关键词:作物淀粉; 小角X射线散射波谱; 波谱参数; 定量作图分析法; 片层结构 Application of Quantitative Graphical Method Based on Small Angle X-Ray Scattering Spectrum in Crop Starch Study HE Wei1, FAN Xiao-Xu1, WANG Zhi-Feng2, WEI Cun-Xu1,* 1 Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
2 Testing Center, Yangzhou University, Yangzhou 225009, China
Fund:This study was supported by the National Natural Science Foundation of China (31570324) and the Priority Academic Program Development of Jiangsu Higher Education Institutions AbstractSmall-angle X-ray scattering (SAXS) spectrum can be used to quantify the lamellar structure of starch. However, the spectrum analysis lacks a special data analysis software and needs complicated mathematical equations for it, which seriously restricts the applications of SAXS technology in starch studies. In this study, a simple graphical method was established to quantitatively measure the SAXS spectrum parameters (peak intensity, peak position, peak width at half maximum, and lamellar distance). These parameters can reflect the information of starch lamellar structure. The SAXS spectra of starch with different crystal types, rice starch with different amylose contents, and acid-modified and gelatinized starch were all analyzed using the graphical method, showing that the lamellar structure of starch was related with the plant origin, but had no direct relationship with crystal types. For the starch from the same plant origin, the amylose content was significantly negatively correlated with peak intensity and peak width at half maximum, and positively correlated with lamellar distance of SAXS spectrum. The acid hydrolysis had no effect on lamellar distance of starch, but changed the peak intensity and peak width at half maximum of SAXS spectrum. Heating treatment also had no effect on lamellar distance of starch, but destroyed the crystalline structure, leading to the gradual decrease, even disappearance of peak intensity with increasing heating temperature. This study indicated that the quantitative graphical method is simple, good repeatable, and highly credible, and could be widely used in crop starch studies.
Keyword:Crop starch; Small-angle X-ray scattering spectrum; Spectrum parameter; Quantitative graphical method; Lamellar structure Show Figures Show Figures
表1 不同植物来源淀粉的SAXS波谱参数 Table 1 SAXS parameters of starch from different plant resources
淀粉 Starch
SAXS波谱参数 SAXS parameter
峰强度 Peak intensity (counts)
峰位置 Peak position (Å -1)a)
半峰宽度 Peak width at half maximum (Å -1)a)
片层距离 Lamellar distance (nm)
土茯苓 Glabrous greenbrier rhizome
157.1± 0 a
0.067 c
0.015 a
9.3± 0 a
马铃薯 Potato
213.1± 11.3 b
0.068 d
0.016 a
9.3± 0 a
山药 Chinese yam
328.5± 11.3 d
0.062 b
0.023 d
10.1± 0.1 b
莲藕 Lotus
357.4± 6.8 d
0.061 a
0.021 c
10.3± 0.1 c
玉米 Maize
296.5± 2.3 c
0.062 b
0.021 c
10.1± 0 b
水稻 Rice
341.3± 6.8 d
0.067 c
0.019 b
9.3± 0.1 a
Values followed by different letters within the same column are significantly different at the 0.05 probability level. a) The SD is omitted due to its very low value (< 0.001). 同一列数据后标以不同字母的数据在P=0.05水平上差异显著。a) 标准偏差的值太低被省略(< 0.001)。
表1 不同植物来源淀粉的SAXS波谱参数 Table 1 SAXS parameters of starch from different plant resources
表2 不同直链淀粉含量水稻淀粉的SAXS波谱参数 Table 2 SAXS parameters of rice starch with different amylose contents
水稻品种 Rice variety
SAXS波谱参数 SAXS parameter
峰强度 Peak intensity (counts)
峰位置 Peak position (Å -1)a)
半峰宽度 Peak width at half maximum (Å -1)a)
片层距离 Lamellar distance (nm)a)
龙特甫 Longtefu
286.4± 3.2 a
0.065 a
0.020 bcd
9.7 f
桂花黄 Guihuahuang
312.5± 1.6 b
0.067 b
0.019 ab
9.4 e
特青 Teqing
336.4± 6.4 c
0.067 c
0.018 a
9.3 d
武香9915 Wuxiang 9915
350.0± 0 cd
0.067 c
0.021 cd
9.3 d
黄华占Huanghuazhan
364.8± 4.8 de
0.068 d
0.020 abc
9.2 c
武运粳8号 Wuyunjing 8
371.6± 1.6 e
0.068 de
0.020 bcd
9.2 bc
9311
421.6± 8.0 f
0.068 ef
0.020 bcd
9.2 ab
日本晴 Nipponbare
464.8± 8.0 g
0.069 f
0.021 d
9.1 a
Values followed by different letters within the same column are significantly different at the 0.05 probability level. a) The SD is omitted due to its very low value. 同一列数据后标以不同字母的数据在P=0.05水平上差异显著。a) 标准偏差的值太低被省略。
表2 不同直链淀粉含量水稻淀粉的SAXS波谱参数 Table 2 SAXS parameters of rice starch with different amylose contents
表3 酸不溶莲藕淀粉SAXS波谱参数 Table 3 SAXS parameters of acid-modified lotus starch
酸水解时间 Acid hydrolysis time
SAXS波谱参数 SAXS parameter
峰强度 Peak intensity (counts)
峰位置 Peak position (Å -1)a)
半峰宽度 Peak width at half maximum (Å -1)
片层距离 Lamellar distance (nm)
0 h
359.8± 5.4 c
0.061 a
0.020± 0.001 d
10.3± 0 a
4 h
492.4± 21.4 d
0.061 a
0.019± 0 cd
10.3± 0.1 a
8 h
613.6± 0 f
0.061 a
0.019± 0.001 cd
10.3± 0 a
12 h
602.3± 16.0 ef
0.061 a
0.019± 0 cd
10.3± 0 a
16 h
560.6± 10.7 e
0.061 a
0.017± 0 c
10.3± 0.1 a
24 h
340.9± 10.7 c
0.061 a
0.016+0.001 bc
10.3± 0 a
36 h
155.3± 5.4 b
— b)
0.014± 0 ab
—
48 h
56.8± 5.4 a
—
0.011± 0 a
—
72 h
—
—
—
—
Values followed by different letters within the same column are significantly different at the 0.05 probability level. a) SD is omitted due to its very low value (< 0.001). b) “ — ” data are not detected. 同一列数据后标以不同字母的数据在P=0.05水平上差异显著。a) 标准偏差的值太低被省略(< 0.001)。b) “ — ” 未检测到数据。
表3 酸不溶莲藕淀粉SAXS波谱参数 Table 3 SAXS parameters of acid-modified lotus starch
表4 热不溶莲藕淀粉的SAXS波谱参数 Table 4 SAXS parameters of lotus starch during gelatinization
处理温度 Treatment temperature
SAXS波谱参数 SAXS parameter
峰强度 Peak intensity (counts)
峰位置 Peak position (Å -1)a)
半峰宽度 Peak width at half maximum (Å -1)
片层距离 Lamellar distance (nm)
55° C
357.4± 6.8 d
0.061 a
0.021± 0 b
10.3± 0.1 a
60° C
352.6± 9.1 d
0.061 a
0.020± 0.001 b
10.3± 0 a
65° C
309.3± 6.8 c
0.061 a
0.019± 0.001 b
10.3± 0 a
70° C
142.6± 11.3 b
0.061 a
0.018± 0 b
10.3± 0 a
75° C
32.1± 9.1 a
0.061 a
0.010± 0 a
10.3± 0.1 a
80° C
— b)
—
—
—
Values followed by different letters within the same column are significantly different at the 0.05 probability level. a) SD is omitted due to its very low value (< 0.001). b) “ — ” : data are not detected. 同一列数据后标以不同字母的数据在P=0.05水平上差异显著。a) 标准偏差的值太低被省略(< 0.001)。b) “ — ” 未检测到数据。
表4 热不溶莲藕淀粉的SAXS波谱参数 Table 4 SAXS parameters of lotus starch during gelatinization
Gallant DJ, BouchetB, Baldwin PM. Microscopy of starch: evidence of a new level of granule organization. , 1997, 32: 177-191[本文引用:1]
[2]
Tran T TB, Shelat KJ, TangD, Li EP, Gilbert RG, HasjmJ. Milling of rice grains: the degradation on three structural levels of starch in rice flour can be independently controlled during grinding. , 2011, 59: 3964-3973[本文引用:1]
[3]
Vand eputte GE, Delcour JA. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. , 2004, 58: 245-266[本文引用:1]
[4]
Donald AM. Plasticization and self assembly in the starch granule. , 2001, 78: 307-314[本文引用:1]
[5]
Cameron RE, Donald AM. A small-angle X-ray scattering study of the annealing and gelatinization of starch. , 1992, 33: 2628-2635[本文引用:2]
[6]
Sand erson JS, Daniels RD, Donald AM, BlennowA, Engelsen SB. Exploratory SAXS and HPAEC-PAD studies of starches from diverse plant genotypes. , 2006, 64: 433-443[本文引用:1]
[7]
Waigh TA, PerryP, RiekelC, Gidley MJ, Donald AM. Chiral side-chain liquid-crystalline polymeric properties of starch. , 1998, 31: 7980-7984[本文引用:1]
[8]
Yuryev VP, Krivand in AV, Kiseleva VI, Wasserman LA, Genkina NK, FornalJ, BlaszczakW, SchiraldiA. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. , 2004, 339: 2683-2691[本文引用:6]
[9]
BlazekJ, Gilbert EP. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: a review. , 2011, 85: 281-293[本文引用:7]
[10]
Cai JW, Man JM, HuangJ, Liu QQ, Wei WX, Wei CX. Relationship between structure and functional properties of normal rice starches with different amylose contents. , 2015, 125: 35-44[本文引用:2]
[11]
Lin LS, Guo DW, Zhao LX, Zhang XD, WangJ, Zhang FM, Wei CX. Comparative structure of starches from high-amylose maize inbred lines and their hybrids. , 2016, 52: 19-28[本文引用:1]
[12]
Cai CH, Cai JW, Zhao LX, Wei CX. In situ gelatinization of starch using hot stage microscopy. , 2014, 23: 15-22[本文引用:1]
[13]
Man JM, Cai JW, Cai CH, XuB, Huai HY, Wei CX. Comparison of physicochemical properties of starches from seed and rhizome of lotus. , 2012, 88: 676-683[本文引用:1]
[14]
Cai JW, Cai CH, Man JM, YangY, Zhang FM, Wei CX. Crystalline and structural properties of acid-modified lotus rhizome C-type starch. , 2014, 102: 799-807[本文引用:1]
[15]
Cai CH, Cai JW, Man JM, YangY, Wang ZF, Wei CX. Allomorph distribution and granule structure of lotus rhizome C-type starch during gelatinization. , 2014, 142: 408-415[本文引用:1]
[16]
Cheetham N WH, TaoL. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. , 1998, 36: 277-284[本文引用:3]
[17]
PikusS. Small-angle X-ray scattering (SAXS) studies of the structure of starch and starch products. , 2005, 13: 82-86[本文引用:1]
[18]
王维, 陈兴, 蔡泉, 默广, 陈中军, 李志宏, 张坤浩, 吴忠华. 小角X射线散射(SAXS)数据分析程序SAXS1. 0. , 2007, 30: 571-575WangW, ChenX, CaiQ, MoG, Chen ZJ, Li ZH, Zhang KH, Wu ZH. Small angle X-ray scattering (SAXS) data analysis program SAXS1. 0. , 2007, 30: 571-575 (in Chinese with English abstract)[本文引用:1]
[19]
Jenkins PJ, Cameron RE, Donald AM. A universal feature in the structure of starch granules from different botanical sources. , 1993, 45: 417-420[本文引用:1]
[20]
Cai JW, Cai CH, Man JM, Zhou WD, Wei CX. Structural and functional properties of C-type starches. , 2014, 101: 289-300[本文引用:1]
[21]
Lin LS, HuangJ, Zhao LX, WangJ, Wang ZF, Wei CX. Effect of granule size on the properties of lotus rhizome C-type starch. , 2015, 134: 448-457[本文引用:1]
[22]
SlamanH, BlazekJ, Lopez-RubioA, Gilbert EP, HanleyT, Copeland L. Structure-function relationships in A and B granules from wheat starches of similar amylose content. , 2009, 75: 420-427[本文引用:1]
[23]
Emmambux MN, Taylor J R N. Morphology, physical, chemical, and functional properties of starches from cereals, legumes, and tubers cultivated in Africa: a review. , 2013, 65: 715-729[本文引用:1]
[24]
BocharnikovaI, Wasserman LA, Krivand in AV, FornalJ, BlaszczakW, Chernykh VY, SchiraldiA, Yuryrv VP. Structure and thermodynamic melting parameters of wheat starches with different amylose content. , 2003, 74: 681-695[本文引用:1]
[25]
Koroteeva DA, Kiseleva VI, SrirothK, PiyachomkwanK, BertoftE, Yuryev PV, Yuryev VP. Structural and thermodynamic properties of rice starches with different genetic background: Part 1. Differentiation of amylopectin and amylose defects. , 2007, 41: 391-403[本文引用:1]
[26]
Wang SJ, BlazekJ, GilbertE, Copeland L. New insights on the mechanism of acid degradation of pea starch. , 2012, 87: 1941-1949[本文引用:3]
[27]
Cameron RE, Donald AM. A small-angle X-ray scattering study of the absorption of water into the starch granule. , 1993, 244: 225-236[本文引用:1]