志强, 王美云 . 论作物高产挖潜的补偿机制
作物学报, 2006,32:1566-1573

DOI:10.3321/j.issn:0496-3490.2006.10.023URL [本文引用: 1]
High yield is an invariable theme in crop science, and the exploration of crop yield potential is a hotspot of crop science researches. While great strides have been made in exploring the breakthrough of crop yield potential, the capability of over-compensation effects was considered to be a potential untouched part for higher grain yield. In this article, the concept, types, functionary effects and mechanisms of crop compensation were commentated, and a broad sense of crop compensation concept was presented on the basis of integrated analysis. Unbalanced changes often taking place in different factors in different hierarchies or same hierarchy, by the function of systemic regulation, some factors could be improved. That is crop compensation. Compensative effects are ubiquitous in crop system, there are not only “gain and loss” compensations in adverse conditions, but also “asynchronous improved” ones in favorable conditions and even sometimes in high yield plant populations. “Gain and loss” compensation was defined as crop could improve some important elements at the cost of depressing or losing its intrinsic performances of some other elements at specific hierarchy. When the crop population and the single plant are almost in perfect harmony, no more gains could be obtained by “Gain and loss” compensation, a new way must be found to break the yield limit. And “asynchronous improved” compensation might be fall back on. In the synchronous improvements of composing elements at specific hierarchy, one lesser improvement of some element might promote a significant improve of other element. This kind of change in crop system was defined as “asynchronous improved” compensation. Once one limited factor was improved, some other factors in crop system might change and a new harmonization at the higher level will be formed, correspondingly the crop yield would increases to a new level. On the basis of crop compensation effects and the “three combination structure” yield theory, two effective approaches, “structural exploration” and “functional exploration”, were put forward and carried out in exploring crop yield potential, and the mechanisms and the application effects of the approaches were expatiated from the overcompensation profile, which would provide an instructive guidance for higher crop yield.
Zhao M, Li J G, Zhang B, Dong Z Q, Wang M Y . The compensatory mechanism in exploring crop production potential
Acta Agron Sin, 2006,32:1566-1573 (in Chinese with English abstract)

DOI:10.3321/j.issn:0496-3490.2006.10.023URL [本文引用: 1]
High yield is an invariable theme in crop science, and the exploration of crop yield potential is a hotspot of crop science researches. While great strides have been made in exploring the breakthrough of crop yield potential, the capability of over-compensation effects was considered to be a potential untouched part for higher grain yield. In this article, the concept, types, functionary effects and mechanisms of crop compensation were commentated, and a broad sense of crop compensation concept was presented on the basis of integrated analysis. Unbalanced changes often taking place in different factors in different hierarchies or same hierarchy, by the function of systemic regulation, some factors could be improved. That is crop compensation. Compensative effects are ubiquitous in crop system, there are not only “gain and loss” compensations in adverse conditions, but also “asynchronous improved” ones in favorable conditions and even sometimes in high yield plant populations. “Gain and loss” compensation was defined as crop could improve some important elements at the cost of depressing or losing its intrinsic performances of some other elements at specific hierarchy. When the crop population and the single plant are almost in perfect harmony, no more gains could be obtained by “Gain and loss” compensation, a new way must be found to break the yield limit. And “asynchronous improved” compensation might be fall back on. In the synchronous improvements of composing elements at specific hierarchy, one lesser improvement of some element might promote a significant improve of other element. This kind of change in crop system was defined as “asynchronous improved” compensation. Once one limited factor was improved, some other factors in crop system might change and a new harmonization at the higher level will be formed, correspondingly the crop yield would increases to a new level. On the basis of crop compensation effects and the “three combination structure” yield theory, two effective approaches, “structural exploration” and “functional exploration”, were put forward and carried out in exploring crop yield potential, and the mechanisms and the application effects of the approaches were expatiated from the overcompensation profile, which would provide an instructive guidance for higher crop yield.

殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶 . 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响
作物学报, 2016,42:751-757

DOI:10.3724/SP.J.1006.2016.00751URL [本文引用: 1]
研究茬口对轮作作物的产量贡献及干物质积累与分配规律的影响,对于优化作物高产高效栽培理论和技术具有重要意义。本研究在甘肃河西绿洲灌区,通过田间试验,研究了前茬小麦不同秸秆还田方式(25 cm高茬收割免耕,NTSS;25 cm高茬等量秸秆覆盖免耕,NTS;25 cm高茬等量秸秆翻压,TIS;低茬收割翻耕,CT)对轮作玉米干物质积累和分配及产量的影响,以期为该区前茬小麦轮作玉米生产模式提供优化依据。结果表明,与CT相比,NTSS、NTS、TIS提高了玉米抽穗后干物质的积累量,两年平均高4.8%~12.7%,NTS较NTSS、TIS具有更高的干物质累积作用;NTSS、NTS、TIS可提高玉米叶、茎、鞘对籽粒的贡献率,提高幅度平均为12.8%~25.0%、6.3%~11.3%、18.3%~78.4%,其中NTS较NTSS、TIS提高作用更突出。NTSS、NTS、TIS提高了玉米的籽粒产量,增幅为11.3%~17.5%,其中NTS两年籽粒产量最高,分别达到13 470 kg hm–2和13 274 kg hm–2,较TIS高5.6%~9.0%;穗粒数增加是小麦秸秆还田提高轮作玉米产量的主要原因。同时NTS获得较高的收获指数,提高比例为6.4%~8.4%,说明NTS较其他处理增产的另一原因是提高了收获指数。本研究表明,其前茬小麦秸秆覆盖结合免耕(NTS)可作为绿洲灌区优化后茬玉米干物质累积规律及获得高产的理想耕作措施。
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y . Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize
Acta Agron Sin, 2016,42:751-757 (in Chinese with English abstract)

DOI:10.3724/SP.J.1006.2016.00751URL [本文引用: 1]
研究茬口对轮作作物的产量贡献及干物质积累与分配规律的影响,对于优化作物高产高效栽培理论和技术具有重要意义。本研究在甘肃河西绿洲灌区,通过田间试验,研究了前茬小麦不同秸秆还田方式(25 cm高茬收割免耕,NTSS;25 cm高茬等量秸秆覆盖免耕,NTS;25 cm高茬等量秸秆翻压,TIS;低茬收割翻耕,CT)对轮作玉米干物质积累和分配及产量的影响,以期为该区前茬小麦轮作玉米生产模式提供优化依据。结果表明,与CT相比,NTSS、NTS、TIS提高了玉米抽穗后干物质的积累量,两年平均高4.8%~12.7%,NTS较NTSS、TIS具有更高的干物质累积作用;NTSS、NTS、TIS可提高玉米叶、茎、鞘对籽粒的贡献率,提高幅度平均为12.8%~25.0%、6.3%~11.3%、18.3%~78.4%,其中NTS较NTSS、TIS提高作用更突出。NTSS、NTS、TIS提高了玉米的籽粒产量,增幅为11.3%~17.5%,其中NTS两年籽粒产量最高,分别达到13 470 kg hm–2和13 274 kg hm–2,较TIS高5.6%~9.0%;穗粒数增加是小麦秸秆还田提高轮作玉米产量的主要原因。同时NTS获得较高的收获指数,提高比例为6.4%~8.4%,说明NTS较其他处理增产的另一原因是提高了收获指数。本研究表明,其前茬小麦秸秆覆盖结合免耕(NTS)可作为绿洲灌区优化后茬玉米干物质累积规律及获得高产的理想耕作措施。

于爱忠, 柴强 . 供水与地膜覆盖对干旱灌区玉米产量的影响
作物学报, 2015,41:778-786

DOI:10.3724/SP.J.1006.2015.00778URL [本文引用: 1]
The knowledge on coupling effect of plastic film mulching and limited water supply on corn yield in inland irrigation area is essential in developing effective cropping systems. A field experiment was conducted to reveal yield formation process and mechanism of corn under different plastic film mulching patterns (full-film, half-film and no mulching) and irrigation quota treatments (7200, 6450, and -1 double-ear rate, seed number per ear, seed weight and water use efficiency(WUE). The grain yield reached 13 275.5 and 12 880.5 kg ha under full-film mulching with high and moderate irrigation levels, -1-2which were 23.9%, 658.6 per ear and 36.4 per 100 grain respectively. The average leaf area index (LAI) achieved 2.8 and 2.7 under full-film and half-film mulching with high irrigation level, respectively, which were significantly higher than that with low irrigation level. Moreover, soil water content in the soil layer from 0 to
Yu A Z, Chai Q . Effects of plastic film mulching and irrigation on yield of corn in arid oasis irrigation area
Acta Agron Sin, 2015,41:778-786 (in Chinese with English abstract)

DOI:10.3724/SP.J.1006.2015.00778URL [本文引用: 1]
The knowledge on coupling effect of plastic film mulching and limited water supply on corn yield in inland irrigation area is essential in developing effective cropping systems. A field experiment was conducted to reveal yield formation process and mechanism of corn under different plastic film mulching patterns (full-film, half-film and no mulching) and irrigation quota treatments (7200, 6450, and -1 double-ear rate, seed number per ear, seed weight and water use efficiency(WUE). The grain yield reached 13 275.5 and 12 880.5 kg ha under full-film mulching with high and moderate irrigation levels, -1-2which were 23.9%, 658.6 per ear and 36.4 per 100 grain respectively. The average leaf area index (LAI) achieved 2.8 and 2.7 under full-film and half-film mulching with high irrigation level, respectively, which were significantly higher than that with low irrigation level. Moreover, soil water content in the soil layer from 0 to
相关话题/物质 土壤 作物 农田 生育