2
Proteomic analysis of sugarcane-Sporisorium scitamineum interaction based on iTRAQ technique
SONG Qi-Qi,1,**, Pratiksha SINGH2,**, Rajesh Kumar SINGH2, SONG Xiu-Peng1, LI Hai-Bi1, NONG You-Ye2, YANG Li-Tao,1,2,*, LI Yang-Rui,1,2,*1 2
通讯作者:
第一联系人:
收稿日期:2018-01-4接受日期:2018-08-20网络出版日期:2018-09-26
基金资助: |
Received:2018-01-4Accepted:2018-08-20Online:2018-09-26
Fund supported: |
摘要
关键词:
Abstract
Keywords:
PDF (1573KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
宋奇琦, Pratiksha SINGH, Rajesh Kumar SINGH, 宋修鹏, 李海碧, 农友业, 杨丽涛, 李杨瑞. 基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析[J]. 作物学报, 2019, 45(1): 55-69. doi:10.3724/SP.J.1006.2019.84001
SONG Qi-Qi, Pratiksha SINGH, Rajesh Kumar SINGH, SONG Xiu-Peng, LI Hai-Bi, NONG You-Ye, YANG Li-Tao, LI Yang-Rui.
甘蔗是重要的农作物, 种植在包括中国在内的90多个国家。黑穗病已经成为全球性的甘蔗病害, 且发病率逐年提高。如果感染严重, 可造成甘蔗20%~50%的产量损失, 糖含量也会大量减少[1,2]。
前人关于黑穗病的研究大部分集中在生理生化方面。Lloyd等[3]采用越过芽麟障碍的针刺接种方法, 将病原菌注入一些甘蔗品种芽体分生组织区后, 发现有些甘蔗品种仍不发病, 表明甘蔗体内产生了抑制病原菌入侵繁殖的物质, 同时也揭示了甘蔗品种生理生化抗性的存在。Singh等[4]观察到2个易感黑穗病甘蔗品种的叶片、芽、顶端分生组织、侧枝以及茎中甘蔗汁的抗坏血酸含量增加, 推测这可能是病原菌产生抗坏血酸加速酶或宿主-病原菌相互作用所致。Santiago等[5]研究由黑穗病诱导植物酚类物质含量的变化, 导致细胞壁木质化加厚, 可作为对病原菌入侵的机械防御, 推测木质素在机械组织中的沉积会增加甘蔗的生化和形态学抗性反应。莫凤莲等[6]利用透射电子显微镜观察甘蔗感黑穗病和蔗芽的超微结构变化, 发现其细胞变形严重甚至空泡化, 细胞核、核仁、染色质和线粒体等均发生改变, 同时研究甘蔗接种黑穗病菌后内源激素含量变化, 甘蔗叶片中生长素(IAA)、赤霉素(GA)、脱落酸(ABA)、水杨酸(SA)含量及IAA/ABA值的变化与甘蔗抗性密切相关。苏亚春等[7]研究表明, 甘蔗抗性品种崖城05-179在感染黑穗病初期几丁质酶、β-1,3-葡聚糖酶、过氧化氢酶活性均高于感病品种柳城03-182, 这些酶活性与甘蔗黑穗病抗性有一定联系。Leila等[8]研究发现, 抗性甘蔗品种中过氧化氢(H2O2)积累与甘蔗鞭黑粉菌冬孢子在植物体内萌发和附着胞形成阶段一致, 而感病品种只有少量H2O2的积累, 但2个品种均没有超氧阴离子自由基(O2-)的累积, 同时通过对丙二醛(MDA)、过氧化氢酶(CAT)、谷胱甘肽-S转移酶(GST)活性及蛋白质组研究, 推测H2O2的积累可能是与抗坏血酸、谷胱甘肽和硫氧还蛋白相关的多重系统来影响信号传导。
随着先进生物技术手段的出现, 人们对甘蔗-病原菌互作有了更深入的了解。最近的分子生物学研究涉及分子标记技术、转录组学和蛋白质组学等。宋修鹏[9]成功构建了甘蔗幼苗应答黑穗病侵染的正向SSH文库, 并利用同源克隆和RACE技术得到苯丙氨酸解氨酶(PAL)、S-腺苷甲硫氨酸合成酶(SAM)、木葡聚糖内糖基转移水解酶(XTH)、Nudix水解酶(NUDT)基因全长。Barnabas等[10]通过双向电泳(2-DE)联合MALDI-TOF/TOF-MS技术鉴定感黑穗病40 d后甘蔗差异蛋白, 鉴定出53个蛋白质与防御、胁迫、代谢、蛋白质折叠、能量和细胞分裂有关。Su等[11]通过蛋白质组与转录组关联分析发现两者的相关性较差, 与差异基因表达趋势相同的蛋白大多与植物抗逆相关, iTRAQ分析结果显示, 乙烯、赤霉素、苯丙烷类代谢参与甘蔗抗黑穗病过程, 而钙信号通路、活性氧通路、脱落酸没有参与应答过程。Que等[12]利用2-DE技术分析甘蔗品种NCo376和Ya71-374感黑穗病后蛋白质的表达, 生物信息学分析表明, 20 个差异蛋白与光合作用、信号转导等功能有关。
同位素相对和绝对定量标记(isobaric tags for relative and absolute quantitation, iTRAQ)是2004年美国ABI公司研发的一种新型定量蛋白质组学技术, 该技术具有分离能力强、定性分析结果可靠、灵敏度高等优点[13]。唐成等[14]基于iTRAQ技术对稻瘟病侵染水稻幼苗叶片后差异表达蛋白分析, 表明53个差异蛋白涉及氧化还原平衡、防御、信号传导、糖和能量代谢、氨基酸代谢、光合作用及蛋白质代谢等途径。Marsh等[15]利用iTRAQ技术分析葡萄感染白粉病后叶片在不同时间点的差异表达蛋白, 鉴定到63个差异蛋白与光合作用、代谢、病害防御、蛋白质合成等相关。目前对甘蔗黑穗病的研究大部分在感病初期, 本实验利用iTRAQ技术分析甘蔗与黑穗病长期互作后差异表达蛋白, 探寻与抗黑穗病相关的功能及代谢途径, 以期为甘蔗抗黑穗病分子机制的研究提供进一步的理论依据。
1 材料与方法
1.1 材料
选用甘蔗品种桂糖29号(GT29)和崖城71-374 (Yacheng 71-374), 由广西农业科学院甘蔗研究所提供。其中, GT29经多年试验, 其新植和宿根均表现为高抗黑穗病[16]; Yacheng 71-374经鉴定为高感黑穗病品种[17]。黑穗病菌混合冬孢子收集于广西大学试验田甘蔗品种桂糖11号、桂选B9、新台糖22号、拔地拉。1.2 方法
1.2.1 样品采集 2016年4月至11月在广西大学甘蔗智能温室大棚, 将蔗种砍成单芽段, 水浴锅中50℃浸种2 h, 之后进行沙培育苗。1个月后, 分别挑选每个品种60株长势一致的幼苗, 用无菌水清洗后分成两等份。一组经黑穗病菌孢子浓度为5×106个孢子 mL-1悬浮液浸泡2 h作为处理组, 另一组则用无菌水浸泡2 h作为对照组, 将幼苗移栽到桶里, 置于甘蔗智能温室。甘蔗通常在病菌侵染6~7个月黑穗长度达到顶峰[18], 所以选取感染180 d后时间点取样。采用浸渍法接菌最接近黑穗病菌侵染甘蔗的自然状态, 在侵染180 d后, 感病甘蔗比对照植株矮小, 叶片细长, 但叶片颜色肉眼观察差异不明显。均取2个品种甘蔗发病植株+1叶, 去除叶脉, 采集的样品经蒸馏水清洗后擦干, 用液氮冷冻, 保存于-80°C。2个品种均有2个生物学重复。1.2.2 PCR检测 使用植物DNA提取试剂盒(康为世纪, 北京)从GT29和Yacheng 71-374感病及对照植株中提取基因组DNA; 通过HP Fungal DNA Kit (Omega, 中国宁波)试剂盒提取黑穗病冬孢子DNA作为阳性对照, 无菌水为阴性对照。用黑穗病菌检测引物bE4 (5°-CGCTCTGGTTCATCAACG-3')和bE8 (5°-TGCTGTCGATGGAAGGTGT-3°)检测甘蔗是否感染黑穗病菌。用引物bE4/bE8能扩增出黑穗病菌基因组序列上的一段特异序列, 长度为459 bp。
1.2.3 蛋白样品制备 提取蛋白参考林丽等[19]酚抽提法, 用裂解液溶解蛋白, 加入5倍体积预冷的丙酮, 于-20°C沉淀过夜, 离心得到蛋白沉淀, 晾干10 min左右, 用iTRAQ定量试剂盒中dissolution buffer溶解。
1.2.4 蛋白质样品定量与酶解 按照Qubit Protein Assay Kit试剂盒说明书进行蛋白质定量, 根据定量结果, 从每个样品精确取出100 μg蛋白, 加入iTRAQ定量试剂盒中1 μL 2% SDS溶液使蛋白质变性, 然后再加入2 μL还原试剂, 涡旋混合, 于60°C孵育1 h后加入1 μL半胱氨酸封闭试剂反应30 min, 加入1 μg μL-1胰蛋白酶, 胰蛋白酶与蛋白质的质量比为1∶20, 37°C酶解12~16 h。
1.2.5 用iTRAQ试剂标记 取出iTRAQ标记, 室温平衡, 短暂离心至管底。每管加入70 μL 乙醇, 震荡混匀, 短暂离心。将每管标记试剂分别转移至样品管中, 4个样品分别用不同的同位素标记, 即用iTRAQ 8 Plex 114标记GT29对照, 115标记GT29处理, 116标记Yacheng 71-374对照, 117标记Yacheng 71-374处理。震荡混匀, 测定溶液的pH值, 保证pH=7.8~8.5, 且保证溶液的有机相比例≥70%, 室温孵育1 h, 然后加入一定量的超纯水(约100 μL)终止标记反应。混合各管样品, 震荡混匀, 短暂离心。使用C18小柱去除杂质, 真空浓缩抽干备用。
1.2.6 用高pH值C18反相色谱柱进行第一维多肽分离 上述标记后, 将样品复溶于流动相A, 使用C18反相色谱柱XBridge Peptide BEHC18 (4.6 mm×250.0 mm)进行分离收集。流动相A为98%水, 2%乙腈, pH 10.0。流动相B为98%乙腈, 2%水, pH值为10.0。流速0.5 mL min-1。梯度0~8 min, 100% A; 8~48 min, 100% A~40% B; 48~53 min, 40%~100% B; 53~63 min, 100% B; 63~65 min, 100% B~100% A; 65~75 min, 100% A。检测波长为214 nm。从8 min开始收集馏分, 每2 min收集1管, 然后将首尾收集的馏分适当合并, 最后得到10个馏分。
1.2.7 纳升液相结合LTQ-Orbitrap质谱分析 将第一维分离后的馏分, 通过脱盐处理、真空抽干, 复溶于流动相A, 以便进行后续的LC-MS/MS 分析。流动相A为2% ACN+0.1% HCOOH。流动相B为98% ACN+0.1% HCOOH。洗脱梯度: 0~5 min, 2%~10% B; 5~50 min, 10%~35% B; 50~55 min, 35%~98% B; 55~65 min, 98% B。流速为250 nL min-1。色谱柱为C18反相毛细管柱。
质谱模式为ESI正离子模式, 一级质谱扫描分辨率为60,000; 扫描范围为m/z = 350~1800; 二级质谱扫描分辨率为15,000, 用HCD 碰撞模式完成, 采用数据依赖型的自动化采集模式。电喷雾电压为2.8 kV。
1.2.8 质谱数据的蛋白质数据库搜寻鉴定 质谱采集到的原始数据采用Proteome Discovery软件的SEQUEST搜索器进行搜索和匹配, 采用本课题组测定的转录组翻译的蛋白数据库。搜索参数设置如下, 消化酶胰蛋白酶(trypsin)作为消化酶, 选择酶解最大2个漏切位点, 固定修饰为甲硫氨酸(methionine)的氧化, 可变修饰为烷基化(carbamidomethyl C)以及iTRAQ对N端和氨基酸K、Y位点的修饰。
1.2.9 生物信息学分析 对鉴定到的蛋白进行GO注释, 并进一步对差异表达蛋白进行GO富集、KEGG富集分析。分别对每个甘蔗品种的2个样本进行重复性分析。2个样本的ratio取平均值, 并通过2次结果进行t-test检验, 计算P-value值, 当P-value<0.05, ratio>1.2或ratio<0.83视为差异表达蛋白。
2 结果与分析
2.1 PCR检测结果
琼脂糖凝胶电泳表明, GT29和Yacheng 71-374接种黑穗病的植株与阳性对照均可扩增出459 bp左右的条带, 对照植株则无此条带(图1)。扩增的PCR片段序列与GenBank中公布的bEast交配型基因序列相同, 证实处理组甘蔗已感染黑穗病菌, 而对照组没有被感染(GenBank登录号为KY575283~KY575284)。图1
新窗口打开|下载原图ZIP|生成PPT图1对照和接种黑穗病菌甘蔗DNA的PCR扩增产物电泳图
M: molecular size marker (100~5000 bp); P: 黑穗病孢子DNA正对照; N: 无菌水负对照; G(T): GT29处理; G(C): GT29 对照; Y(T): Yacheng 71-374处理; Y(C): Yacheng 71-374对照。
Fig. 1PCR amplification products of DNA isolated from the control and smut inoculated sugarcane plantlets
M: molecular size marker (100-5000 bp); P: S. scitamineum DNA as positive; N: sterile water as negative; G(T): GT29 treatment; G(C): GT29 control; Y(T): Yacheng 71-374 treatment; Y(C): Yacheng 71-374 control.
2.2 鉴定的蛋白质信息
成功鉴定的有定量信息的蛋白共有1831个, 其中共有蛋白1174个。Yacheng 71-374中鉴定到的蛋白数比GT29中多147个。GT29鉴定到的差异表达蛋白有290个, 其中上调表达蛋白有153个, 下调表达蛋白有137个。Yacheng 71-374中鉴定到的差异表达蛋白有125个, 其中上调表达蛋白有55个, 下调表达蛋白有70个。抗病品种GT29中差异表达蛋白数多于感病品种Yacheng 71-374 (表1)。Table 1
表1
表12个甘蔗品种中鉴定到的肽段和蛋白数
Table 1
品种 Variety | 总谱图数 Total profiles | 鉴定谱图数 Identified profiles | 鉴定肽段数 Identified peptides | 鉴定蛋白数 Identified proteins | 定量蛋白数 Quantified proteins |
---|---|---|---|---|---|
GT29 | 112 817 | 8009 | 3512 | 1452 | 1429 |
Yacheng 71-374 | 114 550 | 8832 | 3990 | 1594 | 1576 |
新窗口打开|下载CSV
GO注释包含生物过程(biological process)、分子功能(molecular function)、细胞组分(cellular component)三大分支。对总蛋白进行GO注释, 鉴定到的蛋白在生物过程中占比例最大条目为代谢过程(metabolic process)(62%)、细胞过程(cellular process)(43%)、单一生物过程(single-organism process)(35%), 在分子功能中催化(catalytic)(55%)和结合(binding)(48%)占多数, 而细胞组分中主要条目为细胞(cell)(25%)和细胞部分(cell part)(25%)(图2)。
图2
新窗口打开|下载原图ZIP|生成PPT图2GO注释分析
Fig. 2Gene ontology annotation analysis
2.3 差异表达蛋白GO富集分析
GT29差异表达蛋白GO富集分析结果如附表1所示, 在生物过程中, 极显著富集(P<0.01)条目有光合作用-光反应(photosynthesis-light reaction)、光合作用-光捕获(photosynthesis-light harvesting)、光合作用(photosynthesis); 分子功能中主要富集条目为蛋氨酸腺苷转移酶活性(methionine adenosyl transferase activity)、酶抑制剂活性(enzyme inhibitor activity); 细胞组分中极显著富集(P<0.01)条目为膜(membrane)。附表1
附表1GT29差异表达蛋白GO富集分析
分类 Category | GO ID | 功能类别 Functional group | P-value |
---|---|---|---|
生物过程 Biological process | GO:0019684 | Photosynthesis, light reaction | 0 |
GO:0009765 | Photosynthesis, light harvesting | 0.0002 | |
GO:0015979 | Photosynthesis | 0.0002 | |
GO:0009772 | Photosynthetic electron transport in photosystem II | 0.0156 | |
GO:0009767 | Photosynthetic electron transport chain | 0.0167 | |
GO:0006412 | Translation | 0.0233 | |
GO:0006091 | Generation of precursor metabolites and energy | 0.0283 | |
GO:0043043 | Peptide biosynthetic process | 0.0315 | |
GO:0022900 | Electron transport chain | 0.0342 | |
GO:0006518 | Peptide metabolic process | 0.0347 | |
GO:0034645 | Cellular macromolecule biosynthetic process | 0.0375 | |
GO:0009059 | Macromolecule biosynthetic process | 0.0375 | |
GO:0043604 | Amide biosynthetic process | 0.0381 | |
GO:0043603 | Cellular amide metabolic process | 0.0418 | |
GO:0044267 | Cellular protein metabolic process | 0.0484 | |
分子功能 Molecular function | GO:0004478 | Methionine adenosyltransferase activity | 0.0140 |
GO:0004857 | Enzyme inhibitor activity | 0.0140 | |
GO:0016859 | Cis-trans isomerase activity | 0.0145 | |
GO:0003755 | Peptidyl-prolyl cis-trans isomerase activity | 0.0145 | |
GO:0051536 | Iron-sulfur cluster binding | 0.0216 | |
GO:0051540 | Metal cluster binding | 0.0216 | |
GO:0030234 | Enzyme regulator activity | 0.0367 | |
GO:0098772 | Molecular function regulator | 0.0465 | |
细胞组分 Cellular component | GO:0016020 | Membrane | 0.0024 |
GO:0043228 | Non-membrane-bounded organelle | 0.0386 | |
GO:0043232 | Intracellular non-membrane-bounded organelle | 0.0386 | |
GO:0031224 | Intrinsic component of membrane | 0.0410 |
新窗口打开|下载CSV
Yacheng 71-374差异表达蛋白富集结果如附表2所示。生物过程中极显著富集(P<0.01)条目有氧化应激反应(response to oxidative stress)、代谢调节过程(regulation of metabolic process); 而分子功能中极显著富集(P<0.01)条目有7条, 分别为儿茶酚氧化酶活性(catechol oxidase activity)、氨裂解酶活性(ammonia-lyase activity)、氧化还原酶活性(oxidoreductase activity, acting on diphenols and related substances as donors, oxygen as acceptor)、碳酸脱水酶活性(carbonate dehydratase activity)、氧化还原酶活性(oxidoreductase activity acting on peroxide as acceptor)、过氧化物酶活性(peroxidase activity)、裂解酶活性(lyase activity); 细胞组分中主要富集到光合体系(photosystem)条目中。
Supplementary Table 2
附表2
附表2Yacheng 71-374差异表达蛋白GO富集分析
Supplementary Table 2
分类 Category | GO ID | 功能类别 Functional group | P-value |
---|---|---|---|
生物过程 Biological process | GO:0006979 | Response to oxidative stress | 0.0086 |
GO:0019222 | Regulation of metabolic process | 0.0094 | |
GO:0006560 | Proline metabolic process | 0.0151 | |
GO:0006561 | Proline biosynthetic process | 0.0151 | |
GO:0060255 | Regulation of macromolecule metabolic process | 0.0244 | |
GO:0031323 | Regulation of cellular metabolic process | 0.0301 | |
GO:0055114 | Oxidation-reduction process | 0.0465 | |
分子功能 Molecular function | GO:0004097 | Catechol oxidase activity | 0.0039 |
GO:0016841 | Ammonia-lyase activity | 0.0039 | |
GO:0016682 | Oxidoreductase activity, acting on diphenols and related substances as donors, oxygen as acceptor | 0.0039 | |
GO:0004089 | Carbonate dehydratase activity | 0.0042 | |
GO:0016684 | Oxidoreductase activity, acting on peroxide as acceptor | 0.0057 | |
GO:0004601 | Peroxidase activity | 0.0057 | |
GO:0016829 | Lyase activity | 0.0083 | |
GO:0016491 | Oxidoreductase activity | 0.0107 | |
GO:0016840 | Carbon-nitrogen lyase activity | 0.0113 | |
GO:0016209 | Antioxidant activity | 0.0154 | |
GO:0020037 | Heme binding | 0.0174 | |
GO:0046872 | Metal ion binding | 0.0187 | |
GO:0046914 | Transition metal ion binding | 0.0208 | |
GO:0043169 | Cation binding | 0.0242 | |
GO:0046906 | Tetrapyrrole binding | 0.0244 | |
GO:0045735 | Nutrient reservoir activity | 0.0347 | |
GO:0016679 | Oxidoreductase activity, acting on diphenols and related substances as donors | 0.0347 | |
GO:0004611 | Phosphoenolpyruvate carboxykinase activity | 0.0347 | |
GO:0008964 | Phosphoenolpyruvate carboxylase activity | 0.0347 | |
GO:0016835 | Carbon-oxygen lyase activity | 0.0385 | |
细胞组分 Cellular component | GO:0009521 | Photosystem | 0.0195 |
GO:0034357 | Photosynthetic membrane | 0.0266 | |
GO:0044436 | Thylakoid part | 0.0266 | |
GO:0009522 | Photosystem I | 0.0281 | |
GO:0009579 | Thylakoid | 0.0307 | |
GO:0009538 | Photosystem I reaction center | 0.0357 |
新窗口打开|下载CSV
2.4 差异表达蛋白KEGG富集分析
通过kyoto encyclopedia of genes and genomes (KEGG)数据库对差异蛋白进行富集分析。GT29差异蛋白显著富集(P<0.05)到8条通路中, 分别为核糖体(ribosome)、光合作用(photosynthesis)、类胡萝卜素生物合成(carotenoid biosynthesis)、植物-病原菌互作(plant-pathogen interaction)、抗原的加工提呈(antigen processing and presentation)、双组分系统(two-component system)、光合作用-天线蛋白(photosynthesis-antenna proteins)、吞噬体(phagosome)。其中, 极显著富集(P<0.01)通路为光合作用(P=0.0067)、核糖体(P=0.0063)。Yacheng 71-374差异蛋白显著富集(P<0.05)到3条通路中, 分别为光合作用(photosynthesis)、苯丙烷类生物合成(phenylpropanoid biosynthesis)、次生代谢产物生物合成(biosynthesis of secondary metabolites), 其中极显著富集(P<0.01)通路为光合作用(P= 0.0014)、苯丙烷类生物合成(P=0.0082)。
2.5 光合作用相关差异表达蛋白
GO富集和KEGG富集结果显示, 2个甘蔗品种均在光合作用代谢过程差异蛋白最多、差异最显著, 因此, 我们重点关注了与此相关的差异表达蛋白。光合作用4个多亚基蛋白复合体分别为光系统I (PS I)、光系统II (PSII)、ATP合成酶(ATPase)及细胞色素b6f复合体(Cytb6f)[20]。PS I由天线系统、反应中心、外周蛋白、内在蛋白构成, PS II主要由外周天线、内周天线、反应中心、放氧复合体和辅助亚基构成[21]。由表2可知, GT29鉴定到28个相关差异蛋白, 26个上调表达, 2个下调表达; Yacheng 71-374鉴定到16个相关差异蛋白, 12个上调表达, 4个下调表达。PSI反应中心亚基在GT29中有4个(c54318_ g1;orf1、c69501_g1;orf1、c56023_g1;orf1、c56941_g1; orf1)均为上调表达, 在Yacheng 71-374中有5个(c54318_g1;orf1、c48673_g1;orf1、c43081_g1;orf1、c129327_g1;orf1、c55121_g1;orf1)同样都上调表达; 铁氧还蛋白[2Fe-2S]为PSI反应中心电子受体[22], 在GT29下调表达, Yacheng 71-374无差异; PSI组装蛋白ycf4在GT29上调表达, Yacheng 71-374下调表达; 叶绿素a-b结合蛋白由Lhca基因家族编码, 为PSI天线系统[23], 在GT29有11个差异表达, 其中仅有1个下调表达, 在Yacheng 71-374有4个差异表达, 其中1个下调表达。PSII反应中心相关蛋白[21]在GT29中PSII蛋白D1、PSII蛋白D2、细胞色素b559亚基α均上调表达, 在Yacheng 71-374仅细胞色素b559亚基α (c54219_g1;orf2)差异下调; 内周天线蛋白PSII CP43脱辅基蛋白(c77580_g1;orf1)在GT29上调表达, Yacheng 71-374中无差异; 放氧增强蛋白是PSII的放氧复合体的一部分[24], 结果显示, GT29中有1个上调表达, Yacheng 71-374有2个上调表达; PSII PsbR、PSII 47 kDa蛋白在GT29上调表达, 在Yacheng 71-374中无差异。细胞色素b6f复合体连接PSI和PSII中电子传递, 同时促进ATP合成。GT29中细胞色素b6、细胞色素f上调表达, 而在Yacheng 71-374中均无差异。ATP合成酶在GT29中一个上调表达一个下调表达, 在Yacheng 71-374中均无差异。还有叶绿体Ptr-ToxA结合蛋白在GT29上调表达, 铜蛋白在Yacheng 71-374上调表达, 16 kDa膜蛋白在GT29上调表达, 而在Yacheng 71-374下调表达。结果表明, 相关差异蛋白参与光合作用的多个方面, 可能在2个甘蔗品种抗黑穗病过程均起重要作用, 在抗病品种GT29中表现更加突出。Table 2
表2
表2光合作用相关差异表达蛋白
Table 2
蛋白ID Protein ID | 蛋白名称 Protein name | 差异倍数 Fold change | |||
---|---|---|---|---|---|
GT29 | Yacheng 71-374 | ||||
c54318_g1;orf1 | 光系统I反应中心亚基II Photosystem I reaction center subunit II | 1.2995↑ | 1.2562↑ | ||
c69501_g1;orf1 | 光系统I PsaH, 反应中心亚基III Photosystem I PsaH, reaction centre subunit III | 1.9614↑ | 0.9303 | ||
c48673_g1;orf1 | 光系统I反应中心亚基IV A Photosystem I reaction center subunit IV A | 1.1149 | 1.3041↑ | ||
c56023_g1;orf1 | 光系统I反应中心亚基V Photosystem I reaction center subunit V | 1.5387↑ | 1.0456 | ||
c43081_g1;orf1 | 光系统I PsaH, 反应中心亚基VI Photosystem I PsaH, reaction centre subunit VI | 0.8432 | 1.2040↑ | ||
c129327_g1;orf1 | 光系统I亚基VII Subunit VII of photosystem I | 1.1871 | 1.2700↑ | ||
c55121_g1;orf1 | 光系统I反应中心亚基N Photosystem I reaction center subunit N | 1.0602 | 1.4252↑ | ||
c56941_g1;orf1 | 光系统I反应中心亚基XI Photosystem I reaction center subunit XI | 1.3609↑ | 1.1204 | ||
c32636_g1;orf1 | 铁氧还蛋白[2Fe-2S] Ferredoxin[2Fe-2S] | 0.7977↓ | 1.0785 | ||
c70387_g2;orf1 | 光系统I组装蛋白ycf4 Photosystem I assembly protein ycf4 | 1.2823↑ | 0.7661↓ | ||
c73345_g1;orf1 | 叶绿素a-b结合蛋白8 Chlorophyll a-b binding protein 8 | 0.8225↓ | 1.1336 | ||
c99995_g1;orf1 | 叶绿素a-b结合蛋白CP26 Chlorophyll a-b binding protein CP26 | 0.9317 | 0.7892↓ | ||
c52958_g1;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.3946↑ | 1.2335↑ | ||
c66930_g1;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.5718↑ | 1.1641 | ||
c69028_g1;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 2.4059↑ | 1.1324 | ||
c51419_g1;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.0915 | 1.3043↑ | ||
c55759_g1;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.9421↑ | 1.2397↑ | ||
c57415_g1;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.3181↑ | 1.0380 | ||
c69028_g3;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.8089↑ | 1.0351 | ||
c55792_g1;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.8236↑ | 1.0311 | ||
c51241_g4;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.8423↑ | 1.0049 | ||
c69028_g2;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 1.9144↑ | 0.9817 | ||
c121256_g1;orf1 | 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein | 2.4187↑ | 0.8355 | ||
c73247_g2;orf1 | 光系统II蛋白D1 Photosystem II protein D1 | 3.4261↑ | 0.9206 | ||
c78076_g1;orf1 | 光系统II蛋白D2 Photosystem II D2 protein | 1.3682↑ | 0.9089 | ||
c54219_g1;orf2 | 细胞色素b559亚基α Cytochrome b559 subunit α | 1.6695↑ | 0.7424↓ | ||
c77580_g1;orf1 | 光系统II CP43脱辅基蛋白 Photosystem II CP43 chlorophyll apoprotein | 1.4055↑ | 0.9421 | ||
蛋白ID Protein ID | 蛋白名称 Protein name | 差异倍数 Fold change | |||
GT29 | Yacheng 71-374 | ||||
c126236_g1;orf1 | 放氧增强蛋白1 Oxygen-evolving enhancer protein 1 | 1.0064 | 1.2372↑ | ||
c59540_g1;orf1 | 放氧增强蛋白3 Oxygen-evolving enhancer protein 3 | 0.8754 | 1.8631↑ | ||
c100226_g1;orf1 | 放氧增强蛋白 Oxygen-evolving enhancer protein | 1.5306↑ | 0.9906 | ||
c55903_g1;orf1 | 叶绿体放氧增强蛋白1 (部分) Chloroplast oxygen-evolving enhancer protein 1 (partial) | 1.0456 | 1.2517↑ | ||
c51741_g1;orf1 | 光系统II PsbR Photosystem II PsbR | 1.9037↑ | 1.0547 | ||
c22663_g1;orf1 | 光系统II 47kDa蛋白 Photosystem II 47 kDa protein | 1.7295↑ | 0.9404 | ||
c56158_g2;orf1 | 细胞色素b6 (部分) Cytochrome b6 (partial) | 1.4786↑ | 1.0816 | ||
c72546_g2;orf1 | 细胞色素f Cytochrome f | 1.2540↑ | 0.9964 | ||
c67723_g1;orf1 | ATP合成酶CF1α亚基 ATP synthase CF1 α subunit | 1.3837↑ | 1.0172 | ||
c57360_g1;orf2 | ATP合成酶 ATP synthase | 0.6735↓ | 1.0127 | ||
c61429_g2;orf1 | 叶绿体Ptr-ToxA结合蛋白 Chloroplast Ptr ToxA-binding protein | 1.4116↑ | 0.9843 | ||
c54911_g1;orf1 | 16 kDa膜蛋白 16 kDa membrane protein | 1.6364↑ | 0.7557↓ | ||
c47557_g1;orf1 | 铜蛋白 Blue (type 1) Copper protein Blue (type 1) | 1.1170 | 1.5826↑ |
新窗口打开|下载CSV
2.6 抗氧化相关差异表达蛋白
植物在受到胁迫时会产生活性氧(ROS), 而过量的ROS会氧化蛋白质、脂质和核酸, 从而导致细胞结构的损伤[25]。鉴定到的相关酶包括过氧化物酶(POD)、谷胱甘肽过氧化物酶(GPX)、抗坏血酸过氧化物酶(APX)、超氧化物歧化酶(SOD)、谷胱甘肽硫转移酶(GST)和过氧化氢酶(CAT)。由表3可知, 在GT29中鉴定到15个POD差异表达蛋白, 其中11个上调表达; Yacheng 71-374鉴定到13个差异表达蛋白, 其中10个上调表达, 3个下调表达。在GT29鉴定到2个GPX差异表达蛋白均下调表达, 而在Yacheng 71-374中无差异表达。在GT29鉴定到4个APX差异表达蛋白均下调表达; 在Yacheng 71-374中鉴定到1个差异下调表达蛋白。在GT29鉴定到3个SOD差异表达蛋白均下调表达; 在Yacheng 71-374中鉴定到1个差异上调表达蛋白。在GT29鉴定到6个GST差异表达蛋白其中1个上调表达, 5个上调表达; 而在Yacheng 71-374中鉴定到5个差异表达蛋白均为上调表达。在GT29鉴定到3个CAT差异表达蛋白, 其中1个上调表达, 2个下调表达; 在Yacheng 71-374中鉴定到1个差异下调表达蛋白。2个品种的POD均大部分为上调表达, 抗性品种GT29稍多一些, 而GPX、APX、SOD、GST、CAT在GT29中大都为下调表达, Yacheng 71-374中表现为上调或无差异, 结果表明, 甘蔗在受黑穗病菌胁迫时会诱导抗氧化蛋白来参与应答, 可能主要为POD。
Table 3
表3
表3抗氧化相关差异表达蛋白
Table 3
蛋白ID Protein ID | 蛋白名称 Protein name | 差异倍数 Fold change | ||
---|---|---|---|---|
GT29 | Yacheng 71-374 | |||
过氧化物酶POD | ||||
c50862_g1;orf1 | 过氧化物酶-5 Peroxiredoxin-5 | 0.6309↓ | 0.9930 | |
c67975_g2;orf2 | 过氧化物酶54 Peroxidase 54 | 1.1999 | 2.0388↑ | |
c59322_g3;orf1 | 过氧化物酶54前体 Peroxidase 54 precursor | 1.4571↑ | 1.5671↑ | |
c67975_g1;orf1 | 过氧化物酶54前体 Peroxidase 54 precursor | 1.4967↑ | 2.0387↑ | |
c66988_g1;orf1 | 过氧化物酶12前体 Peroxidase 12 precursor | 1.5653↑ | 1.0408 | |
c53549_g1;orf1 | 过氧化物酶-2E-1 Peroxiredoxin-2E-1 | 0.8258↓ | 0.9233 | |
c59322_g4;orf1 | 过氧化物酶 Peroxidase | 1.4017↑ | 0.9072 | |
c59146_g1;orf1 | 过氧化物酶 Peroxidase | 0.7301↓ | 0.6919↓ | |
c72776_g2;orf1 | 过氧化物酶 Peroxidase | 1.1594 | 0.6714↓ | |
蛋白ID Protein ID | 蛋白名称 Protein name | 差异倍数 Fold change | ||
GT29 | Yacheng 71-374 | |||
c58718_g1;orf1 | 过氧化物酶 Peroxidase | 0.4462↓ | 0.4493↓ | |
c67818_g4;orf1 | 过氧化物酶 Peroxidase | 1.3312↑ | 1.6457↑ | |
c64648_g9;orf1 | 过氧化物酶 Peroxidase | 2.7030↑ | 1.4510↑ | |
c70898_g1;orf2 | 过氧化物酶 Peroxidase | 1.2262↑ | 1.3997↑ | |
c50276_g1;orf1 | 过氧化物酶 Peroxidase | 1.2289↑ | 1.3558↑ | |
c58269_g2;orf1 | 过氧化物酶 Peroxidase | 1.4748↑ | 1.2872↑ | |
c46626_g1;orf1 | 过氧化物酶 Peroxidase | 1.4542↑ | 1.2559↑ | |
c70898_g1;orf1 | 过氧化物酶 Peroxidase | 1.3312↑ | 1.2195↑ | |
谷胱甘肽过氧化物酶GPX | ||||
c73435_g2;orf1 | 谷胱甘肽过氧化物酶 Glutathione peroxidase | 0.8064↓ | 1.0474 | |
c55250_g2;orf1 | 磷脂氢过氧化物谷胱甘肽过氧化物酶6 Probable phospholipid hydroperoxide glutathione peroxidase 6 | 0.7848↓ | 0.9799 | |
抗坏血酸过氧化物酶APX | ||||
c79083_g1;orf1 | L-抗坏血酸过氧化物酶 L-ascorbate peroxidase | 0.7024↓ | 0.9451 | |
c113714_g1;orf1 | APx1-细胞溶质抗坏血酸过氧化物酶 APx1-cytosolic Ascorbate Peroxidase | 0.7028↓ | 0.9186 | |
c76142_g1;orf1 | 抗坏血酸过氧化物酶 Ascorbate peroxidase | 0.7592↓ | 0.9356 | |
c64041_g1;orf1 | 抗坏血酸过氧化物酶 Ascorbate peroxidase | 0.7935↓ | 0.9019 | |
c62865_g1;orf1 | 抗坏血酸过氧化物酶 Ascorbate peroxidase | 0.9393 | 0.7810↓ | |
超氧化物歧化酶SOD | ||||
c73325_g1;orf1 | 超氧化物歧化酶(Cu/Zn) Superoxide dismutase (Cu/Zn) | 0.6040↓ | 1.4209↑ | |
c73325_g2;orf2 | 超氧化物歧化酶(Cu/Zn) Superoxide dismutase (Cu/Zn) | 0.4810↓ | 1.1765 | |
c55722_g2;orf1 | 超氧化物歧化酶 Superoxide dismutase | 0.5893↓ | 1.0278 | |
谷胱甘肽硫转移酶GST | ||||
c66937_g2;orf2 | 谷胱甘肽S-转移酶4 Glutathione S-transferase 4 | 0.4706↓ | 1.0162 | |
c71423_g2;orf2 | 谷胱甘肽S-转移酶F8 Glutathione S-transferase F8 | 0.7288↓ | 1.3394↑ | |
c57078_g1;orf1 | 谷胱甘肽S-转移酶GST 12 Glutathione S-transferase GST 12 | 1.0751 | 1.2122↑ | |
c47481_g1;orf1 | 谷胱甘肽S-转移酶GST 14 Glutathione S-transferase GST 14 | 0.9491 | 1.3272↑ | |
c49019_g1;orf1 | 谷胱甘肽S-转移酶 Glutathione S-transferase | 0.9292 | 1.2484↑ | |
c125211_g1;orf1 | 谷胱甘肽S-转移酶 Glutathione S-transferase | 1.1719 | 1.2102↑ | |
c67259_g1;orf1 | 谷胱甘肽S-转移酶 Glutathione S-transferase | 0.6751↓ | 1.0939 | |
c66937_g2;orf1 | 谷胱甘肽S-转移酶 Glutathione S-transferase | 0.5350↓ | 0.9349 | |
c65037_g3;orf1 | 谷胱甘肽S-转移酶 Glutathione S-transferase | 1.2785↑ | 0.9165 | |
c66547_g1;orf2 | 蛋白IN2-1同系物B同型X2 Protein IN2-1 homolog B isoform X2 | 0.6158↓ | 1.0739 | |
过氧化氢酶CAT | ||||
c63190_g2;orf1 | 过氧化氢酶 Catalase-1-like | 0.7984↓ | 0.9734 | |
c63190_g2;orf2 | 过氧化氢酶 Catalase-1-like | 0.8116↓ | 0.8982 | |
c63190_g1;orf1 | 过氧化氢酶 Catalase | 1.2415↑ | 0.7038↓ |
新窗口打开|下载CSV
2.7 钙信号通路相关差异表达蛋白
钙信号是植物信号转导途径中重要的信号分子, 参与了大多细胞生理代谢过程[26]。在GT29中鉴定到2个差异表达钙调蛋白均下调表达, 1个钙依赖性蛋白激酶上调表达, 3个EF-手型钙结合蛋白中有1个上调表达, 2个下调表达。而在Yacheng 71-374中没有鉴定到任何相关差异表达蛋白。说明钙信号在一定程度上参与了甘蔗应答黑穗病过程, 但可能不是主要影响因素。2.8 苯丙烷类代谢相关差异表达蛋白
在受到生物或非生物胁迫时, 苯丙烷类代谢途径是植物抗病反应次生代谢中重要的代谢途径之一[27]。本实验鉴定到相关差异蛋白中苯丙氨酸解氨酶是苯丙烷途径的关键酶和限速酶, 在GT29中有1个上调表达, 在Yacheng 71-374中有2个上调表达。3-脱氢奎尼酸合酶在苯丙氨酸生物合成途径中将4-磷酸赤藓糖催化生成分支酸[28], 其在GT29中无差异, 在Yacheng 71-374中上调表达。分支酸变位酶催化分支酸生成预苯酸[28], 在GT29中上调表达, 在Yacheng 71-374中无差异。DAHP合成酶受终产物酪氨酸和苯丙氨酸的协同反馈抑制[29], 在2个品种均下调表达。咖啡酰辅酶A-O-甲基转移酶是木质素生物合成的关键酶[30], 在2个品种均下调表达。表明苯丙烷类代谢途径可能也不是甘蔗抗黑穗病的关键途径。2.9 激素相关差异表达蛋白
激素在甘蔗抗黑穗病中的作用已有研究[31]。与生长素(IAA)相关蛋白IAA-氨基酸水解酶ILR1、生长素抑制12.5 kDa蛋白在GT29中均下调表达, 在Yacheng 71-374中无差异。与乙烯(ETH)相关蛋白1-氨基环丙烷-1-羧酸酯氧化酶在GT29中无差异, 在Yacheng 71-374中下调表达。与脱落酸(ABA)相关蛋白, 在GT29中有3个蛋白磷酸酶2C、1个推定9-顺式-环氧类胡萝卜素双加氧酶均上调表达, 在Yacheng 71-374中有2个蛋白磷酸酶2C同样均上调表达。与赤霉素(GA)相关蛋白赤霉素受体GID1L2在GT29中均下调表达, 在Yacheng 71-374中无差异。这表明ABA在甘蔗抗黑穗病过程中可能有重要作用。同Su等[11]鉴定结果一致, 茉莉酸(JA)、水杨酸(SA)、细胞分裂素(CTK)相关蛋白没有被鉴定到, 可能其在早期被诱导, 采样时间点较晚, 表达丰度低。2.10 共有差异表达蛋白分析
2个甘蔗品种共同差异表达蛋白有83个。其中GT29上调表达蛋白55个, 下调表达蛋白28个; Yacheng 71-374上调表达蛋白48个, 下调表达蛋白35个。对83个共有差异表达蛋白进行COG功能分类, 整体功能类(general function prediction only)蛋白数量最多, 其次是翻译/核糖体结构域生物起源(translation, ribosomal structure and biogenesis)(图3)。表4列出了在GT29中上调表达而在Yacheng 71-374中下调表达的共有差异表达蛋白。图3
新窗口打开|下载原图ZIP|生成PPT图3共有差异表达蛋白COG功能分类
Fig. 3Co-owned differentially expressed protein COG functional classification
Table 4
表4
表4在GT29中上调表达、在Yacheng 71-374中下调表达的共有差异表达蛋白
Table 4
蛋白ID Protein ID | 蛋白名称 Annotation | 差异倍数 Fold change | |
---|---|---|---|
GT29 | Yacheng 71-374 | ||
c62874_g2;orf1 | 40S核糖体蛋白S5 40S ribosomal protein S5 | 1.4018↑ | 0.8042↓ |
c60900_g1;orf1 | 40S核糖体蛋白S18 40S ribosomal protein S18 | 1.4850↑ | 0.7965↓ |
c61922_g1;orf1 | 40S核糖体蛋白S10 40S ribosomal protein S10 | 2.3718↑ | 0.7673↓ |
c53669_g1;orf1 | 60S核糖体蛋白L35 60S ribosomal protein L35 | 2.2003↑ | 0.8276↓ |
c71804_g5;orf1 | NAD(P)H-醌氧化还原酶亚基H NAD(P)H-quinone oxidoreductase subunit H | 1.9719↑ | 0.7819↓ |
c63190_g1;orf1 | 过氧化氢酶 Catalase | 1.2415↑ | 0.7038↓ |
c54219_g1;orf2 | 细胞色素b559亚基α Cytochrome b559 subunit α | 1.6695↑ | 0.7424↓ |
c70387_g2;orf1 | 光系统I组装蛋白ycf4 Photosystem I assembly protein ycf4 | 1.2823↑ | 0.7661↓ |
c58104_g1;orf1 | 叶绿体光系统II 22kDa蛋白质 Chloroplast photosystem II 22 kDa protein | 1.3253↑ | 0.8263↓ |
c54911_g1;orf1 | 16 kDa膜蛋白 16 kDa membrane protein | 1.6364↑ | 0.7557↓ |
c42694_g1;orf1 | C4磷酸烯醇式丙酮酸羧化酶 Putative C4 phosphoenolpyruvate carboxylase | 1.5936↑ | 0.7203↓ |
c42694_g2;orf1 | C4磷酸烯醇式丙酮酸羧化 Putative C4 phosphoenolpyruvate carboxylase | 1.4599↑ | 0.7465↓ |
c53868_g3;orf1 | C4磷酸烯醇式丙酮酸羧化酶 Putative C4 phosphoenolpyruvate carboxylase | 1.3213↑ | 0.7792↓ |
c107621_g1;orf1 | 2A型丝氨酸/苏氨酸蛋白磷酸酶65 kDa调节亚基Aβ亚型 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform | 1.3104↑ | 0.8029↓ |
c68372_g4;orf1 | γ-生育酚甲基转移酶 γ-tocopherol methyltransferase | 1.2630↑ | 0.7888↓ |
新窗口打开|下载CSV
3 讨论
通过iTRAQ技术鉴定到感黑穗病后甘蔗品种GT29和Yacheng 71-374中有定量信息蛋白分别为1429个和1576个, 差异表达蛋白分别为290个和125 个, 远多于本课题组此前利用双向电泳技术鉴定到甘蔗品种ROC22感黑穗病后差异表达蛋白数(18个)[9], 证明了iTRAQ技术的高通量。其中抗病品种GT29的差异表达蛋白多于感病品种Yacheng 71-374, GT29在KEGG富集到的代谢通路也更多,可能感病后抗病品种的免疫调节机制更为复杂, 涉及的调控通路网更广。对鉴定到的所有蛋白进行GO注释, 在生物过程、分子功能、细胞组分中不同功能蛋白数分布情况与苏亚春等[7]结果一致, 但对差异表达蛋白富集分析结果则有所不同, 可能不同时期不同品种甘蔗对黑穗病应答机制有所差异。绿色植物通过光合作用合成有机物质和获取能量, 是植物重要的生理活动。许多研究表明, 植物在受到生物或非生物胁迫后, 通常光合能力受到影响, 相关参数与对照比发生变化[32,33,34,35,36]。沈喜等[37]通过研究感病品种和抗病品种小麦感染条锈病菌后0~12 d叶绿素含量变化显示, 感病品种的叶绿素含量一直在下降, 而抗病品种叶绿素含量呈先下降后上升趋势, 推测抗病品种通过叶绿素机制来抵御病原菌入侵。本研究发现, 与光合作用相关差异表达蛋白在2个甘蔗品种中大多为上调表达, 且抗性品种上调表达蛋白数多于感病品种。差异表达蛋白参与了光合作用的各个方面, 如光捕获、光传递、电子传递、维持蛋白复合体结构稳定、能量转换等。推测光合作用在甘蔗感黑穗病后期免疫机制中可能起重要作用, 上调表达蛋白可能有利于修复受损的光合系统, 进而维护植物生长, 提高对病原菌抗性。
植物对各种胁迫的反应之一是ROS的快速生成, 而过量的ROS会氧化蛋白质、脂质和核酸, 从而导致细胞结构的损伤[38]。对于维持细胞体内的ROS平衡, 控制过多ROS带来的毒性影响, 植物建立了多重的抗氧化酶系统[39]。本研究抗性品种GT29中鉴定到POD差异表达蛋白有11个上调表达, 4个下调表达, 感病品种Yacheng 71-374有10个上调表达, 3个下调表达。Su等[11]对甘蔗感病初期研究结果显示, ROS相关蛋白并没有表现出与抗性显著相关, 其中POD在抗性品种Yacheng 05-179中有6个上调表达蛋白, 6个下调表达蛋白, 感病品种ROC22中10个蛋白全部为上调表达, 尽管如此, 本研究与其相似的是POD差异表达蛋白均在抗氧化酶系统中占多数, 且上调表达蛋白在4个品种中数量均较多。暗示POD在甘蔗应答黑穗病过程中可能有重要作用。POD和CAT能将H2O2分解成无毒害的H2O和O2, 两者在一定强度的环境胁迫下有互补的作用, 后期CAT活性减弱, POD活性增强[40]。
植物激素将生长和环境信号整合到一个精细的信号网络中, 在植物的生长发育中起着至关重要的作用, 其不但能调控植物株型的形成, 而且能使植物适当地应对潜在的压力[41]。对激素相关差异蛋白分析, 发现主要为ABA相关蛋白[蛋白磷酸酶2C(PP2C)、9-顺式-环氧类胡萝卜素双加氧酶(NCED)]。NCED是高等植物ABA生物合成途径的关键酶[42], 当植物被诱导产生ABA后, PYR/PYL/ RCAR作为ABA信号受体, 与PP2C家族的A类蛋D结合, 释放SnRK2s类激酶, 激活ABA信号反应[43]。ABA相关差异蛋白均为上调表达, GT29蛋白个数多于Yacheng 71-374, 显示ABA对甘蔗抗黑穗病有重要作用, 这与Que等[44]转录组分析结果一致。ABA能促进植物的防御, 并参与复杂的协同和拮抗相互作用网络, 它在抗病中的作用取决于病原菌的类型、进入宿主的具体方式以及防御反应的时间和植物组织的类型[45]。ABA在植物抗病中的作用已有大量报道[46,47,48,49]。本实验发现钙信号通路在一定程度上参与了甘蔗抗病过程, Ca2+信号作为第二信使在ABA信号转导过程中也发挥着重要作用[50], 可能参与了ABA的调控。
2个甘蔗品种共有差异表达蛋白经COG功能分类显示在整体功能类蛋白数最多, 其中在GT29上调表达而在Yacheng 71-374下调表达的蛋白除与光合作用和活性氧代谢相关外, 还参与了多种途径与功能。核糖体蛋白(c62874_g2; orf1、c60900_g1; orf1、c61922_g1; orf1、c53669_g1; orf1)除参与蛋白质的生物合成外, 还具有转录、RNA加工、DNA修复等功能[51]。NAD(P)H-醌氧化还原酶催化醌到氢醌的有益双电子还原, 防止在分子氧存在下通过半醌类的氧化还原反应形成活性氧物质[52]。过氧化氢酶是一种有效的活性氧清除剂, 主要功能是消除在发育过程中生物/非生物胁迫产生的过量的过氧化氢, 同样参与ROS代谢。蛋白c54219_g1; orf2、c70387_g2; orf1、c58104_g1; orf1、c54911_g1; orf1为光合作用相关蛋白。C4磷酸烯醇式丙酮酸羧化酶(c42694_g1; orf1、c42694_g2; orf1、c53868_g3; orf1)在C4植物中作为C4二羧酸循环的关键酶, 起着固定大气中CO2并作为CO2泵而提高光合效率的作用; 同时可以调节细胞pH, 保持离子平衡[53]。2A型丝氨酸/苏氨酸蛋白磷酸酶在植物代谢和信号转导中发挥着多种调控作用[54]。γ-生育酚甲基转移酶是天然维生素E合成途径中的关键酶之一, 其表达及活性对决定植物维生素E的组成起着重要作用[55]。已有研究表明光合器官的维生素E在逆境如强光、干旱、重金属、高温、低温条件下大幅升高[56]。
苯丙烷类代谢相关蛋白及一些酶(GPX、APX、SOD、GST、CAT)活性、激素(IAA、ETH、GA)在前人研究中与植物抗病相关[57], 表现为抗病品种在感病后表达量均比感病对照显著增加。但在本实验中没有发现参与甘蔗的抗病过程, 可能与采样时间有关。前人研究多为感病初期, 而各个代谢途径产生作用的时间与环境、植物、病原菌自身均有联系, 即使在十几个小时内也是不断变化的[58], 这是一个复杂的代谢过程。
4 结论
感黑穗病后抗病甘蔗品种GT29的差异表达蛋白数多于感病品种Yacheng 71-374, GT29在KEGG富集到的代谢通路也更多。光合作用通路、ROS途径、ABA、钙信号通路相关蛋白在2个品种中多为上调表达, 且GT29的上调表达蛋白数多于Yacheng 71-374, 可能参与甘蔗后期对黑穗病的应答。植物抗病是一个复杂的过程, 需要多种功能与途径参与调控。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
URL [本文引用: 1]
Abstract Three varieties of sugarcane, defined by their relative resistance to smut, were used to study chemical parameters involved in sucrose recovery from raw juices. The Barbados variety is extremely susceptible to smut whereas Jaronu is mid-resistant and Mayari is extremely smut resistant. Vegetative sugarcane buds were inoculated with teliospores and cultured in field conditions for 12 months. Infection always resulted in a decrease in the content of reducing sugars of juices, most markedly for Mayari plants, and an increase in the value of pol. The value of brix, remained unchanged for Jaronu and Barbados following infection, but increased for Mayari plants. Soluble polysaccharides and glycoproteins of juices increase after infection in Jaronu and Mayari plants, but decreases for Barbados specimens. On this basis, glycoproteins from sugarcane juices could be considered as a factor of biological resistance to smut.
,
DOI:10.3389/fpls.2016.01133URLPMID:4963460 [本文引用: 1]
Sugarcane smut disease, caused bySporisorium scitamineum, significantly decreases yield and use of resistant cultivars is the most cost-effective measure for disease control. Current field testing methods for identification of smut resistance are time-consuming and hindered by environmental variability. Our goal was to develop an efficient and reliable resistance identification technique that is rapid, performed in a controlled environment, and stable. Nine sugarcane cultivars with different phenotypic resistance levels were selected. TaqMan quantitative real-time polymerase chain reaction analysis was performed to measure copy number changes of smut pathogen in sugarcane buds at 0 7 days after needle puncture inoculation. There was a positive correlation between time after inoculation and the amount of smut pathogen in the sugarcane bud. This reached a peak value on 7 days, and the copy number ofS. scitamineumincreased in the following order: YZ03-258, FN40, YZ01-1413, GT02-467, ROC22, YT96-86, YZ03-103, FN39, LC05-136. After smut pathogen inoculation, differences in the physiological and biochemical indices of the nine cultivars were observed. Peroxidase, ascorbate peroxidase, catalase, superoxide dismutase, -1,3-glucanase, and malondialdehyde were grouped into three main components, and the cumulative contribution rate was 80.177%, revealing that these are useful physiological and biochemical indicators of smut resistance. Subordinate function analysis indicated that the levels of smut resistance of the nine genotypes were (high to low): YZ03-258, FN40, YZ01-1413, GT02-467, ROC22, YZ03-103, YT96-86, FN39, LC05-136, which is similar to the results from copy number determination of smut pathogens. The results suggest that after artificial needle inoculation, rapid identification of physiological resistance to sugarcane smut was achieved based on copy number increases in the sugarcane smut pathogen and the physiological and biochemical changes in sugarcane bud during the early phase of infection.
,
DOI:10.1094/PD-67-1103URL [本文引用: 1]
,
DOI:10.1007/BF02956886URL [本文引用: 1]
Sugarcane is a rich source of vitamin-C (ascorbic acid) besides sugar. The concentration of ascorbic acid is adversely affected by the presence of different plant pathologists. Hence, an attempt was made to investigate the ascorbic acid content in smut affected stalks in two sugarcane varieties viz., CoLk 7901 and CoJ 64. There was an increase in the ascorbic acid content in leaf, bud, apical meristem, lateral shoots as well as in juice of smut affected stalks of both the test varieties. It is presumed that the enhancement in the ascorbic content in smut affected stalks may be due to the production of ascorbic acid accelerating enzymes by the pathogen or by the interaction of host-parasite.
,
URL [本文引用: 1]
Sugarcane leaf shows the classical arrangement of cells which defines a C4 species. Vascular bundles consist of xylem, phloem and fibres, surrounded by an outer layer of sclereids and an inner ring of stone cells associated with the phloem. Some sclereids located below and above the vascular bundles act as docking cells and connect the vascular bundle to the internal surfaces of upper and lower layers of the epidermis. A compact mass of sclereids occupies the total internal volume of the leaf edge. Neither docking cells nor the internal mass of sclereids in the edge were markedly coloured by acriflavin or phloroglucinol, indicating the absence of lignin in their cell walls. However, such staining indicated that fibres of the vascular bundle and the external layer of sclereids were strongly lignified. Incubation of leaf discs with an elicitor produced by the pathogen Sporisorium scitamineum increased the thickness of the lignified cell walls of sclereids as well as the mid and small xylem vessels, as a possible mechanical defense response to the potential entry of the pathogen.
,
DOI:10.3969/j:issn.2095-1191.2012.11.1676URL [本文引用: 1]
[目的]研究接种黑穗病菌后甘蔗内源激素含量的变化,为揭示甘蔗对黑穗病的抗性机制及抗性育种提供理论依据.[方法]以甘蔗品种GT28和ROC22为材料,设接种黑穗病菌处理,以接种无菌水为对照,研究不同抗性甘蔗品种幼苗叶片内源激素含量的变化.[结果]受黑穗病菌侵染后,甘蔗幼苗叶片内源激素IAA和GA含量降低,ABA、SA和JA含量提高,IAA/ABA值下降且低于对照.与感病品种ROC22相比,抗病品种GT28有较低的IAA、ABA含量和较高的GA、SA含量,IAA/ABA值变化幅度较小,而抗感品种间内源JA含量无明显差异.[结论]受黑穗病菌侵染后,甘蔗幼苗叶片IAA、GA、ABA、SA含量及IAA/ABA值变化与不同甘蔗品种的抗性密切相关,可作为甘蔗对黑穗病抗性的生理指标.
DOI:10.3969/j:issn.2095-1191.2012.11.1676URL [本文引用: 1]
[目的]研究接种黑穗病菌后甘蔗内源激素含量的变化,为揭示甘蔗对黑穗病的抗性机制及抗性育种提供理论依据.[方法]以甘蔗品种GT28和ROC22为材料,设接种黑穗病菌处理,以接种无菌水为对照,研究不同抗性甘蔗品种幼苗叶片内源激素含量的变化.[结果]受黑穗病菌侵染后,甘蔗幼苗叶片内源激素IAA和GA含量降低,ABA、SA和JA含量提高,IAA/ABA值下降且低于对照.与感病品种ROC22相比,抗病品种GT28有较低的IAA、ABA含量和较高的GA、SA含量,IAA/ABA值变化幅度较小,而抗感品种间内源JA含量无明显差异.[结论]受黑穗病菌侵染后,甘蔗幼苗叶片IAA、GA、ABA、SA含量及IAA/ABA值变化与不同甘蔗品种的抗性密切相关,可作为甘蔗对黑穗病抗性的生理指标.
,
URL [本文引用: 2]
甘蔗(Saccharum officinarum)是最重要糖料作物,蔗糖占我国食糖总产92%。病害是影响甘蔗产量和质量的重要因素,甘蔗黑穗病(Sporisorium scitamineum)是世界各植蔗区最主要的病害之一,也是我国甘蔗栽培上最重要的病害,种植抗病品种是控制该病最经济、最有效的措施。前人从相关细胞学、形态学、生理生化及抗病性遗传方面,探讨了甘蔗对黑穗病的抗性机制。目前,有关甘蔗响应黑穗病菌侵染的分子
URL [本文引用: 2]
甘蔗(Saccharum officinarum)是最重要糖料作物,蔗糖占我国食糖总产92%。病害是影响甘蔗产量和质量的重要因素,甘蔗黑穗病(Sporisorium scitamineum)是世界各植蔗区最主要的病害之一,也是我国甘蔗栽培上最重要的病害,种植抗病品种是控制该病最经济、最有效的措施。前人从相关细胞学、形态学、生理生化及抗病性遗传方面,探讨了甘蔗对黑穗病的抗性机制。目前,有关甘蔗响应黑穗病菌侵染的分子
,
DOI:10.1007/s00425-016-2642-zURL [本文引用: 1]
,
DOI:10.7666/d.D523519URL [本文引用: 2]
甘蔗具有高效的碳同化能力,单位面积产量高,是重要的糖料和能源作用。甘蔗黑穗病是一种由真菌(Ustilago Scitaminea Syd.)引起的气传性病害,几乎在全球各个植蔗国均有发生此病的报道,它能够导致蔗茎产量和蔗糖分的严重损失。目前关于甘蔗响应黑穗病菌的机理还不清楚,特别是对甘蔗幼苗在黑穗病菌侵染初期的分子响应机制更是缺乏了解。本研究采用人工针刺接种甘蔗黑穗病菌,测定了甘蔗幼苗在病原菌侵染初期其光合和荧光参数的变化;分别在翻译水平和转录水平上研究其基因差异表达情况;并克隆了四个与黑穗病菌胁迫相关基因的全长并对它们在不同胁迫条件下的表达情况进行了分析。结果发现: 1.甘蔗幼苗的叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)在黑穗病菌侵染的前3d均降低,第4d出现升高,胞间CO2浓度(Ci)在黑穗病菌侵染的前3d均升高,第4d降低。叶绿素荧光参数Fv、Fm、ΦPSⅡ、Fv/Fm和Fv'/Fm'在病原菌侵染初期均下降,但在侵染3d后迅速增加,可见甘蔗幼苗对病原菌的侵染表现出积极的响应。相关性分析发现Pn与Gs、Tr的相关系数达到了0.800以上,呈显著正相关;Ci与Fv'/Fm'和ΦDPSⅡ显著正相关;Fo与Fv/Fm、Fs及ETR呈显著正相关;Fv/Fm与Fv'/Fm'呈显著正相关;Fs与Fv'/Fm'呈显著正相关;Fv'/Fm'与ΦPSⅡ呈显著正相关。 2.在翻译水平上共获得34个差异蛋白质点,其中有26个蛋白点表现为明显的上调表达,有8个蛋白质点表现为下调表达。质谱分析后共成功鉴定了18个蛋白质点。根据它们的生化功能,可将其分为7类,其中参与防卫反应的蛋白所占比例最大为29%,其次为参与代谢反应的蛋白占23%,参与光合作用的占18%,参与蛋白加工的占12%,参与信号转导的占6%,参与细胞生长和分化的占6%,功能未知的占6%。 3.在转录水平上,成功构建了一个甘蔗幼苗响应黑穗病菌侵染的正向抑制消减杂交文库,共成功测序获得224个EST序列,其中有199条表达序列标签(ESTs)成功获得了功能注释。Gene Ontology分析发现,在细胞组分二级水平分类中,有152个unigenes被注释了241次,可细分为8类,其中共质体、包膜和细胞外区域所占比例较小,而细胞、细胞器和大分子复合体所占比例较大,分别为36.7%和19.3%,表明甘蔗黑穗病病原菌对蔗株细胞内部的功能差异产生影响。在生物过程的二级水平分类中,有139个unigenes共被注释了273次,可将其细分为18类,其中涉及代谢过程和细胞过程的功能多,分别被注释85次和74次,这反映了蔗株所具有的基本生命活动。另外涉及刺激物响应和生物调节的也分别被注释了28次和17次。在分子功能的二级水平分类中,有129个unigenes共被注释了132次,可细分为8类,其中涉及结合(binding)和催化活性(catalytic activity)的所占比例大,分别被注释了49次和61次,这两类蛋白的主要参与调控反应,这反映出甘蔗受黑穗病病原菌侵染后基因的差异表达主要是受某种因子所调控的,因此在分析差异基因时要注意其是否受到别的基因的调控,综合考虑其作用机制。 4.克隆获得苯丙氨酸解氨酶(PAL),S-腺苷甲硫氨酸合成酶(SAM),木葡聚糖内糖基转移水解酶(XTH)和Nudix水解酶(NUDT)基因的全长。并对它们在生物胁迫(黑穗病病原菌)和非生物胁迫(干旱、低温、高盐和氧化)下的表达情况进行了分析,为这些基因在甘蔗分子辅助抗性育种中的应用提供理论依据。
DOI:10.7666/d.D523519URL [本文引用: 2]
甘蔗具有高效的碳同化能力,单位面积产量高,是重要的糖料和能源作用。甘蔗黑穗病是一种由真菌(Ustilago Scitaminea Syd.)引起的气传性病害,几乎在全球各个植蔗国均有发生此病的报道,它能够导致蔗茎产量和蔗糖分的严重损失。目前关于甘蔗响应黑穗病菌的机理还不清楚,特别是对甘蔗幼苗在黑穗病菌侵染初期的分子响应机制更是缺乏了解。本研究采用人工针刺接种甘蔗黑穗病菌,测定了甘蔗幼苗在病原菌侵染初期其光合和荧光参数的变化;分别在翻译水平和转录水平上研究其基因差异表达情况;并克隆了四个与黑穗病菌胁迫相关基因的全长并对它们在不同胁迫条件下的表达情况进行了分析。结果发现: 1.甘蔗幼苗的叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)在黑穗病菌侵染的前3d均降低,第4d出现升高,胞间CO2浓度(Ci)在黑穗病菌侵染的前3d均升高,第4d降低。叶绿素荧光参数Fv、Fm、ΦPSⅡ、Fv/Fm和Fv'/Fm'在病原菌侵染初期均下降,但在侵染3d后迅速增加,可见甘蔗幼苗对病原菌的侵染表现出积极的响应。相关性分析发现Pn与Gs、Tr的相关系数达到了0.800以上,呈显著正相关;Ci与Fv'/Fm'和ΦDPSⅡ显著正相关;Fo与Fv/Fm、Fs及ETR呈显著正相关;Fv/Fm与Fv'/Fm'呈显著正相关;Fs与Fv'/Fm'呈显著正相关;Fv'/Fm'与ΦPSⅡ呈显著正相关。 2.在翻译水平上共获得34个差异蛋白质点,其中有26个蛋白点表现为明显的上调表达,有8个蛋白质点表现为下调表达。质谱分析后共成功鉴定了18个蛋白质点。根据它们的生化功能,可将其分为7类,其中参与防卫反应的蛋白所占比例最大为29%,其次为参与代谢反应的蛋白占23%,参与光合作用的占18%,参与蛋白加工的占12%,参与信号转导的占6%,参与细胞生长和分化的占6%,功能未知的占6%。 3.在转录水平上,成功构建了一个甘蔗幼苗响应黑穗病菌侵染的正向抑制消减杂交文库,共成功测序获得224个EST序列,其中有199条表达序列标签(ESTs)成功获得了功能注释。Gene Ontology分析发现,在细胞组分二级水平分类中,有152个unigenes被注释了241次,可细分为8类,其中共质体、包膜和细胞外区域所占比例较小,而细胞、细胞器和大分子复合体所占比例较大,分别为36.7%和19.3%,表明甘蔗黑穗病病原菌对蔗株细胞内部的功能差异产生影响。在生物过程的二级水平分类中,有139个unigenes共被注释了273次,可将其细分为18类,其中涉及代谢过程和细胞过程的功能多,分别被注释85次和74次,这反映了蔗株所具有的基本生命活动。另外涉及刺激物响应和生物调节的也分别被注释了28次和17次。在分子功能的二级水平分类中,有129个unigenes共被注释了132次,可细分为8类,其中涉及结合(binding)和催化活性(catalytic activity)的所占比例大,分别被注释了49次和61次,这两类蛋白的主要参与调控反应,这反映出甘蔗受黑穗病病原菌侵染后基因的差异表达主要是受某种因子所调控的,因此在分析差异基因时要注意其是否受到别的基因的调控,综合考虑其作用机制。 4.克隆获得苯丙氨酸解氨酶(PAL),S-腺苷甲硫氨酸合成酶(SAM),木葡聚糖内糖基转移水解酶(XTH)和Nudix水解酶(NUDT)基因的全长。并对它们在生物胁迫(黑穗病病原菌)和非生物胁迫(干旱、低温、高盐和氧化)下的表达情况进行了分析,为这些基因在甘蔗分子辅助抗性育种中的应用提供理论依据。
,
[本文引用: 1]
,
DOI:10.1186/s12864-016-3146-8URLPMID:5062822 [本文引用: 3]
Sugarcane smut, which is caused bySporisorium scitamineum, has been threatening global sugarcane production. Breeding smut resistant sugarcane varieties has been proven to be the most effective method of controlling this particular disease. However, a lack of genome information of sugarcane has hindered the development of genome-assisted resistance breeding programs. Furthermore, the molecular basis of sugarcane response toS. scitamineuminfection at the proteome level was incomplete and combining proteomic and transcriptional analysis has not yet been conducted. We identified 273 and 341 differentially expressed proteins in sugarcane smut-resistant (Yacheng05-179) and susceptible (ROC22) genotypes at 48 h after inoculation withS. scitamineumby employing an isobaric tag for relative and absolute quantification (iTRAQ). The proteome quantitative data were then validated by multiple reaction monitoring (MRM). The integrative analysis showed that the correlations between the quantitative proteins and the corresponding genes that was obtained in our previous transcriptome study were poor, which were 0.1502 and 0.2466 in Yacheng05-179 and ROC22, respectively, thereby revealing a post-transcriptional event during Yacheng05-179-S. scitamineumincompatible interaction and ROC22-S. scitamineumcompatible interaction. Most differentially expressed proteins were closely related to sugarcane smut resistance such as beta-1,3-glucanase, peroxidase, pathogenesis-related protein 1 (PR1), endo-1,4-beta-xylanase, heat shock protein, and lectin. Ethylene and gibberellic acid pathways, phenylpropanoid metabolism and PRs, such as PR1, PR2, PR5 and PR14, were more active in Yacheng05-179, which suggested of their possible roles in sugarcane smut resistance. However, calcium signaling, reactive oxygen species, nitric oxide, and abscisic acid pathways in Yacheng05-179 were repressed byS. scitamineumand might not be crucial for defense against this particular pathogen. These results indicated complex resistance-related events in sugarcane-S. scitamineuminteraction, and provided novel insights into the molecular mechanism underlying the response of sugarcane toS. scitamineuminfection. The online version of this article (doi:10.1186/s12864-016-3146-8) contains supplementary material, which is available to authorized users.
,
DOI:10.1155/2011/989016URLPMID:21822403 [本文引用: 1]
To understand the molecular basis of a specific plant-pathogen interaction, it is important to identify plant proteins that respond to the pathogen attack. Two sugarcane varieties, NCo376 and Ya71-374, were used in this study. By applying 2-dimensional electrophoresis (2-DE), the protein expression profile of sugarcane after inoculating with Sporisorium scitamineum was analyzed. In total, 23 differentially expressed proteins were identified by MALDI-TOF-TOF/MS. Bioinformatics analysis revealed that the functions of these 20 differential proteins were associated with such functions as photosynthesis, signal transduction, and disease resistance, while the function of the remaining three proteins was not determined. From above, we can assume that the protein regulatory network during the interaction between sugarcane and S. scitamineum is complicated. This represents the first proteomic investigation focused on highlighting the alterations of the protein expression profile in sugarcane exposed to S. scitamineum, and it provides reference information on sugarcane response to S. scitamineum stress at the protein level.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3969/j.issn.1671-6876.2014.04.009URL [本文引用: 1]
为了探讨水稻感病基因型种质响 应稻瘟病侵染的蛋白质表达谱的变化规律和作用途径,以水稻感稻瘟病种质日本晴为材料,采用接种稻瘟病菌分生抱子悬浮液,24,48和72 h后提取叶片蛋白质,采用i TRAQ蛋白质组学技术研究稻瘟病胁迫下水稻叶片蛋白质组的变化.结果表明,稻瘟病侵染诱导了水稻幼苗叶片内涉及氧化还原平衡、防御、信号传导、糖和能量 代谢、氨基酸代谢、光合作用,以及蛋白质代谢等代谢途径相关的53个蛋白质的表达量发生了改变.GO分析表明稻瘟病主要调控了植株体内细胞内平衡、代谢过 程和蛋白质代谢等生物学过程.稻瘟病侵染激活了活性氧代谢、防御,以及热休克蛋白等相关的途径,而抑制了蛋白质生物合成过程.结合这些差异表达蛋白的丰度 变化结合它们可能的功能,描绘了水稻应答稻瘟病侵染的蛋白质代谢网络,有助于在蛋白质水平上了解其应答过程.
DOI:10.3969/j.issn.1671-6876.2014.04.009URL [本文引用: 1]
为了探讨水稻感病基因型种质响 应稻瘟病侵染的蛋白质表达谱的变化规律和作用途径,以水稻感稻瘟病种质日本晴为材料,采用接种稻瘟病菌分生抱子悬浮液,24,48和72 h后提取叶片蛋白质,采用i TRAQ蛋白质组学技术研究稻瘟病胁迫下水稻叶片蛋白质组的变化.结果表明,稻瘟病侵染诱导了水稻幼苗叶片内涉及氧化还原平衡、防御、信号传导、糖和能量 代谢、氨基酸代谢、光合作用,以及蛋白质代谢等代谢途径相关的53个蛋白质的表达量发生了改变.GO分析表明稻瘟病主要调控了植株体内细胞内平衡、代谢过 程和蛋白质代谢等生物学过程.稻瘟病侵染激活了活性氧代谢、防御,以及热休克蛋白等相关的途径,而抑制了蛋白质生物合成过程.结合这些差异表达蛋白的丰度 变化结合它们可能的功能,描绘了水稻应答稻瘟病侵染的蛋白质代谢网络,有助于在蛋白质水平上了解其应答过程.
,
DOI:10.1002/pmic.200900712URLPMID:20232356 [本文引用: 1]
A comparative analysis of differentially expressed proteins in a susceptible grapevine (Vitis vinifera Cabernet Sauvignon) during the infection of Erysiphe necator, the causal pathogen of grapevine powdery mildew (PM), was conducted using iTRAQ. The quantitative labeling analysis revealed 63 proteins that significantly changed in abundance at 24, 36, 48, and 72 h post inoculation with powdery mildew conidiospores. The functional classification of the PM-responsive proteins showed that they are involved in photosynthesis, metabolism, disease/defense, protein destination, and protein synthesis. A number of the proteins induced in grapevine in response to E. necator are associated with the plant defense response, suggesting that PM-susceptible Cabernet Sauvignon is able to initiate a basal defense but unable to restrict fungal growth or slow down disease progression.
,
DOI:10.3969/j.issn.1007-2624.2011.01.001URL [本文引用: 1]
桂糖29号(原编号桂糖02-761)是广西甘蔗研究所从崖城94-46×新台糖22号杂交组合后代中选育的最新甘蔗优良品种。该品种表现为萌芽好,分蘖力强,植株较直立紧凑,中茎,有效茎数多,早熟高糖,丰产,宿根性特强。广西区试试验结果,平均蔗茎产量95.7t/hm2,比CK2(ROC16)增产12.1%,与CK1(ROC22)相近,其中,宿根蔗产蔗量94.0t/hm^2,比CK1和CK2增产10.5%和19.4%;平均蔗糖分15.62%,比CK1和CK2高0.60和0.64个百分点;平均含糖量15.0t/hm^2,比CK1和CK2增产4.2%和17.2%。该品种适应性广,抗寒性明显优于ROC22。该品种于2010年5月通过广西农作物品种审定委员会审定正式命名为桂糖29号。
DOI:10.3969/j.issn.1007-2624.2011.01.001URL [本文引用: 1]
桂糖29号(原编号桂糖02-761)是广西甘蔗研究所从崖城94-46×新台糖22号杂交组合后代中选育的最新甘蔗优良品种。该品种表现为萌芽好,分蘖力强,植株较直立紧凑,中茎,有效茎数多,早熟高糖,丰产,宿根性特强。广西区试试验结果,平均蔗茎产量95.7t/hm2,比CK2(ROC16)增产12.1%,与CK1(ROC22)相近,其中,宿根蔗产蔗量94.0t/hm^2,比CK1和CK2增产10.5%和19.4%;平均蔗糖分15.62%,比CK1和CK2高0.60和0.64个百分点;平均含糖量15.0t/hm^2,比CK1和CK2增产4.2%和17.2%。该品种适应性广,抗寒性明显优于ROC22。该品种于2010年5月通过广西农作物品种审定委员会审定正式命名为桂糖29号。
,
DOI:10.3969/j.issn.1007-2624.2013.02.008URL [本文引用: 1]
采用人工浸渍接种法对5个常用亲本和近年选育的5个甘蔗新品种(系)进行黑穗病抗性鉴定;同时采用针刺法对其中4个常用亲本品种(系)进行接种鉴定.结果表明,采用浸渍法接种,只有ROC25表现为高抗,桂糖29号和桂糖02-963表现为中等,桂糖02-1156、桂糖33号、桂糖21号和桂糖02-649表现为感病,粤糖93-159、桂糖11号和ROC22号表现为高感;采用针刺法接种,桂糖21号、ROC25、粤糖93-159和桂糖11号全部表现为高感.该结果为新品种的推广和杂交亲本的选用提供依据.并探讨了不同接种方式在甘蔗黑穗病抗性评价中的作用.
DOI:10.3969/j.issn.1007-2624.2013.02.008URL [本文引用: 1]
采用人工浸渍接种法对5个常用亲本和近年选育的5个甘蔗新品种(系)进行黑穗病抗性鉴定;同时采用针刺法对其中4个常用亲本品种(系)进行接种鉴定.结果表明,采用浸渍法接种,只有ROC25表现为高抗,桂糖29号和桂糖02-963表现为中等,桂糖02-1156、桂糖33号、桂糖21号和桂糖02-649表现为感病,粤糖93-159、桂糖11号和ROC22号表现为高感;采用针刺法接种,桂糖21号、ROC25、粤糖93-159和桂糖11号全部表现为高感.该结果为新品种的推广和杂交亲本的选用提供依据.并探讨了不同接种方式在甘蔗黑穗病抗性评价中的作用.
,
URL [本文引用: 1]
介绍了甘蔗黑穗病的病原及特征、侵染循环、发生规律和危害症状,提出了以种植抗病品种为基础,加强栽培管理,提高抗病能力,辅以药剂保护的综合防治方法。为减轻黑穗病的危害,提高甘蔗的产量和品质提供一定的依据。
URL [本文引用: 1]
介绍了甘蔗黑穗病的病原及特征、侵染循环、发生规律和危害症状,提出了以种植抗病品种为基础,加强栽培管理,提高抗病能力,辅以药剂保护的综合防治方法。为减轻黑穗病的危害,提高甘蔗的产量和品质提供一定的依据。
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3969/j.issn.1004-7549.2011.02.043URL [本文引用: 2]
本文总结了参与光合作用光反应的蛋白复合体结构、光合电子传递的过程以及该过程中的物质与能量转变和能量转化效率。
DOI:10.3969/j.issn.1004-7549.2011.02.043URL [本文引用: 2]
本文总结了参与光合作用光反应的蛋白复合体结构、光合电子传递的过程以及该过程中的物质与能量转变和能量转化效率。
,
DOI:10.3969/j.issn.1000-1336.2007.01.021URL [本文引用: 1]
该文介绍了高等植物中铁氧还蛋白(Fd)的结构,铁氧还蛋白与铁氧还蛋白:NADP^+氧化还原酶(FNR)的相互作用,氧化还原电势和电子传递活性;阐述了铁氧还蛋白结构与功能的关系。
DOI:10.3969/j.issn.1000-1336.2007.01.021URL [本文引用: 1]
该文介绍了高等植物中铁氧还蛋白(Fd)的结构,铁氧还蛋白与铁氧还蛋白:NADP^+氧化还原酶(FNR)的相互作用,氧化还原电势和电子传递活性;阐述了铁氧还蛋白结构与功能的关系。
,
DOI:10.3724/SP.J.1006.2016.01332URL [本文引用: 1]
捕光叶绿素a/b结合蛋白是植物光系统I(photosystem I,PSI)中与色素分子结合的膜蛋白,由Lhca基因家族编码,主要参与光合作用中光能的捕获与传递。本研究对甘蔗叶片cDNA文库测序,获得甘蔗PSI中Lhca3基因的cDNA序列,命名为ScLhca3(Gen Bank登录号为KU215669)。生物信息学分析表明,ScLhca3的开放读码框(opening reading frame,ORF)长度为804 bp,编码267个氨基酸,分子量为28.91 k D,等电点为8.96;ScLhca3被定位于叶绿体,无信号肽,存在3个明显的跨膜区域,含有典型的捕光叶绿素a/b结合蛋白功能域(chlorophyll a/b binding domain),为亲水性非分泌蛋白。多序列比对和进化分析表明,ScLhca3在不同物种间具有较强的保守性,具有种属特性。构建原核表达载体p GEX-6P-1-ScLhca3,通过IPTG诱导表明,ScLhca3蛋白与预测大小一致。亚细胞定位试验显示,ScLhca3与报告基因GFP的融合蛋白定位于叶绿体中。实时定量PCR分析表明,ScLhca3在成熟叶片中的相对表达量最高,根中几乎不表达,具有明显的组织特异性;在Cd Cl2、ABA和H2O2外源胁迫下,ScLhca3均上调表达;在黑暗、Na Cl和PEG胁迫下则下调表达。
DOI:10.3724/SP.J.1006.2016.01332URL [本文引用: 1]
捕光叶绿素a/b结合蛋白是植物光系统I(photosystem I,PSI)中与色素分子结合的膜蛋白,由Lhca基因家族编码,主要参与光合作用中光能的捕获与传递。本研究对甘蔗叶片cDNA文库测序,获得甘蔗PSI中Lhca3基因的cDNA序列,命名为ScLhca3(Gen Bank登录号为KU215669)。生物信息学分析表明,ScLhca3的开放读码框(opening reading frame,ORF)长度为804 bp,编码267个氨基酸,分子量为28.91 k D,等电点为8.96;ScLhca3被定位于叶绿体,无信号肽,存在3个明显的跨膜区域,含有典型的捕光叶绿素a/b结合蛋白功能域(chlorophyll a/b binding domain),为亲水性非分泌蛋白。多序列比对和进化分析表明,ScLhca3在不同物种间具有较强的保守性,具有种属特性。构建原核表达载体p GEX-6P-1-ScLhca3,通过IPTG诱导表明,ScLhca3蛋白与预测大小一致。亚细胞定位试验显示,ScLhca3与报告基因GFP的融合蛋白定位于叶绿体中。实时定量PCR分析表明,ScLhca3在成熟叶片中的相对表达量最高,根中几乎不表达,具有明显的组织特异性;在Cd Cl2、ABA和H2O2外源胁迫下,ScLhca3均上调表达;在黑暗、Na Cl和PEG胁迫下则下调表达。
,
DOI:10.1002/j.1460-2075.1987.tb04756.xURLPMID:3556163 [本文引用: 1]
Abstract In Chlamydomonas reinhardtii the oxygen evolving enhancer protein 1 (OEE1), which is part of the oxygen evolving complex of photosystem II (PS II), is coded for by a single nuclear gene (psb1). The nuclear mutant FuD44 specifically lacks the OEE1 polypeptide and is completely deficient in photosynthetic oxygen evolution. In this mutant a 5 kb DNA insertion into the 5' region of the psb1 gene results in the complete absence of OEE1 mRNA and protein. A revertant, FuD44-R 2, which is capable of 30% of the photosynthetic oxygen evolution of wild-type cells, has lost 4 kb of the 5 kb DNA insert, and accumulates both OEE1 mRNA and protein, although at levels somewhat less than those of wild-type cells. Absence of the OEE1 protein in the FuD44 mutant does not affect the accumulation of other nuclear encoded PS II peripheral polypeptides. OEE1 absence does, however, result in a more rapid turnover of the chloroplast encoded PS II core polypeptides, thus resulting in a substantial deficiency of PS II core polypeptides in FuD44 cells. These PS II core proteins again accumulate in revertant FuD44-R2 cells.
,
DOI:10.1023/A:1004832518783URLPMID:11338833 [本文引用: 1]
The adaptive response of the phytopathogenic fungus Fusarium decemcellulare to the oxidative stress induced by hydrogen peroxide and juglone (5-hydroxy-1,4-naphthoquinone) was studied. At concentrations higher than 1 mM, H 2 O 2 and juglone completely inhibited the growth of the fungus. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H 2 O 2 (0.25 mM) and juglone (0.1 mM) led to the development of a resistance to high concentrations of these oxidants. The stationary-phase cells were found to be more resistant to the oxidants than the logarithmic-phase cells. The adaptation of fungal cells to H 2 O 2 and juglone was associated with an increase in the activity of cellular catalase and superoxide dismutase, the main enzymes involved in the defense against oxidative stress.
,
DOI:10.3969/j.issn.1000-6850.2012.03.003URL [本文引用: 1]
Calcium, as a second messenger, participates in the regulation of physiological metabolism of most cells through the pathway of plant signal transduction. Many research suggested that the Ca2+ messenger system also involved in the signal transduction process of the interaction between plant and pathogen. Here, the generation procedure and function of the specific Ca2+ and how the downstream target protein recognize the Ca2+ during the resistance process of plant against pathogen, were reviewed. The prospects were provided based on the current problems.
DOI:10.3969/j.issn.1000-6850.2012.03.003URL [本文引用: 1]
Calcium, as a second messenger, participates in the regulation of physiological metabolism of most cells through the pathway of plant signal transduction. Many research suggested that the Ca2+ messenger system also involved in the signal transduction process of the interaction between plant and pathogen. Here, the generation procedure and function of the specific Ca2+ and how the downstream target protein recognize the Ca2+ during the resistance process of plant against pathogen, were reviewed. The prospects were provided based on the current problems.
,
URL [本文引用: 1]
为了探究24-表油菜素内酯(24-epibrassinolide,24-EBR)对杏果实抗病性及苯丙烷代谢的影响。以新疆“赛买提”杏为试材,于0.05 MPa的压力下,用0.9 mg/L的24-表油菜素内酯对绿熟期的杏果实进行减压渗透处理,以蒸馏水处理为对照,处理后的杏果实放置24 h后损伤接种链格孢菌(Alternaria alternata),置于温度为4℃,相对湿度为90%-95%条件下贮藏,定期测定苯丙氨酸解氨酶(PAL)、肉桂酸-4-羟化酶(C4H)、4-香豆酰-辅酶A连接酶(4-CL)的活性及木质素、总酚和类黄酮含量,并统计果实的发病率及病斑直径。结果表明:24-表油菜素内酯处理能显著提高杏果实PAL、C4H、4-CL的活性和木质素、总酚的含量,在贮藏后期增加类黄酮含量,降低杏果实损伤接种的病害发生率及病斑直径。说明24-表油菜素内酯有可能通过诱导杏果实苯丙烷代谢增强来提高果实的抗病性。
URL [本文引用: 1]
为了探究24-表油菜素内酯(24-epibrassinolide,24-EBR)对杏果实抗病性及苯丙烷代谢的影响。以新疆“赛买提”杏为试材,于0.05 MPa的压力下,用0.9 mg/L的24-表油菜素内酯对绿熟期的杏果实进行减压渗透处理,以蒸馏水处理为对照,处理后的杏果实放置24 h后损伤接种链格孢菌(Alternaria alternata),置于温度为4℃,相对湿度为90%-95%条件下贮藏,定期测定苯丙氨酸解氨酶(PAL)、肉桂酸-4-羟化酶(C4H)、4-香豆酰-辅酶A连接酶(4-CL)的活性及木质素、总酚和类黄酮含量,并统计果实的发病率及病斑直径。结果表明:24-表油菜素内酯处理能显著提高杏果实PAL、C4H、4-CL的活性和木质素、总酚的含量,在贮藏后期增加类黄酮含量,降低杏果实损伤接种的病害发生率及病斑直径。说明24-表油菜素内酯有可能通过诱导杏果实苯丙烷代谢增强来提高果实的抗病性。
,
DOI:10.3969/j.issn.1000-9841.2012.02.004URL [本文引用: 2]
利用大豆基因组物理图和遗传图的整合图谱,应用blast软件将 基因序列与大豆基因组数据库进行比对,完成了9个大豆天冬氨酸代谢途径中关键酶基因的定位以及结构分析.结果表明:9个基因分别定位在大豆的13个连锁群 D1a、B1、N、I、O、C1、C2、F、L、A2、J、D1b以及B2上,并获得了基因所在序列两侧标记.利用大豆的cDNA和gDNA序列信息,获 得了9个基因的结构,外显子数目为5~12个,内含子数目为4~11个.
DOI:10.3969/j.issn.1000-9841.2012.02.004URL [本文引用: 2]
利用大豆基因组物理图和遗传图的整合图谱,应用blast软件将 基因序列与大豆基因组数据库进行比对,完成了9个大豆天冬氨酸代谢途径中关键酶基因的定位以及结构分析.结果表明:9个基因分别定位在大豆的13个连锁群 D1a、B1、N、I、O、C1、C2、F、L、A2、J、D1b以及B2上,并获得了基因所在序列两侧标记.利用大豆的cDNA和gDNA序列信息,获 得了9个基因的结构,外显子数目为5~12个,内含子数目为4~11个.
,
[本文引用: 1]
,
URL [本文引用: 1]
木质素是植物次生细胞壁的主要组成成分,它是一种在地球上含量丰富程度仅次于纤维素的高分子有机聚合物。木质素对植物本身和人类的生产、生活都有着重要的影响。咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)是依赖S-腺苷甲硫氨酸(SAM)的甲基转移酶,在木质素生物合成过程中起到了重要的催化作用。 本研究利用RT-PCR和RACE技术首次从柠条锦鸡儿中克隆得到了两个编码CCoAOMT的cDNA序列和一个gDNA全序列,两个cDNA序列分别命名为CkCCoAOMT-C和CkCCoAOMT-G,推测它们都属于柠条锦鸡儿CCoAOMT基因家族,gDNA序列包含5个外显子和4个内含子。 生物信息学分析结果表明:CCoAOMT-C与CCoAOMT-G都应属于亲水性蛋白,其分子量分别约为28,012.12D和27,970.08D,理论等电点分别为5.55和5.54;两个蛋白都由247个氨基酸残基组成,但在第125和134位氨基酸残基上存在差异,同样两者的二级结构和三级结构也存在不同程度的差异。CkCCoAOMT-C和CkCCoAOMT-G都具有Methyltransf_3结构域和SAM结合位点,因此它们属于O-甲基转移酶家族。 针对CkCCoAOMT-C和CkCCoAOMT-G两个基因构建过表达载体并转化野生型拟南芥,经筛选分别得到3个CkCCoAOMT-C转基因纯合体株系和6个CkCCoAOMT-G转基因纯合体株系。利用半定量RT-PCR检测转基因纯合体植株中目的基因表达量,发现所有株系中的目的基因均有不同程度的表达。
URL [本文引用: 1]
木质素是植物次生细胞壁的主要组成成分,它是一种在地球上含量丰富程度仅次于纤维素的高分子有机聚合物。木质素对植物本身和人类的生产、生活都有着重要的影响。咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)是依赖S-腺苷甲硫氨酸(SAM)的甲基转移酶,在木质素生物合成过程中起到了重要的催化作用。 本研究利用RT-PCR和RACE技术首次从柠条锦鸡儿中克隆得到了两个编码CCoAOMT的cDNA序列和一个gDNA全序列,两个cDNA序列分别命名为CkCCoAOMT-C和CkCCoAOMT-G,推测它们都属于柠条锦鸡儿CCoAOMT基因家族,gDNA序列包含5个外显子和4个内含子。 生物信息学分析结果表明:CCoAOMT-C与CCoAOMT-G都应属于亲水性蛋白,其分子量分别约为28,012.12D和27,970.08D,理论等电点分别为5.55和5.54;两个蛋白都由247个氨基酸残基组成,但在第125和134位氨基酸残基上存在差异,同样两者的二级结构和三级结构也存在不同程度的差异。CkCCoAOMT-C和CkCCoAOMT-G都具有Methyltransf_3结构域和SAM结合位点,因此它们属于O-甲基转移酶家族。 针对CkCCoAOMT-C和CkCCoAOMT-G两个基因构建过表达载体并转化野生型拟南芥,经筛选分别得到3个CkCCoAOMT-C转基因纯合体株系和6个CkCCoAOMT-G转基因纯合体株系。利用半定量RT-PCR检测转基因纯合体植株中目的基因表达量,发现所有株系中的目的基因均有不同程度的表达。
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.5846/stxb201401090073URL [本文引用: 1]
Climate change, mainly caused by elevated atmospheric CO concentrations, affects plant growth and physiology, and much attention has been paid to this subject recently. Global warming will affect the quantity and geographical distribution of precipitation. In western China, water and shortages in precipitation are key factors for plant growth and survival. Global warming will result in increased evaporation of water in soil, which will cause some areas to experience more severe droughts. High air temperatures increase drought stress in plants, which in turn accelerates the damage caused by high temperatures. For these reasons, the physiological and morphological responses of plants to global warming have become a critical issue. concentrations of the seedlings and increased transpiration rates, which reduced water utilization efficiency in the seedlings. The elevated temperature and soil drought stress reduced the optical energy transfer efficiency of the Photosystem activity center in leaves, which resulted in the reduced photosynthetic efficiency in L. barbarum seedlings. These results indicate that elevated temperature would increase the negative effects of drought stress on the net photosynthetic rate in the seedlings. In summary, the elevated temperature and drought stress reduced photosynthesis in L. barbarum.
DOI:10.5846/stxb201401090073URL [本文引用: 1]
Climate change, mainly caused by elevated atmospheric CO concentrations, affects plant growth and physiology, and much attention has been paid to this subject recently. Global warming will affect the quantity and geographical distribution of precipitation. In western China, water and shortages in precipitation are key factors for plant growth and survival. Global warming will result in increased evaporation of water in soil, which will cause some areas to experience more severe droughts. High air temperatures increase drought stress in plants, which in turn accelerates the damage caused by high temperatures. For these reasons, the physiological and morphological responses of plants to global warming have become a critical issue. concentrations of the seedlings and increased transpiration rates, which reduced water utilization efficiency in the seedlings. The elevated temperature and soil drought stress reduced the optical energy transfer efficiency of the Photosystem activity center in leaves, which resulted in the reduced photosynthetic efficiency in L. barbarum seedlings. These results indicate that elevated temperature would increase the negative effects of drought stress on the net photosynthetic rate in the seedlings. In summary, the elevated temperature and drought stress reduced photosynthesis in L. barbarum.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2012.16.005URL [本文引用: 1]
【Objective】 The impacts of salt stress on the photosynthesis and chlorophyll fluorescence parameters of sorghum seedlings were studied for providing a foundation for sorghum cultivation, breeding and artificial regulation of salt stress.【Method】 Salt tolerant cultivar (Liaoza 15) and salt sensitive cultivar (Longza 11) were incubated in the nutrient solution at humidity of 60%, light/dark of 12 h/12 h, illumination of 134 μmol61m-261s-1 and 28℃/25℃ of day/night. NaCl was added into the solution at 3-leaf stage and NaCl concentration levels at 0, 50, 100, 150 and 200 mmol61L-1, respectively. The response of sorghum seedlings to NaCl stress was assessed by measuring the photosynthesis and chlorophyll fluorescence parameters of seedlings. 【Result】 Low NaCl concentration (50 mmol61L-1) increased the chlorophyll content, and high NaCl concentration (100-200 mmol61L-1) reduced the content substantially. Salt stress reduced Pn, Gs, Tr, Fm, Fv/Fo, Fv/Fm, Fv′/Fm′ and qP, and increased Fo and NPQ. Low NaCl concentration (50 mmol61L-1) reduced Ci, and high NaCl concentration (100-200 mmol61L-1) increased it. The adverse impact of salt stress on Liaoza 15 was less than on Longza 11. 【Conclusion】 The small reduction in net photosynthesis rate caused by 50 mmol61L-1 NaCl stress was considered to be a result of non-stomatal restriction; but increased stomatal restriction with increased NaCl concentration resulted in more severe reductions in photosynthesis. Under salt stress, salt tolerant cultivar could protect the photosynthetic organs more effectively than salt sentitive cultivar and thus improve the production of sorghum in salt affected areas.
DOI:10.3864/j.issn.0578-1752.2012.16.005URL [本文引用: 1]
【Objective】 The impacts of salt stress on the photosynthesis and chlorophyll fluorescence parameters of sorghum seedlings were studied for providing a foundation for sorghum cultivation, breeding and artificial regulation of salt stress.【Method】 Salt tolerant cultivar (Liaoza 15) and salt sensitive cultivar (Longza 11) were incubated in the nutrient solution at humidity of 60%, light/dark of 12 h/12 h, illumination of 134 μmol61m-261s-1 and 28℃/25℃ of day/night. NaCl was added into the solution at 3-leaf stage and NaCl concentration levels at 0, 50, 100, 150 and 200 mmol61L-1, respectively. The response of sorghum seedlings to NaCl stress was assessed by measuring the photosynthesis and chlorophyll fluorescence parameters of seedlings. 【Result】 Low NaCl concentration (50 mmol61L-1) increased the chlorophyll content, and high NaCl concentration (100-200 mmol61L-1) reduced the content substantially. Salt stress reduced Pn, Gs, Tr, Fm, Fv/Fo, Fv/Fm, Fv′/Fm′ and qP, and increased Fo and NPQ. Low NaCl concentration (50 mmol61L-1) reduced Ci, and high NaCl concentration (100-200 mmol61L-1) increased it. The adverse impact of salt stress on Liaoza 15 was less than on Longza 11. 【Conclusion】 The small reduction in net photosynthesis rate caused by 50 mmol61L-1 NaCl stress was considered to be a result of non-stomatal restriction; but increased stomatal restriction with increased NaCl concentration resulted in more severe reductions in photosynthesis. Under salt stress, salt tolerant cultivar could protect the photosynthetic organs more effectively than salt sentitive cultivar and thus improve the production of sorghum in salt affected areas.
,
URL [本文引用: 1]
Taking drought-sensitive wheat cultivar Wangshuibai and drought-tolerance cultivar Luohan 7 as test materials, a hydroponic experiment was conducted to study the effects of drought stress on root system morphology, physiological characteristics and leaf photosynthesis of wheat seedlings, aimed to elucidate the adaptation mechanisms to drought stress. Under drought stress, the root vitality of the cultivars increased markedly, but the root number and root surface area decreased. Drought stress decreased relative water content and increased the ratio of bound water to free water in leaves of Wangshuibai, but had less effects on Luohan 7. Drought stress decreased, the leaf chlorophyll content, Pn, gs, Ci, and transpiration rate of the two cultivars, but had no significant effects on leaf chlorophyll content and Pn of Luohan 7. Drought stress decreased the leaf area of the two cultivars and the root biomass, shoot biomass, and plant biomass of Wangshuibai, but had no significant effects on Luohan 7. The results indicated that under drought stress, drought-tolerant wheat cultivar was able to compensate decreased root absorption area and retain higher root water uptake capability via enhancing root vitality and maintaining higher root biomass, and further, to keep higher leaf photosynthetic area and Pn to mitigate the inhibition of drought on wheat seedlings growth.
URL [本文引用: 1]
Taking drought-sensitive wheat cultivar Wangshuibai and drought-tolerance cultivar Luohan 7 as test materials, a hydroponic experiment was conducted to study the effects of drought stress on root system morphology, physiological characteristics and leaf photosynthesis of wheat seedlings, aimed to elucidate the adaptation mechanisms to drought stress. Under drought stress, the root vitality of the cultivars increased markedly, but the root number and root surface area decreased. Drought stress decreased relative water content and increased the ratio of bound water to free water in leaves of Wangshuibai, but had less effects on Luohan 7. Drought stress decreased, the leaf chlorophyll content, Pn, gs, Ci, and transpiration rate of the two cultivars, but had no significant effects on leaf chlorophyll content and Pn of Luohan 7. Drought stress decreased the leaf area of the two cultivars and the root biomass, shoot biomass, and plant biomass of Wangshuibai, but had no significant effects on Luohan 7. The results indicated that under drought stress, drought-tolerant wheat cultivar was able to compensate decreased root absorption area and retain higher root water uptake capability via enhancing root vitality and maintaining higher root biomass, and further, to keep higher leaf photosynthetic area and Pn to mitigate the inhibition of drought on wheat seedlings growth.
,
DOI:10.3724/SP.J.1006.2012.00352URL [本文引用: 1]
采用盆栽试验,以郑单958和丰单3号为材料,研究了低温胁迫对玉米幼苗光合作用、叶绿素、叶绿素荧光参数和抗氧化酶活性的影响,以及聚糠萘合剂(PKN)的调控效果。结果表明,低温胁迫下,玉米幼苗的光合作用和光系统II光化学最大效率受到抑制;超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性降低;过氧化氢、超氧阴离子的产生速率及丙二醛(MDA)含量显著升高。PKN处理提高了低温胁迫下玉米幼苗净光合速率(Pn)、气孔导度(Gs)、光系统II光化学的最大效率(Fv/Fm)、叶绿素含量(Chla+Chlb)。低温处理7d,郑单958处理(ZDTR)和丰单3号处理(FDTR)的Pn、Gs、Fv/Fm、Chla+Chlb分别比各自的对照提高了88.95%和61.11%、593.33%和1741.67%、111.50%和145.16%、36.61%和54.03%;PKN处理延缓了SOD、POD、CAT活性的降低,低温胁迫7d,PKN处理使郑单958和丰单3号的SOD、POD、CAT活性分别比对照高了292.59%和632.98%、295.07%和360.54%、254.55%和265.45%;同时降低了过氧化氢、超氧阴离子的产生速率及MDA的含量。表明PKN处理有利于提高玉米幼苗的抗冷性。采用盆栽试验,以郑单958和丰单3号为材料,研究了低温胁迫对玉米幼苗光合作用、叶绿素、叶绿素荧光参数和抗氧化酶活性的影响,以及聚糠萘合剂(PKN)的调控效果。结果表明,低温胁迫下,玉米幼苗的光合作用和光系统II光化学最大效率受到抑制;超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性降低;过氧化氢、超氧阴离子的产生速率及丙二醛(MDA)含量显著升高。PKN处理提高了低温胁迫下玉米幼苗净光合速率(Pn)、气孔导度(Gs)、光系统II光化学的最大效率(Fv/Fm)、叶绿素含量(Chla+Chlb)。低温处理7d,郑单958处理(ZDTR)和丰单3号处理(FDTR)的Pn、Gs、Fv/Fm、Chla+Chlb分别比各自的对照提高了88.
DOI:10.3724/SP.J.1006.2012.00352URL [本文引用: 1]
采用盆栽试验,以郑单958和丰单3号为材料,研究了低温胁迫对玉米幼苗光合作用、叶绿素、叶绿素荧光参数和抗氧化酶活性的影响,以及聚糠萘合剂(PKN)的调控效果。结果表明,低温胁迫下,玉米幼苗的光合作用和光系统II光化学最大效率受到抑制;超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性降低;过氧化氢、超氧阴离子的产生速率及丙二醛(MDA)含量显著升高。PKN处理提高了低温胁迫下玉米幼苗净光合速率(Pn)、气孔导度(Gs)、光系统II光化学的最大效率(Fv/Fm)、叶绿素含量(Chla+Chlb)。低温处理7d,郑单958处理(ZDTR)和丰单3号处理(FDTR)的Pn、Gs、Fv/Fm、Chla+Chlb分别比各自的对照提高了88.95%和61.11%、593.33%和1741.67%、111.50%和145.16%、36.61%和54.03%;PKN处理延缓了SOD、POD、CAT活性的降低,低温胁迫7d,PKN处理使郑单958和丰单3号的SOD、POD、CAT活性分别比对照高了292.59%和632.98%、295.07%和360.54%、254.55%和265.45%;同时降低了过氧化氢、超氧阴离子的产生速率及MDA的含量。表明PKN处理有利于提高玉米幼苗的抗冷性。采用盆栽试验,以郑单958和丰单3号为材料,研究了低温胁迫对玉米幼苗光合作用、叶绿素、叶绿素荧光参数和抗氧化酶活性的影响,以及聚糠萘合剂(PKN)的调控效果。结果表明,低温胁迫下,玉米幼苗的光合作用和光系统II光化学最大效率受到抑制;超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性降低;过氧化氢、超氧阴离子的产生速率及丙二醛(MDA)含量显著升高。PKN处理提高了低温胁迫下玉米幼苗净光合速率(Pn)、气孔导度(Gs)、光系统II光化学的最大效率(Fv/Fm)、叶绿素含量(Chla+Chlb)。低温处理7d,郑单958处理(ZDTR)和丰单3号处理(FDTR)的Pn、Gs、Fv/Fm、Chla+Chlb分别比各自的对照提高了88.
,
DOI:10.3321/j.issn:1000-0933.2008.02.027URL [本文引用: 1]
Two wheat cultivars(Triticum aestivum L.)that differ in their sensitivities to infection (MX146:sensitive, and 88375:tolerant) were infected by Puccinia striiformis and used to evaluate the relationship between pathogen infection and host photosynthesis functions by measuring photo-synthesis constant, chlorophyll content, photosynthetic electron transport rate and expression of protein D1 of photosystem II reaction centers. We found that net photosynthetic rate and chlorophyll content decreased in the infected sensitive wheat cultivar, while both net photosynthetic rate and the chlorophyll content of the tolerant wheat has a recovery process. In infected sensitive wheat, the electron transport rate of PSII was similar to that of whole chain which was inhibited by pathogen infections, but less influence shown on electron transport rate of PSI. Whereas in infected tolerant wheat, the effects of infection on electron transport rate were minor. The protein D1 content variance always showed similar or proportional trend to that of PSII electron transport rate, indicating that suppression of D1 expression is a possible cause for the inhibition of PSII electron transport.
DOI:10.3321/j.issn:1000-0933.2008.02.027URL [本文引用: 1]
Two wheat cultivars(Triticum aestivum L.)that differ in their sensitivities to infection (MX146:sensitive, and 88375:tolerant) were infected by Puccinia striiformis and used to evaluate the relationship between pathogen infection and host photosynthesis functions by measuring photo-synthesis constant, chlorophyll content, photosynthetic electron transport rate and expression of protein D1 of photosystem II reaction centers. We found that net photosynthetic rate and chlorophyll content decreased in the infected sensitive wheat cultivar, while both net photosynthetic rate and the chlorophyll content of the tolerant wheat has a recovery process. In infected sensitive wheat, the electron transport rate of PSII was similar to that of whole chain which was inhibited by pathogen infections, but less influence shown on electron transport rate of PSI. Whereas in infected tolerant wheat, the effects of infection on electron transport rate were minor. The protein D1 content variance always showed similar or proportional trend to that of PSII electron transport rate, indicating that suppression of D1 expression is a possible cause for the inhibition of PSII electron transport.
,
DOI:10.1023/A:1004832518783URLPMID:11338833 [本文引用: 1]
The adaptive response of the phytopathogenic fungus Fusarium decemcellulare to the oxidative stress induced by hydrogen peroxide and juglone (5-hydroxy-1,4-naphthoquinone) was studied. At concentrations higher than 1 mM, H 2 O 2 and juglone completely inhibited the growth of the fungus. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H 2 O 2 (0.25 mM) and juglone (0.1 mM) led to the development of a resistance to high concentrations of these oxidants. The stationary-phase cells were found to be more resistant to the oxidants than the logarithmic-phase cells. The adaptation of fungal cells to H 2 O 2 and juglone was associated with an increase in the activity of cellular catalase and superoxide dismutase, the main enzymes involved in the defense against oxidative stress.
,
DOI:10.1016/j.tplants.2004.08.009URLPMID:15465684 [本文引用: 1]
Reactive oxygen species (ROS) control many different processes in plants. However, being toxic molecules, they are also capable of injuring cells. How this conflict is resolved in plants is largely unknown. Nonetheless, it is clear that the steady-state level of ROS in cells needs to be tightly regulated. In Arabidopsis, a network of at least 152 genes is involved in managing the level of ROS. This network is highly dynamic and redundant, and encodes ROS-scavenging and ROS-producing proteins. Although recent studies have unraveled some of the key players in the network, many questions related to its mode of regulation, its protective roles and its modulation of signaling networks that control growth, development and stress response remain unanswered.
,
DOI:10.3969/j.issn.0528-9017.2009.03.005URL [本文引用: 1]
通过番茄幼苗的Pb胁迫处理,分析其根、茎、叶中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、还原型谷胱甘肽(GSH)和丙二醛(MDA)的含量.结果表明,SOD含量以根内增加最为显著,最高可达对照的6.49倍,其次是茎;POD和CAT的变化趋势基本相同,随着Ph胁迫时间的增长,茎中两种酶的活性增加最快,其次是根,叶片中活性无明显变化;GSH在番茄幼苗受到Pb胁迫时变化不大,对Pb胁迫反应不灵敏.说明酶促系统(主要是SOD和POD)是番茄幼苗的主要活性氧防御系统,在受到Pb胁迫时,番茄幼苗中易受损害部位为根和茎,叶片受到的影响很小.
DOI:10.3969/j.issn.0528-9017.2009.03.005URL [本文引用: 1]
通过番茄幼苗的Pb胁迫处理,分析其根、茎、叶中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、还原型谷胱甘肽(GSH)和丙二醛(MDA)的含量.结果表明,SOD含量以根内增加最为显著,最高可达对照的6.49倍,其次是茎;POD和CAT的变化趋势基本相同,随着Ph胁迫时间的增长,茎中两种酶的活性增加最快,其次是根,叶片中活性无明显变化;GSH在番茄幼苗受到Pb胁迫时变化不大,对Pb胁迫反应不灵敏.说明酶促系统(主要是SOD和POD)是番茄幼苗的主要活性氧防御系统,在受到Pb胁迫时,番茄幼苗中易受损害部位为根和茎,叶片受到的影响很小.
,
DOI:10.1016/j.tplants.2009.04.005URLPMID:19559643 [本文引用: 1]
Although the plant growth hormone auxin has long been recognized as a regulator of plant defense, the molecular mechanisms involved are still largely unknown. Recent studies reviewed here reveal new insights into the role of auxin in plant defense. Similar to the signaling pathways of the defense-associated plant hormones salicylic acid (SA) and jasmonic acid (JA), auxin signaling differentially affects resistance to separate pathogen groups. Recent evidence suggests that the auxin and SA pathways act in a mutually antagonistic manner during plant defense, whereas auxin and JA signaling share many commonalities. Auxin also affects disease outcomes indirectly through effects on development. Here, we discuss the multiple ways in which auxin regulation of plant growth and development might be intimately linked to plant defense.
,
URL [本文引用: 1]
采用RT-PCR和RACE技术从草莓果实中克隆ABA合成途径中关键基因FaNCED,该cDNA全长2228bp,具有完整的开放阅读框(ORF),共1827个碱基,编码609个氨基酸。序列分析表明,FaNCED编码的氨基酸序列与其他植物的NCED蛋白有很高的同源性。系统进化树分析显示,草莓NCED与同为蔷薇科的湖北海棠聚为一类,与橙、柠檬、温州蜜柚、葡萄等非跃变型果实NCED蛋白亲缘关系较近。实时荧光定量PCR分析发现,FaNCED基因在草莓根、茎、叶、花萼和果实中都有表达;在果实成熟过程中FaNCED的表达出现两次高峰,分别在大白果期和红果期,且在红果期表达量最高,并与ABA积累相吻合;FaNCED在果实采后1d表达略有下降,之后急剧上升,ABA含量变化与FaNCED基因的表达基本一致。FaNCED可能参与调控ABA的合成并在草莓成熟中起一定作用。
URL [本文引用: 1]
采用RT-PCR和RACE技术从草莓果实中克隆ABA合成途径中关键基因FaNCED,该cDNA全长2228bp,具有完整的开放阅读框(ORF),共1827个碱基,编码609个氨基酸。序列分析表明,FaNCED编码的氨基酸序列与其他植物的NCED蛋白有很高的同源性。系统进化树分析显示,草莓NCED与同为蔷薇科的湖北海棠聚为一类,与橙、柠檬、温州蜜柚、葡萄等非跃变型果实NCED蛋白亲缘关系较近。实时荧光定量PCR分析发现,FaNCED基因在草莓根、茎、叶、花萼和果实中都有表达;在果实成熟过程中FaNCED的表达出现两次高峰,分别在大白果期和红果期,且在红果期表达量最高,并与ABA积累相吻合;FaNCED在果实采后1d表达略有下降,之后急剧上升,ABA含量变化与FaNCED基因的表达基本一致。FaNCED可能参与调控ABA的合成并在草莓成熟中起一定作用。
,
DOI:10.3724/SP.J.1005.2012.00560URL [本文引用: 1]
脱落酸(ABA)在各个植物生长发育阶段以及植物对生物与非生物胁迫的响应过程中都发挥着重要的作用。最近研究表明,在ABA信号转导途径中有3种核心组份:ABA受体PYR/PYL/RCAR蛋白、负调控因子2C类蛋白磷酸酶(PP2C)和正调控因子SNF1相关的蛋白激酶2(SnRK2),它们共同组成了一个双重负调控系统——PYR/PYL/RCAR—|PP2C—|SnRK2来调控ABA信号转导及其下游反应,且3种核心组份在植物体内的结合方式受时空和生化等因素的影响,通过特定组合形成的ABA信号转导复合体介导特定的ABA信号反应。文章就PYR/PYL/RCAR蛋白介导的植物ABA信号识别与转导途径的分子基础及其调控机制,以及PYR/PYL/RCAR—PP2C—SnRK2参与的ABA信号调控网络等研究进展做一概述,并对该领域今后的研究进行了展望。
DOI:10.3724/SP.J.1005.2012.00560URL [本文引用: 1]
脱落酸(ABA)在各个植物生长发育阶段以及植物对生物与非生物胁迫的响应过程中都发挥着重要的作用。最近研究表明,在ABA信号转导途径中有3种核心组份:ABA受体PYR/PYL/RCAR蛋白、负调控因子2C类蛋白磷酸酶(PP2C)和正调控因子SNF1相关的蛋白激酶2(SnRK2),它们共同组成了一个双重负调控系统——PYR/PYL/RCAR—|PP2C—|SnRK2来调控ABA信号转导及其下游反应,且3种核心组份在植物体内的结合方式受时空和生化等因素的影响,通过特定组合形成的ABA信号转导复合体介导特定的ABA信号反应。文章就PYR/PYL/RCAR蛋白介导的植物ABA信号识别与转导途径的分子基础及其调控机制,以及PYR/PYL/RCAR—PP2C—SnRK2参与的ABA信号调控网络等研究进展做一概述,并对该领域今后的研究进行了展望。
,
[本文引用: 1]
,
DOI:10.1016/j.tplants.2009.03.006URLPMID:19443266 [本文引用: 1]
Long known only for its role in abiotic stress tolerance, recent evidence shows that abscisic acid (ABA) also has a prominent role in biotic stress. Although it acts as a negative regulator of disease resistance, ABA can also promote plant defense and is involved in a complicated network of synergistic and antagonistic interactions. Its role in disease resistance depends on the type of pathogen, its specific way of entering the host and, hence, the timing of the defense response and the type of affected plant tissue. Here, we discuss the controversial evidence pointing to either a repression or a promotion of resistance by ABA. Furthermore, we propose a model in which both possibilities are integrated.
,
DOI:10.1099/0022-1317-58-2-305URL [本文引用: 1]
,
DOI:10.1016/j.pbi.2006.05.014URLPMID:16759898 [本文引用: 1]
Plants have evolved a wide range of mechanisms to cope with biotic and abiotic stresses. To date, the molecular mechanisms that are involved in each stress has been revealed comparatively independently, and so our understanding of convergence points between biotic and abiotic stress signaling pathways remain rudimentary. However, recent studies have revealed several molecules, including transcription factors and kinases, as promising candidates for common players that are involved in crosstalk between stress signaling pathways. Emerging evidence suggests that hormone signaling pathways regulated by abscisic acid, salicylic acid, jasmonic acid and ethylene, as well as ROS signaling pathways, play key roles in the crosstalk between biotic and abiotic stress signaling.
,
DOI:10.1016/j.pmpp.2004.11.002URL [本文引用: 1]
The susceptibility of rice plants to the rice blast fungus Magnaporthe grisea is increased by cold stress. However, the mechanism of this phenomenon is unknown. In this study, we found that the whole plant-specific resistance (WPSR), which was expressed in the intact leaf sheaths of susceptible rice plants, was suppressed by low temperature or abscisic acid (ABA) treatment. An inhibitor of ABA biosynthesis prevented the suppression of WPSR by low temperature treatment. These results indicate that ABA synthesized de novo under low temperature condition is a key factor for suppressing WPSR and making rice plants susceptible to M. grisea.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.7666/d.y1848918URL [本文引用: 1]
松树线虫病是由松材线虫(Bursaphelenchus xylophilus)引起的松属树种上的一种毁灭性的病害。松树的苯丙烷代谢在松树的抗感病机制中起着重要的作用。在代谢过程中可形成植保素、木质素及酚类化合物等抗病次生物质,因此,被认为是植物增强抗病性的重要机制之一。 本文针对松树苯丙烷代谢在研究松材线虫病中的重要作用,主要做了以下研究,得出结论如下: (1)松材线虫侵染对马尾松苯丙烷代谢产物的影响 苯甲酸、水杨酸和苯乙酸都是松树苯丙烷代谢的途径直接或简介的产物,其含量在松材线虫侵染马尾松的过程中变化明显。研究结果显示马尾松被松材线虫侵染后,苯甲酸、水杨酸和苯乙酸三种有机酸的含量均不断上升,其中苯甲酸和水杨酸含量变化趋势类似,感病后上升,病重后(第12d)下降,而苯乙酸含量感病后持续上升,病重前(第9d)下降。植物体内的苯乙酸可以转化成苯甲酸,而苯甲酸在苯甲酸羟化酶的作用下可以转化为水杨酸,水杨酸可以提高植物的系统抗病性,三者在马尾松的抗感病过程中起着最重要的作用。研究结果显示,在马尾松感病过程中,苯丙氨酸解氨酶和过氧化物酶活性不断上升,发病后下降,多酚氧化酶活性也升高,过氧化氢酶的活性降低。这几种酶的活性变化反映了病情的加重,同时也表明感病松树受松材线虫侵染后,体内的防卫基因的表达不断增强。木质素和H2O2含量在松材线虫侵染后均持续上升,这是马尾松受侵染后的的抗性反应的表现,木质素含量提高可以增加植物抵抗病害的能力,H2O2是生物细胞代谢产生的活性氧,一方面它对植物细胞有毒害作用,可以引起松树的过敏性反应,另一方面它可以限制和封锁线虫生长。感病马尾松苯丙烷代谢产物的这些变化特点,对研究松材线虫病防治和马尾松的抗病育种有着十分重要的意义。 (2)苯甲酸羟化酶和水杨酸羟化酶的分离纯化和基本性质研究 通过纤维素(DE52)柱层析和DEAE-Sephacel柱对马尾松体内的苯甲酸羟化酶和水杨酸羟化酶进行了分离纯化,经SDS-聚丙烯酰胺凝胶电泳检测两种酶的分子量分别为43.58KD和46.67KD,研究发现不同的pH值和金属离子都可以对上述两种酶的活性产生影响。对受松材线虫侵染后的马尾松体内两种酶的活性研究结果显示,苯甲酸羟化酶的活性,持续上升,于病重前(第9d)达到最大活性,而后活性持续下降。实验结果表明,感病马尾松体内的苯甲酸羟化酶在马尾松的抗感病过程中作用明显,苯甲酸含量的升高可能就是因为该酶的活性被抑制。水杨酸羟化酶的活性持续降低,且低于对照株,仅到第12d和18d,出现两个小幅度增长,略高于对照株,较对照株增幅较小而水杨酸羟化酶则变化不显明显,其活性是否对马尾松的发病产生影响,还需进一步的实验论证。
.
DOI:10.7666/d.y1848918URL [本文引用: 1]
松树线虫病是由松材线虫(Bursaphelenchus xylophilus)引起的松属树种上的一种毁灭性的病害。松树的苯丙烷代谢在松树的抗感病机制中起着重要的作用。在代谢过程中可形成植保素、木质素及酚类化合物等抗病次生物质,因此,被认为是植物增强抗病性的重要机制之一。 本文针对松树苯丙烷代谢在研究松材线虫病中的重要作用,主要做了以下研究,得出结论如下: (1)松材线虫侵染对马尾松苯丙烷代谢产物的影响 苯甲酸、水杨酸和苯乙酸都是松树苯丙烷代谢的途径直接或简介的产物,其含量在松材线虫侵染马尾松的过程中变化明显。研究结果显示马尾松被松材线虫侵染后,苯甲酸、水杨酸和苯乙酸三种有机酸的含量均不断上升,其中苯甲酸和水杨酸含量变化趋势类似,感病后上升,病重后(第12d)下降,而苯乙酸含量感病后持续上升,病重前(第9d)下降。植物体内的苯乙酸可以转化成苯甲酸,而苯甲酸在苯甲酸羟化酶的作用下可以转化为水杨酸,水杨酸可以提高植物的系统抗病性,三者在马尾松的抗感病过程中起着最重要的作用。研究结果显示,在马尾松感病过程中,苯丙氨酸解氨酶和过氧化物酶活性不断上升,发病后下降,多酚氧化酶活性也升高,过氧化氢酶的活性降低。这几种酶的活性变化反映了病情的加重,同时也表明感病松树受松材线虫侵染后,体内的防卫基因的表达不断增强。木质素和H2O2含量在松材线虫侵染后均持续上升,这是马尾松受侵染后的的抗性反应的表现,木质素含量提高可以增加植物抵抗病害的能力,H2O2是生物细胞代谢产生的活性氧,一方面它对植物细胞有毒害作用,可以引起松树的过敏性反应,另一方面它可以限制和封锁线虫生长。感病马尾松苯丙烷代谢产物的这些变化特点,对研究松材线虫病防治和马尾松的抗病育种有着十分重要的意义。 (2)苯甲酸羟化酶和水杨酸羟化酶的分离纯化和基本性质研究 通过纤维素(DE52)柱层析和DEAE-Sephacel柱对马尾松体内的苯甲酸羟化酶和水杨酸羟化酶进行了分离纯化,经SDS-聚丙烯酰胺凝胶电泳检测两种酶的分子量分别为43.58KD和46.67KD,研究发现不同的pH值和金属离子都可以对上述两种酶的活性产生影响。对受松材线虫侵染后的马尾松体内两种酶的活性研究结果显示,苯甲酸羟化酶的活性,持续上升,于病重前(第9d)达到最大活性,而后活性持续下降。实验结果表明,感病马尾松体内的苯甲酸羟化酶在马尾松的抗感病过程中作用明显,苯甲酸含量的升高可能就是因为该酶的活性被抑制。水杨酸羟化酶的活性持续降低,且低于对照株,仅到第12d和18d,出现两个小幅度增长,略高于对照株,较对照株增幅较小而水杨酸羟化酶则变化不显明显,其活性是否对马尾松的发病产生影响,还需进一步的实验论证。
,
DOI:10.1016/S0968-0004(96)20011-8URLPMID:8871397 [本文引用: 1]
The discovery of DNA-binding motifs in ribosomal proteins has led to the conjecture that the transition of the ribosome from an RNA to an RNP machine occurred by adding pre-existing proteins. Supportive, but circumstantial, evidence for the hypothesis is adduced from the finding that many ribosomal proteins have a second function apart from the particle. These extraribosomal functions are enumerated.
,
DOI:10.1186/1479-7364-2-5-329URLPMID:16595077 [本文引用: 1]
The NAD(P)H:quinone acceptor oxidoreductase (NQO) gene family belongs to the flavoprotein clan and, in the human genome, consists of two genes (NQO1 and NQO2). These two genes encode cytosolic flavoenzymes that catalyse the beneficial two-electron reduction of quinones to hydroquinones. This reaction prevents the unwanted one-electron reduction of quinones by other quinone reductases; one-electron reduction results in the formation of reactive oxygen species, generated by redox cycling of semiquinones in the presence of molecular oxygen. Both the mammalian NQO1 and NQO2 genes are upregulated as a part of the oxidative stress response and are inexplicably overexpressed in particular types of tumours. A non-synonymous mutation in the NQO1 gene, leading to absence of enzyme activity, has been associated with an increased risk of myeloid leukaemia and other types of blood dyscrasia in workers exposed to benzene. NQO2 has a melatonin-binding site, which may explain the anti-oxidant role of melatonin. An ancient NQO3 subfamily exists in eubacteria and the authors suggest that there should be additional divisions of the NQO family to include the NQO4 subfamily in fungi and NQO5 subfamily in archaebacteria. Interestingly, no NQO genes could be identified in the worm, fly, sea squirt or plants; because these taxa carry quinone reductases capable of one- and two-electron reductions, there has been either convergent evolution or redundancy to account for the appearance of these enzyme functions whenever they have been needed during evolution.
,
URL [本文引用: 1]
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) is an important ubiquitous cytosol enzyme that fixes HCO3- together with phosphoenolpyruvate (PEP) and yields oxaloacetate that can be converted to intermediates of the citric acid cycle. In plant cells, PEPC participates in CO2 assimilation and other important metabolic pathways, and it has broad functions in different plant tissues. PEPC is also involved in the regulation of storage product synthesis and metabolism in seeds, such as affecting the metabolic fluxes from sugars/starch towards the synthesis of fatty acids or amino acids and proteins. In this review, we introduced the progress in classification, structure and regulation of PEPC in plant tissues. We discussed the potential applications of plant PEPCs in genetic engineering. The researches in functions and regulation mechanism of plant PEPCs will provide beneficial approaches to applications of plant PEPCs in high-yield crops breeding, energy crop and microbe genetic engineering.
URL [本文引用: 1]
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) is an important ubiquitous cytosol enzyme that fixes HCO3- together with phosphoenolpyruvate (PEP) and yields oxaloacetate that can be converted to intermediates of the citric acid cycle. In plant cells, PEPC participates in CO2 assimilation and other important metabolic pathways, and it has broad functions in different plant tissues. PEPC is also involved in the regulation of storage product synthesis and metabolism in seeds, such as affecting the metabolic fluxes from sugars/starch towards the synthesis of fatty acids or amino acids and proteins. In this review, we introduced the progress in classification, structure and regulation of PEPC in plant tissues. We discussed the potential applications of plant PEPCs in genetic engineering. The researches in functions and regulation mechanism of plant PEPCs will provide beneficial approaches to applications of plant PEPCs in high-yield crops breeding, energy crop and microbe genetic engineering.
,
DOI:10.1023/A:1022006023273URLPMID:12602862 [本文引用: 1]
Type 2A serine/threonine protein phosphatase (PP2A) plays a variety of regulatory roles in metabolism and signal transduction. Two closely related PP2A catalytic subunit (PP2Ac) genes, OsPP2A-1 and OsPP2A-3 , have been isolated from the monocot Oryza sativa . Both genes contain six exons and five introns which intervene at identical locations, suggesting they have descended from a recent duplication event. Their encoded proteins share 97% sequence identity and are highly similar (94 96%) to a PP2Ac subfamily (AtPP2A-1, -2 and -5) identified in Arabidopsis thaliana . Both OsPP2A-1 and OsPP2A-3 are ubiquitously expressed, with the expression levels high in stems and flowers and low in leaves. OsPP2A-1 , but not OsPP2A-3 , is also highly expressed in roots. Transcript levels of OsPP2A-1 in roots and OsPP2A-3 in stems are elevated at the maturation and young stages, respectively. Drought and high salinity upregulate both genes in leaves, whereas heat stress represses OsPP2A-1 in stems and induces OsPP2A-3 in all organs. These findings indicate that the two PP2Ac genes are subjected to developmental and stress-related regulation. In situ hybridization results show that both transcripts exhibit nearly identical cellular distribution, except in leaves, and are abundant in meristematic tissues including the young leaf blade of stems and the root tip.
,
DOI:10.1146/annurev.arplant.56.032604.144301URLPMID:16669779 [本文引用: 1]
Abstract Carotenoids and tocopherols are the two most abundant groups of lipid-soluble antioxidants in chloroplasts. In addition to their many functional roles in photosynthetic organisms, these compounds are also essential components of animal diets, including humans. During the past decade, a near complete set of genes required for the synthesis of both classes of compounds in photosynthetic tissues has been identified, primarily as a result of molecular genetic and biochemical genomics-based approaches in the model organisms Arabidopsis thaliana and Synechocystis sp. PCC6803. Mutant analysis and transgenic studies in these and other systems have provided important insight into the regulation, activities, integration, and evolution of individual enzymes and are already providing a knowledge base for breeding and transgenic approaches to modify the types and levels of these important compounds in agricultural crops.
,
URL [本文引用: 1]
维生素E又称生育酚,仅由光合生物合成,可以清除生物体内的活性氧和自由基,是人体必需的一类脂溶性维生素,具有重要的抗氧化功能。每天食用一定量的维生素E可以起到增强机体免疫力、防衰老、防癌、防心脑血管疾病及预防或减慢某些慢性疾病的作用。在天然存在的8种生育酚中,α-生育酚的生物活性最高,且被人体优先吸收和利用,但人类维生素E的主要膳食来源-食用植物油中,α-生育酚水平普遍比较低,而其前体γ-生育酚的水平却比较高。 γ-生育酚甲基转移酶(γ-TMT)是天然维生素E合成途径中的关键酶之一,其表达及活性对决定植物维生素E的组成起着重要作用,它催化6,γ-生育酚分别甲基化生成β,a-生育酚。玉米油是一种高品质的食用植物油,它含有86%的不饱和脂肪酸,其中56%是亚油酸,人体吸收率可达97%以上;玉米油中还含有少量的辅酶,也具有抗氧化性能;玉米油所含的谷固醇及磷脂,有防止衰老的功效,可降低人体内胆固醇的含量,增强人体肌肉、心脏和血管系统的机能,提高机体的抵抗能力。 此外,本研究初期分别克隆了高油玉米115号、大豆(Glycine max)、模式植物拟南芥(Arabidopsis thaliana)、结球甘蓝(Oryza sativa)的γ-TMT基因的全长cDNA序列,进行原核表达,结果显示玉米γ-TMT体外比活最高。 鉴于上述背景,本研究旨在通过分离玉米γ-TMT基因,并对其进行功能分析,为研究γ-TMT基因在维生素E生物合成中的作用和以后通过基因工程方法提玉米油α-生育酚水平奠定基础,主要结果如下: 1.提取玉米总RNA,利用RT-PCR技术,从高油玉米115号中分离了γ-TMT的全长cDNA序列(1059bp)。 2.构建了γ-TMT基因的原核表达载体pET-sigMTMT,并将其转化大肠杆菌BL21,纯化得到原核表达的高活性γ-生育酚甲基转移酶。 3.构建了植物表达载体pBI121-MTMT,粘花法转化拟南芥,抗性筛选转基因拟南芥,获得7个纯系。 4.提取纯系转基因拟南芥的总蛋白,进行ELISA检测和Western blotting分析。ELISA结果表明3#株系的γ-TMT活性最高,为野生拟南芥的4.56倍,6#为4.41倍;Western blotting也得到深浅不一的目的条带,表明不同株系具有活性不同的γ-TMT。 5.分别提取7个纯系的转基因拟南芥总RNA,通过Northern blotting分析表明,γ-TMT基因在转基因拟南芥中均有表达。 6.用HPLC技术测定7个纯系的α-生育酚和γ-生育酚含量变化,转基因植株的α-生育酚与γ-生育酚比值都高于野生型,其中6#最高为7.67,是野生型的13.14倍。7.构建了玉米γ-TMT基因与GFP融合的植物表达载体pBI121-MTMT-GFP,通过叶盘转化法转化烟草,通过对转基因烟草的根部细胞观察发现12颗有GFP表达,并且在细胞核中表达最强,其次是细胞膜,但并不是在所有细胞的核中都表达。
URL [本文引用: 1]
维生素E又称生育酚,仅由光合生物合成,可以清除生物体内的活性氧和自由基,是人体必需的一类脂溶性维生素,具有重要的抗氧化功能。每天食用一定量的维生素E可以起到增强机体免疫力、防衰老、防癌、防心脑血管疾病及预防或减慢某些慢性疾病的作用。在天然存在的8种生育酚中,α-生育酚的生物活性最高,且被人体优先吸收和利用,但人类维生素E的主要膳食来源-食用植物油中,α-生育酚水平普遍比较低,而其前体γ-生育酚的水平却比较高。 γ-生育酚甲基转移酶(γ-TMT)是天然维生素E合成途径中的关键酶之一,其表达及活性对决定植物维生素E的组成起着重要作用,它催化6,γ-生育酚分别甲基化生成β,a-生育酚。玉米油是一种高品质的食用植物油,它含有86%的不饱和脂肪酸,其中56%是亚油酸,人体吸收率可达97%以上;玉米油中还含有少量的辅酶,也具有抗氧化性能;玉米油所含的谷固醇及磷脂,有防止衰老的功效,可降低人体内胆固醇的含量,增强人体肌肉、心脏和血管系统的机能,提高机体的抵抗能力。 此外,本研究初期分别克隆了高油玉米115号、大豆(Glycine max)、模式植物拟南芥(Arabidopsis thaliana)、结球甘蓝(Oryza sativa)的γ-TMT基因的全长cDNA序列,进行原核表达,结果显示玉米γ-TMT体外比活最高。 鉴于上述背景,本研究旨在通过分离玉米γ-TMT基因,并对其进行功能分析,为研究γ-TMT基因在维生素E生物合成中的作用和以后通过基因工程方法提玉米油α-生育酚水平奠定基础,主要结果如下: 1.提取玉米总RNA,利用RT-PCR技术,从高油玉米115号中分离了γ-TMT的全长cDNA序列(1059bp)。 2.构建了γ-TMT基因的原核表达载体pET-sigMTMT,并将其转化大肠杆菌BL21,纯化得到原核表达的高活性γ-生育酚甲基转移酶。 3.构建了植物表达载体pBI121-MTMT,粘花法转化拟南芥,抗性筛选转基因拟南芥,获得7个纯系。 4.提取纯系转基因拟南芥的总蛋白,进行ELISA检测和Western blotting分析。ELISA结果表明3#株系的γ-TMT活性最高,为野生拟南芥的4.56倍,6#为4.41倍;Western blotting也得到深浅不一的目的条带,表明不同株系具有活性不同的γ-TMT。 5.分别提取7个纯系的转基因拟南芥总RNA,通过Northern blotting分析表明,γ-TMT基因在转基因拟南芥中均有表达。 6.用HPLC技术测定7个纯系的α-生育酚和γ-生育酚含量变化,转基因植株的α-生育酚与γ-生育酚比值都高于野生型,其中6#最高为7.67,是野生型的13.14倍。7.构建了玉米γ-TMT基因与GFP融合的植物表达载体pBI121-MTMT-GFP,通过叶盘转化法转化烟草,通过对转基因烟草的根部细胞观察发现12颗有GFP表达,并且在细胞核中表达最强,其次是细胞膜,但并不是在所有细胞的核中都表达。
,
DOI:10.7668/hbnxb.2010.01.044URLMagsci [本文引用: 1]
小麦品种百农3217感白粉病,它的一个近等基因系(Xbd/百农3217(BC7F6))含抗病基因xbd,具有抗白粉病功能.以这两个品系为试验材料,接种白粉菌,分析了0~6d两个品系叶片中过氧化氢(H<sub>2</sub>O<sub>2</sub> )的含量和7种代谢酶的活性,这些代谢酶包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GPX)、脱氢抗坏血酸还原酶(DHAR)、抗坏血酸过氧化物酶(APX)和谷胱甘肽转硫酶(GST)等.目的是探讨在白粉菌和小麦植物的互作过程中,感病、抗病植物生理指标之间的差异.试验结果表明:接种白粉病菌后,H<sub>2</sub>O<sub>2</sub>含量在感病品系中显著下降,在抗病品系中显著上升;在白粉菌侵染进程中,CAT酶活性,感病与抗病品系无明显差异;感病品系叶片内SOD、GR、GPX、APX和GST活性在接种后期显著上升,高于抗病品系;DHAR活性变化则无明显规律.在白粉病侵染小麦植株过程中,H<sub>2</sub>O<sub>2</sub>具有重要作用,多种代谢机制共同参与,各种酶的总体表现影响了H<sub>2</sub>O<sub>2</sub>含量的变化.
DOI:10.7668/hbnxb.2010.01.044URLMagsci [本文引用: 1]
小麦品种百农3217感白粉病,它的一个近等基因系(Xbd/百农3217(BC7F6))含抗病基因xbd,具有抗白粉病功能.以这两个品系为试验材料,接种白粉菌,分析了0~6d两个品系叶片中过氧化氢(H<sub>2</sub>O<sub>2</sub> )的含量和7种代谢酶的活性,这些代谢酶包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GPX)、脱氢抗坏血酸还原酶(DHAR)、抗坏血酸过氧化物酶(APX)和谷胱甘肽转硫酶(GST)等.目的是探讨在白粉菌和小麦植物的互作过程中,感病、抗病植物生理指标之间的差异.试验结果表明:接种白粉病菌后,H<sub>2</sub>O<sub>2</sub>含量在感病品系中显著下降,在抗病品系中显著上升;在白粉菌侵染进程中,CAT酶活性,感病与抗病品系无明显差异;感病品系叶片内SOD、GR、GPX、APX和GST活性在接种后期显著上升,高于抗病品系;DHAR活性变化则无明显规律.在白粉病侵染小麦植株过程中,H<sub>2</sub>O<sub>2</sub>具有重要作用,多种代谢机制共同参与,各种酶的总体表现影响了H<sub>2</sub>O<sub>2</sub>含量的变化.
,
[本文引用: 1]
[本文引用: 1]