关键词:苦荞; 耐低氮能力; 综合评价; 回归分析 Screening Fagopyrum tararicum Genotypes Tolerant to Low Nitrogen Stress at Seedling Stage and Its Evaluating Indices ZHANG Chu1, ZHANG Yong-Qing1,2,*, LU Zhi-Juan1, LIU Li-Qin1 1 College of Life Science, Shanxi Normal University, Linfen 041004, China
2 College of Geographical Science, Shanxi Normal University, Linfen 041004, China
Fund:This study was supported by the National Natural Science Foundation of China (31571604) AbstractNitrogen (N) deficiency is a major problem for agricultural production in the cold area of Loess Plateau. In this study, multiple indices of seedlings, including agronomic traits, physiological characteristics, and N utilization parameters, were measured in a hydroponics experiment with nine F. tararicum genotypes. The low-N tolerance was assessed by calculating subordinate function values, and making the comprehensive evaluation after principal component and clustering analyses. Under low-N stress, the restraint degree was greater for shoots than for roots. Compared with normal-N supply, low-N stress resulted in decreases of plant height, stem diameter, leaf area, shoot dry weight, root average diameter, root volume and root surface area and increases of main root length and root-to-shoot ratio. In addition, the root activity, nitrate reductase (NR) activity and soluble protein content decreased under low-N stress, whereas the activities of superoxide dismutase (SOD) and peroxidase (POD) as well as the contents of malonaldehyde (MDA), soluble sugar and free proline increased. The photosynthesis-related indices also changed under low-N stress, showing the decreases of leaf chlorophyll content, Fm and Fv/ Fm and the increase of Fo. The plant N content and plant N accumulation decreased under low-N condition, however, the plant N utilization efficiency showed obvious increase, owing to the greater decline of N accumulation than that of plant biomass. The 25 single indices were converted into four independent comprehensive indices (accumulative contribution of 87.44%), with which the nine F. tararicum genotypes were classified into high-, medium-, and low-tolerance groups. An optimal equation was also set up to evaluate and predict low-N tolerance of F. tararicum genotypes through stepwise regression with D value as the dependent variable and low-N tolerance index as the independent variable. Finally, eight indices, plant height, stem diameter, leaf area, root-shoot ratio, chlorophyll content, Fm, root activity and plant N utilization efficiency, were selected due to their significant impacts on low-N tolerance. These indices are recommended in quick by screening low-N tolerant F. tararicum genotypes.
Keyword: Fagopyrum tararicum; Low nitrogen tolerance; Comprehensive evaluation; Regression analysis Show Figures Show Figures
表1 低氮胁迫对不同品种苦荞幼苗地上部生长的影响 Table 1 Effect of low-N stress on shoot growth at seedling stage in different Fagopyrum tararicum genotypes
基因型 Genotype
株高 Plant height (cm)
茎粗 Stem diameter (mm)
叶面积 Leaf area (mm2)
茎叶干重 Shoot dry weight (mg)
正常供氮 Normal-N supply
奇台农家种 Qitai landrace
13.78± 1.19 aA
1.69± 0.08 aA
412.78± 7.36 aA
66.50± 1.35 aA
迪庆苦荞 Diqing kuqiao
11.80± 1.33 bA
1.59± 0.08 abA
273.50± 7.08 bA
48.07± 1.07 cA
多元苦荞 Duoyuan kuqiao
12.19± 1.68 abA
1.45± 0.12 bcA
253.84± 6.25 cdA
38.37± 1.88 dA
云荞1号 Yunqiao 1
10.89± 0.19 bA
1.30± 0.08 cdA
232.08± 8.81 fA
34.50± 1.75 eA
西农9909 Xinong 9909
11.91± 1.38 bA
1.33± 0.06 cdA
245.61± 8.40 deA
40.47± 2.24 dA
西荞1号 Xiqiao 1
11.33± 1.10 bA
1.26± 0.09 dA
227.17± 5.37 fA
27.43± 1.17 gA
广苦1号 Guangku 1
13.54± 1.43 aA
1.29± 0.08 cdA
260.15± 3.12 cA
51.53± 1.29 bA
黔苦6号 Qianku 6
10.71± 1.12 bA
1.33± 0.08 cdA
235.24± 9.97 efA
30.47± 2.12 fA
黑丰1号 Heifeng 1
11.86± 0.45 bA
1.45± 0.10 bcA
200.86± 8.31 gA
46.40± 1.61 cA
低氮胁迫 Low-N stress
奇台农家种 Qitai landrace
13.19± 1.14 aAB
1.46± 0.11 aB
342.20± 9.71 aB
54.83± 2.74 aB
迪庆苦荞 Diqing kuqiao
10.87± 0.76 bcAB
1.51± 0.07 bAB
217.29± 6.55 bB
38.20± 0.96 bB
多元苦荞 Duoyuan kuqiao
9.57± 0.91 cdAB
1.36± 0.08 cAB
166.81± 6.22 dB
22.97± 1.00 dB
云荞1号 Yunqiao 1
9.86± 0.64 bcAB
1.23± 0.10 cAB
137.16± 5.80 eB
25.00± 1.13 cdB
西农9909 Xinong 9909
11.28± 1.05 bAB
1.26± 0.07 cAB
168.80± 9.94 dB
26.53± 1.30 cB
西荞1号 Xiqiao 1
8.37± 0.69 deB
1.08± 0.09 dAB
113.81± 8.04 fB
15.17± 1.53 eB
广苦1号 Guangku 1
10.49± 0.63 bcB
1.22± 0.07 cdAB
187.31± 7.96 cB
39.23± 0.93 bB
黔苦6号 Qianku 6
7.72± 0.39 eB
1.23± 0.09 cAB
100.16± 8.75 gB
13.70± 0.96 eB
黑丰1号 Heifeng 1
7.42± 0.73 eB
1.24± 0.07 cB
111.77± 2.17 fgB
15.67± 0.81 eB
Data are mean ± SD. Values within the same nitrogen treatment followed by capital and small letters are significantly different at the 0.01 and 0.05 probability levels, respectively. 数据为平均值± 标准差。同一氮处理下标以不同大、小写字母的数据分别表示在0.01和0.05概率水平差异显著。
表1 低氮胁迫对不同品种苦荞幼苗地上部生长的影响 Table 1 Effect of low-N stress on shoot growth at seedling stage in different Fagopyrum tararicum genotypes
表3 低氮胁迫对不同品种苦荞幼苗根系活力、酶活性及MDA含量的影响 Table 3 Effects of low-N stress on root activity, NR activity, enzyme activities, and MDA content in seedlings of different Fagopyrum tararicum genotypes
基因型 Genotype
根系活力 Root activity (mg g-1)
硝酸还原酶活性 NR activity (μ g g-1 h-1)
超氧化物歧化酶活性 SOD activity (U g-1 min-1)
过氧化物酶活性 POD activity (U g-1 min-1)
丙二醛含量 MDA content (nmol g-1)
正常供氮 Normal-N supply
奇台农家种 Qitai landrace
0.56± 0.03 abA
4.85± 0.04 bA
198.66± 14.29 dB
32.49± 1.99 aB
8.79± 0.80 dB
迪庆苦荞 Diqing kuqiao
0.61± 0.03 aA
5.18± 0.06 aA
221.32± 17.38 cdB
30.23± 1.46 abcB
11.14± 0.60 abB
多元苦荞 Duoyuan kuqiao
0.52± 0.04 bcA
4.14± 0.10 eA
284.35± 18.64 aB
28.24± 2.59 bcdB
11.29± 0.75 abB
云荞1号 Yunqiao 1
0.57± 0.04 abA
4.58± 0.11 cA
229.84± 15.69 cB
31.56± 1.13 abB
11.19± 0.28 ab
西农9909 Xinong 9909
0.53± 0.04 bcA
4.42± 0.09 dA
244.11± 11.86 bcB
26.94± 1.95 cdB
10.01± 0.49 cB
西荞1号 Xiqiao 1
0.49± 0.03 cA
4.03± 0.04 eA
197.77± 11.28 dB
22.96± 1.56 eAB
11.28± 0.50 abB
广苦1号 Guangku 1
0.55± 0.04 abcA
4.58± 0.11 cA
255.36± 10.25 bB
29.44± 1.97 abcB
8.80± 0.29 dB
黔苦6号 Qianku 6
0.56± 0.05 abA
3.84± 0.12 fA
170.23± 12.63 eB
25.69± 1.63 deAB
11.86± 0.46 aB
黑丰1号 Heifeng 1
0.50± 0.03 bcA
3.48± 0.08 gA
201.65± 8.01 dB
25.68± 1.83 deAB
10.61± 0.63 bcB
低氮胁迫 Low-N stress
奇台农家种 Qitai landrace
0.50± 0.02 bB
4.52± 0.11 bB
419.13± 13.04 dA
40.37± 0.72 aA
11.17± 0.50 dA
迪庆苦荞 Diqing kuqiao
0.58± 0.04 aAB
4.87± 0.07 aB
530.48± 15.99 aA
41.46± 2.85 aA
12.61± 0.65 cA
多元苦荞 Duoyuan kuqiao
0.43± 0.02 cB
3.38± 0.05 dB
458.34± 8.79 cA
33.03± 0.47 cdA
13.92± 0.74 abcA
云荞1号 Yunqiao 1
0.52± 0.03 bAB
4.03± 0.11 cB
500.19± 9.44 bA
37.03± 2.12 bA
12.92± 0.78 bcA
西农9909 Xinong 9909
0.42± 0.03 cB
3.20± 0.09 eB
428.00± 7.23 dA
31.80± 1.90 dA
13.17± 0.99 bcA
西荞1号 Xiqiao 1
0.26± 0.02 eB
2.26± 0.09 fB
306.03± 16.47 fA
25.27± 1.35 fA
15.11± 1.00 aA
广苦1号 Guangku 1
0.44± 0.03 cB
3.49± 0.08 dB
456.82± 16.86 cA
35.27± 1.12 bcA
11.12± 0.77 dA
黔苦6号 Qianku 6
0.42± 0.03 cB
2.35± 0.09 fB
334.86± 19.03 eA
28.77± 1.97 eA
14.84± 0.80 aA
黑丰1号 Heifeng 1
0.32± 0.02 dB
1.68± 0.10 gB
317.28± 15.31 efA
27.30± 1.49 efA
14.32± 0.90 abA
Abbreviations are the same as those given in Table 1. 缩写同表1。
表3 低氮胁迫对不同品种苦荞幼苗根系活力、酶活性及MDA含量的影响 Table 3 Effects of low-N stress on root activity, NR activity, enzyme activities, and MDA content in seedlings of different Fagopyrum tararicum genotypes
表4 低氮胁迫对不同品种苦荞幼苗根系渗透调节物质的影响 Table 4 Effects of low-N stress on root soluble sugar, soluble protein and free proline contents in seedlings of different Fagopyrum tararicum genotypes
基因型 Genotype
正常供氮 Normal-N supply
低氮胁迫 Low-N stress
可溶性糖 Soluble sugar (mg g-1)
可溶性蛋白 Soluble protein (mg g-1)
游离脯氨酸 Free proline (μ g g-1)
可溶性糖 Soluble sugar (mg g-1)
可溶性蛋白 Soluble protein (mg g-1)
游离脯氨酸 Free proline (μ g g-1)
奇台农家种 Qitai landrace
1.67± 0.04 aB
5.83± 0.21 aA
19.43± 0.77 bB
2.42± 0.06 bA
5.04± 0.39 aB
27.82± 0.75 aA
迪庆苦荞 Diqing kuqiao
1.50± 0.09 bB
6.06± 0.35 aA
17.05± 0.63 cB
2.64± 0.09 aA
5.28± 0.23 aB
26.23± 1.15 bA
多元苦荞 Duoyuan kuqiao
1.51± 0.10 bB
5.72± 0.25 aA
14.79± 0.51 dB
2.12± 0.09 cdA
4.21± 0.37 bB
20.85± 1.37 deA
云荞1号 Yunqiao 1
1.61± 0.08 abB
5.51± 0.35 abcA
18.68± 0.48 bB
2.26± 0.06 cA
4.73± 0.38 abB
26.68± 0.51 abA
西农9909 Xinong 9909
1.50± 0.05 bB
5.56± 0.26 abcA
16.07± 0.63 cB
2.17± 0.06 cdA
4.33± 0.33 bB
21.87± 0.54 dA
西荞1号 Xiqiao 1
1.27± 0.06 cB
4.96± 0.32 cA
16.31± 0.61 cB
1.50± 0.07 fA
2.96± 0.20 cdB
19.68± 0.44 eA
广苦1号 Guangku 1
1.54± 0.04 bB
6.03± 0.31 aA
21.14± 0.52 aB
2.05± 0.08 dA
4.43± 0.39 bB
27.89± 0.55 aA
黔苦6号 Qianku 6
1.70± 0.06 fB
5.04± 0.41 bcA
19.60± 0.54 bB
2.12± 0.09 cdA
3.27± 0.23 cB
24.60± 0.48 cA
黑丰1号 Heifeng 1
1.68± 0.04 aB
5.64± 0.43 abA
16.50± 0.51 cB
1.89± 0.06 eA
2.51± 0.19 dB
20.02± 0.78 eA
Abbreviations are the same as those given in Table 1. 缩写同表1。
表4 低氮胁迫对不同品种苦荞幼苗根系渗透调节物质的影响 Table 4 Effects of low-N stress on root soluble sugar, soluble protein and free proline contents in seedlings of different Fagopyrum tararicum genotypes
图1 低氮胁迫对不同品种苦荞幼苗叶片叶绿素含量的影响 N+: 正常供氮; N-: 低氮胁迫。误差线表示标准差, 其上不同大、小写字母分别表示同一氮处理下品种间在0.01和0.05概率水平差异显著。Fig. 1 Effect of low-N stress on chlorophyll content of different Fagopyrum tararicum leaves at seedling stage N+: normal-N supply; N-: low-N stress. Error bars show the SD. Bars superscripted by different capital and small letters are significantly different among genotypes at the 0.01 and 0.05 probability levels, respectively.
图2 低氮胁迫对不同品种苦荞幼苗叶片荧光参数的影响 缩写同图1。Fig. 2 Effect of low-N stress on fluorescence parameters of different Fagopyrum tararicum leaves at seedling stage Abbreviations are the same as those given in Figure 1.
表5 低氮胁迫对不同苦荞品种苗期全氮含量、氮积累量及氮利用效率的影响 Table 5 Effects of low-N stress on plant N content, N accumulation and N utilization efficiency in different Fagopyrum tararicum genotypes at seedling stage
基因型 Genotype
正常供氮 Normal-N supply
低氮胁迫 Low-N stress
PNC (mg g-1)
PNA (mg plant-1)
PNUE (g g-1)
PNC (mg g-1)
PNA (mg plant-1)
PNUE (g g-1)
奇台农家种 Qitai landrace
2.113± 0.083 aA
0.173± 0.002 aA
473.79± 18.28 fB
1.193± 0.063 aB
0.084± 0.004 aB
840.07± 11.52 gA
迪庆苦荞 Diqing kuqiao
1.834± 0.035 bA
0.104± 0.003 bA
545.53± 10.39 eB
1.264± 0.077 aB
0.061± 0.003 bB
792.98± 18.41 iA
多元苦荞 Duoyuan kuqiao
1.562± 0.070 dA
0.076± 0.003 eA
640.99± 19.96 cB
0.755± 0.073 cB
0.025± 0.002 eB
1333.70± 23.05 cA
云荞1号 Yunqiao 1
1.855± 0.083 bA
0.083± 0.002 dA
539.73± 23.91 eB
1.218± 0.075 aB
0.042± 0.003 cB
822.88± 21.19 ghA
西农9909 Xinong 9909
1.686± 0.086 cA
0.090± 0.004 cA
594.08± 10.49 dB
0.832± 0.076 bcB
0.032± 0.002 dB
1208.51± 13.93 eA
西荞1号 Xiqiao 1
1.316± 0.085 fA
0.045± 0.002 gA
761.81± 21.29 aB
0.463± 0.039 dB
0.010± 0.001 gB
2168.57± 22.01 aA
广苦1号 Guangku 1
1.699± 0.060 cA
0.107± 0.004 bA
589.01± 20.46 dB
0.926± 0.046 bB
0.044± 0.004 cB
1151.52± 24.81 fA
黔苦6号 Qianku 6
1.365± 0.036 efA
0.053± 0.004 fA
732.92± 19.00 aB
0.776± 0.048 bcB
0.016± 0.001 fB
1292.33± 25.35 dA
黑丰1号 Heifeng 1
1.454± 0.078 deA
0.084± 0.003 dA
689.08± 16.70 bB
0.540± 0.042 dB
0.012± 0.001 fgB
1860.97± 16.47 bA
PNC: plant N content; PNA: plant N accumulation; PNUE: plant N utilization efficiency. Other abbreviations are the same as those given in Table 1. PNC: 植株全氮含量; PNA: 植株氮积累量; PNUE: 植株氮利用效率。其余缩写同表1。
表5 低氮胁迫对不同苦荞品种苗期全氮含量、氮积累量及氮利用效率的影响 Table 5 Effects of low-N stress on plant N content, N accumulation and N utilization efficiency in different Fagopyrum tararicum genotypes at seedling stage
表8 单个苦荞农艺性状、光合作用和生化特性相关指标与耐低氮综合评价值(D)的相关性 Table 8 Correlations of the comprehensive value (D) for low-N tolerance with single agronomic traits and photosynthetic and biochemical parameters in Fagopyrum tararicum
指标 Index
相关系数 Correlation coefficient
P值 P-value
株高 Plant height
0.815
0.007
茎粗 Stem diameter
0.595
0.091
叶面积 Leaf area
0.728
0.026
根系干重 Root dry weight
0.917
0.000
茎叶干重 Shoot dry weight
0.882
0.002
根冠比 Root-to-shoot ratio
-0.618
0.076
最长根长 Maximum root length
0.843
0.004
根系平均直径 Root average diameter
0.915
0.001
根系表面积 Root surface area
0.860
0.003
根系体积 Root volume
0.868
0.002
叶绿素含量 Chlorophyll content
0.651
0.057
初始荧光参数 Fo
-0.890
0.001
最大荧光参数 Fm
0.667
0.050
最大光化学效率 Fv/Fm
0.685
0.042
根系活力 Root activity
0.939
0.000
NR活性 NR activity
0.958
0.000
SOD活性 SOD activity
0.841
0.005
POD活性 POD activity
0.902
0.001
丙二醛含量 MDA content
-0.811
0.008
可溶性糖含量 Soluble sugar content
0.888
0.001
可溶性蛋白含量 Soluble protein content
0.948
0.000
游离脯氨酸含量 Free proline content
0.921
0.000
植株全氮含量 Plant N content
0.909
0.001
植株氮积累量 Plant N accumulation
0.980
0.000
植株氮利用效率 Plant N utilization efficiency
-0.915
0.001
表8 单个苦荞农艺性状、光合作用和生化特性相关指标与耐低氮综合评价值(D)的相关性 Table 8 Correlations of the comprehensive value (D) for low-N tolerance with single agronomic traits and photosynthetic and biochemical parameters in Fagopyrum tararicum
4 结论低氮胁迫下, 苦荞苗期地上部受抑制程度大于根系, 根系活力、NR活性、可溶性蛋白含量下降, 而根系SOD和POD活性、MDA、可溶性糖、游离脯氨酸含量升高, 植株氮积累量降低但氮素利用率升高。参试品种中迪庆苦荞耐低氮能力最强, 奇台农家品种次之, 可用作苦荞氮高效育种及黄土高原瘠薄土壤栽植的参考种质资源。株高、茎粗、叶面积、根冠比、叶绿素含量、Fm、根系SOD活性及氮利用效率8个指标可用于苦荞耐低氮特性的快速鉴定。 The authors have declared that no competing interests exist.
张定一, 张永清, 杨武德, 苗果园. 不同基因型小麦对低氮胁迫的生物学响应. , 2006, 32: 1349-1354Zhang DY, Zhang YQ, Yang WD, Miao GY. Biological response of roots in different wheat genotypes to low-N stress. , 2006, 32: 1349-1354 (in Chinese with English abstract)[本文引用:2]
[2]
DiazC, SalibacolombaniV, LoudetO. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana. , 2006, 47: 74-83[本文引用:1]
[3]
李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. , 2014, 22: 1190-1199LiQ, Luo YH, TanJ, Kong FL, Yang SM, Yuan JC. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivar at seeding stage. , 2014, 22: 1190-1199 (in Chinese with English abstract)[本文引用:6]
[4]
李春艳, 张宏, 马龙, 李诚. 冬小麦苗期氮素吸收利用生理指标的综合评价. , 2012, 18: 523-530Li CY, ZhangH, MaL, LiC. Comprehensive evaluation on physiological indices of nitrogen absorption and utilization in winter wheat at the stage. , 2012, 18: 523-530 (in Chinese with English abstract)[本文引用:4]
[5]
赵化田, 王瑞芳, 许云峰, 安调过. 小麦苗期耐低氮基因型的筛选与评价. , 2011, 19: 1199-1204Zhao HT, Wang RF, Xu YF, An DG. Screening and evaluating low nitrogen tolerant wheat genotype at seeding stage. , 2011, 19: 1199-1204 (in Chinese with English abstract)[本文引用:5]
[6]
Calderónmontaño JM, BurgosmorónE, PérezguerreroC, López-LázaroM. A review on the dietary flavonoid kaempferol. , 2011, 11: 298-344[本文引用:1]
[7]
张雄, 王立祥, 柴岩, 廖允成. 小杂粮生产可持续发展探讨. , 2003, 36: 1595-1598ZhangX, Wang LX, ChaiY, Liao YC. Sustainable development of minor crops in China. , 2003, 36: 1595-1598 (in Chinese with English abstract)[本文引用:1]
[8]
赵刚, 唐宇, 王安虎. 苦荞麦的成分功能研究与开发应用. , 2001, 19: 355-358ZhaoG, TangY, Wang AH. The function research and application development of the composition for tartary buckwheat. , 2001, 19: 355-358 (in Chinese with English abstract)[本文引用:1]
[9]
侯雅君, 张宗文, 吴斌, 李艳琴. 苦荞种质资源AFLP标记遗传多样性分析. , 2009, 42: 4166-4174Hou YJ, Zhang ZW, WuB, Li YQ. Genetic diversity in tartary buckwheat revealed by AFLP analysis. , 2009, 42: 4166-4174 (in Chinese with English abstract)[本文引用:1]
[10]
杨玉霞, 吴卫, 郑有良, 王俊, 李建, 邬昌禄. 苦荞品种( 系)主要农艺性状与蛋白质含量的聚类分析. , 2008, 27(10): 30-34Yang YX, WuW, Zheng YL, WangJ, LiJ, Wu CL. Cluster analysis of the mainly agronomic characters and the protein content on tartary uckwheat. , 2008, 27(10): 30-34 (in Chinese with English abstract)[本文引用:1]
[11]
Shi YH, Zhang YQ. Effect of seed soaking with rare earth on the seed germination and seeding growth of tartary buckwheat under different water conditions. , 2013, 14: 1237-1243[本文引用:1]
[12]
田秀英, 王正银. 硒对苦荞产量、营养与保健品质的影响. , 2008, 34: 1266-1272Tian XY, Wang ZY. Effects of selenium application on yield and qualities for nutrition and health care in tartary buckwheat. , 2008, 34: 1266-1272 (in Chinese with English abstract)[本文引用:1]
张美俊, 乔治军, 杨武德, 冯美臣, 肖璐洁, 王冠, 段云. 不同糜子品种对低氮胁迫的生物学响应. , 2014, 20: 661-669Zhang MJ, Qiao ZJ, Yang WD, Feng MC, Xiao LJ, WangG, DuanY. Biological response of different cultivars of millet to low-N stress. , 2014, 20: 661-669 (in Chinese with English abstract)[本文引用:2]
[16]
谢孟林, 李强, 查丽, 朱敏, 程秋博, 袁继超, 孔凡磊. 低氮胁迫对不同耐低氮性玉米品种幼苗根系形态和生理特征的影响. , 2015, 23: 946-953Xie ML, LiQ, ZhaL, ZhuM, Cheng QB, Yuan JC, Kong FL. Effects of low nitrogen stress on physiological and morphological traits of roots of different low nitrogen tolerance maize varieties at seeding stage. , 2015, 23: 946-953 (in Chinese with English abstract)[本文引用:3]
[17]
陈二影, 杨延兵, 秦岭, 张华文, 刘宾, 王海莲, 陈桂玲, 于淑婷, 管延安. 谷子苗期氮高效品种筛选及相关特性分析. , 2016, 49: 3287-3297Chen EY, Yang YB, QinL, Zhang HW, LiuB, Wang HL, Chen GL, Yu ST, Guan YA. Evaluation of nitrogen efficient cultivars of foxtail millet and analysis of the related characters at seeding stage. , 2016, 49: 3287-3297 (in Chinese with English abstract)[本文引用:2]