摘要根据西北一熟制灌区土壤养分条件以及马铃薯-大豆系统中作物养分吸收互补的特点, 选用马铃薯品种费乌瑞它和大豆品种冀豆12作为试验材料, 设置3重复随机区组试验, 小区处理最优施肥(OPT: N、P、K分别为180、135、135 kg hm-2)、最优减N (OPT-N)、最优减P (OPT-P)、最优减K (OPT-K)、最优减1/3N (OPT-1/3N)、最优增1/3N (OPT +1/3N)、最优减1/3P (OPT-1/3P)、最优增1/3P (OPT +1/3P)、最优减1/3K (OPT-1/3K)和不施肥(CK) 10个处理。通过2012—2013连续2年大田试验, 系统分析N、P、K对套作马铃薯及套作大豆产量及产量构成因素的影响。结果表明, OPT-N处理与OPT处理套作马铃薯产量差异最大(11 653.86 kg hm-2); OPT-P处理与OPT处理套作大豆产量差异最大(751.55 kg hm-2), 差异均达到显著水平( P<0.05), 说明影响套作马铃薯、套作大豆产量的最大的因素分别是N和P。随N水平递增, 套作马铃薯产量呈现递增的趋势, OPT+1/3N处理产量最高为50 231.85 kg hm-2; 套作大豆产量则呈现先增后减的趋势, OPT处理产量最高为3373.55 kg hm-2, 方差分析表明, OPT和OPT+1/3N各处理套作马铃薯产量差异不显著, OPT-1/3N、OPT、OPT+1/3N各处理套作大豆产量差异不显著。随P素水平增加, 套作马铃薯和套作大豆产量均呈现增加趋势, OPT+1/3P处理下套作马铃薯、套作大豆产量均最高, 分别为52 430.03 kg hm-2和3637.13 kg hm-2, 同样在OPT+1/3P处理下, 套作马铃薯平均单薯最重, 套作大豆有效荚数、每荚粒数及单株粒数均最高, 2年平均分别为185.13、74.24、1.87和139.15 g。综合考虑薯豆套作产量效应及养分利用效率, OPT施肥方案中, N适宜, P偏低, K偏高。
关键词:马铃薯; 大豆; 套作; 平衡施肥; 产量 Effect of Balanced Fertilizer Application on Crop Yield in Potato-Soybean Relay-Cropping System CHEN Guang-Rong1,2, WANG Li-Ming1, YANG Ru-Ping1, DONG Bo1, YANG Gui-Fang3, ZHANG Guo-Hong1,*, YANG Wen-Yu2,* 1Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences / Key Laboratory of Northwest Drought Crop Cultivation, Ministry of Agriculture, Lanzhou 730070, China
2College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130, China
3Gansu Central Keya Green Agriculture Technology Ltd., Lanzhou 730070, China
Fund:The study was supported by the National Natural Science Foundation of China, the China Agriculture Research System (CARS-04-CES17), the Science Foundation of Gansu Academy of Agricultural Sciences (2015GAAS20), and the Lanzhou Special Fund for Agro-scientific Research (2015-3-37). AbstractThe treatments of optimum fertilization (OPT: N 180, P 135, K 135 kg ha-1), OPT-N, OPT-P, OPT-K, OPT-1/3N, OPT +1/3N, OPT-1/3P, OPT +1/3P, OPT-1/3K, and CK were designed according to soil condition and uptake characteristics of nitrogen, phosphorus and potassium of potato/soybean relay-cropping system in Northwest irrigation districts. A field experiment was conducted in two consecutive seasons (from 2012 to 2013) to verify the yield response to balanced fertilization. The relay-cropping potato yield of OPT was significantly higher than those of OPT-N, OPT-P, and OPT-K, with obvious difference of 11 653.86 kg ha-1 between OPT and OPT-N, the relay-cropping soybean yield of OPT was significantly higher than those of OPT-N, OPT-P, and OPT-K, with obvious difference of 751.55 kg ha-1 between OPT and OPT-P. Therefore, nitrogen and phosphorus were the first limiting factors in relay-cropping potato and soybean production. Under certain phosphorus and potassium fertilizer, the relay-cropping potato yield increased with increasing N application, reaching the highest of 50 231.85 kg ha-1 under 240 kg ha-1 treatment (OPT+1/3N), but there was no significant difference between OPT and OPT+1/3N. And the relay-cropping soybean yield increased firstly and decreased then with increasing nitrogen fertilizer application, with the highest yield of 3373.55 kg ha-1 under 180 kg ha-1 treatment (OPT), there was no significant difference between OPT, OPT-1/3N, and OPT+1/3N. Under certain nitrogen and potassium fertilizer, the yield of relay-cropping potato and soybean increased with the increase of phosphorus fertilizer application, and reaching the highest yield of 52 430.03 kg ha-1 and 3637.13 kg ha-1 under 180 kg ha-1 treatment (OPT+1/3P), respectively. For relay-cropping potato, average fresh-weight of individual tuber reached the highest under 180 kg ha-1 treatment (OPT+1/3P), which was 185.13 g. For relay-cropping soybean, the average of pods per plant, seeds per plant and seeds per pod reached the highest under OPT+1/3P, which were 74.24, 1.87, and 139.15 respectively. Therefore, nitrogen (N 180 kg ha-1) fertilizer was adequate, phosphorus (P 135 kg ha-1) fertilizer a little lacking, and potassium (K 135 kg ha-1) fertilizer on the high side in OPT treatment.
Keyword:Potato; Soybean; Relay-cropping; Balanced fertilizer application; Yield Show Figures Show Figures
图2 缺素处理下作物产量 柱上不同小写字母表示达0.05显著水平。T1、T2、T3、T4和T0分别为OPT、OPT-N、OPT-P、OPT-K和CK处理。Fig. 2 Yield of relay-cropping crops under deficient-factor treatment Bars represented by different small letters are significantly different at P< 0.05. Treatments T1, T2, T3, T4, and T0 represent with treatments of OPT, OPT-N, OPT-P, OPT-K, and CK.
2012年和2013年, OPT-N、OPT-P、OPT-K处理套作大豆产量均低于OPT处理, OPT-N和OPT-P处理与OPT处理产量差距较大, 而OPT-K与OPT处理产量差距较小, 2年平均差值分别为728.00、751.55和258.35 kg hm-2。方差分析结果表明(2年平均), OPT处理与OPT-K处理差异不显著(P> 0.05), OPT-N处理与OPT-P处理差异不显著(P> 0.05), 但前2个处理与后2个处理间差异显著(P< 0.05), 说明P和N是套作大豆产量的主要限制因子。 2.2 不同N素水平对作物产量的影响由图3可知, 2012年和2013年随N水平(0~240 kg hm-2)递增, 套作马铃薯产量呈递增趋势, OPT和OPT+1/3N处理产量最高, 2年平均值分别为48 823.56 kg hm-2和50 231.85 kg hm-2, 较对照(CK)分别增产52.92%和57.34%, 较OPT-N分别增产31.35%和35.14%。方差分析结果表明(2年平均), OPT和OPT+1/ 3N处理间差异不显著(P> 0.05), 但与其他3个处理间差异显著(P< 0.05), 说明N在180 kg hm-2水平时, 套作马铃薯产量较高, 继续增加, 增产效果不显著。 图3 Fig. 3
图3 N对薯豆套作系统作物产量的影响 柱上不同小写字母表示达0.05显著水平。T0、T2、T5、T1和T6分别为CK、OPT-N、OPT-1/3N、OPT和OPT+1/3N处理。Fig. 3 Effect of N application on relay-cropping crops yield Bars represented by different small letters are significantly different at P< 0.05. Treatment T0, T2, T5, T1and T6 represent with treatments of CK, OPT-N, OPT-1/3N, OPT, and OPT+1/3N.
随N水平递增, 套作大豆产量呈先增后减的趋势, N在180 kg hm-2水平时, 套作大豆产量最高, 2年平均值为3373.55 kg hm-2, 较CK和OPT-N分别增产48.71%和27.52%, 继续增加N, 套作大豆产量开始下降。2012年和2013年试验结果一致。对2年的试验结果方差分析表明, OPT-1/3N、OPT、OPT+1/3N处理间差异不显著(P> 0.05), 但与CK和OPT-N两处理间差异显著(P< 0.05)。 2.3 不同P2O5水平对作物产量的影响 由图4可知, 随着P素水平(0~180 kg hm-2)增加, 套作马铃薯产量呈现递增趋势, OPT+1/3P处理产量最高, 2012年和2013年试验结果呈现一致的规律性, 2年平均值为52 430.03 kg hm-2, 较CK和OPT-P分别增产64.22%和25.63%。方差分析结果表明(2年平均), OPT和OPT+1/3P处理间差异不显著(P> 0.05), 但与CK和OPT-P两处理间差异显著(P< 0.05)。 图4 Fig. 4
图4 P对薯豆套作系统作物产量的影响 柱上不同小写字母表示达0.05显著水平。T0、T3、T7、T1和T8分别为CK、OPT-P、OPT-1/3P、OPT和OPT+1/3 P处理。Fig. 4 Effect of P application on relay-cropping potato yield Bars represented by different small letters are significantly different at P< 0.05. Treatment T0, T3, T7, T1, and T8 represent with Treatments of CK, OPT-P, OPT-1/3P, OPT, and OPT+1/3P.
图5 K对薯豆套作系统作物产量的影响 柱上不同小写字母表示达0.05显著水平。T0、T4、T1和T9分别为CK、OPT-K、OPT-1/3K和OPT处理。Fig. 5 Effect of K application on intercropping soybean yield Bars represented by different small letters are significantly different at P< 0.05. Treatment T0, T4, T1, and T9 represent with treatments of CK, OPT-K, OPT-1/3K, and OPT.
4 结论西北地区马铃薯-大豆套作模式中, 影响马铃薯产量的主要限制因子是N, 其次是P, 然后是K; 影响大豆产量的主要限制因子是P和N。OPT与OPT+1/3N、OPT与OPT-1/3K处理间系统作物产量差异不显著, OPT+1/3P处理下系统作物产量最高, 马铃薯和大豆产量分别为52 430.03 kg hm-2和3637.13 kg hm-2, 该处理有利于马铃薯平均单薯重的提高、大豆有效荚数及每荚粒数的增加。综合考虑薯/豆套作产量效应及养分利用效率, 本试验OPT (N 180 kg hm-2, P 135 kg hm-2, K 135 kg hm-2)方案中, N适宜, P偏低, K偏高。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
李书田, 段玉, 陈占全, 郭天文, 李友宏. 西北地区马铃薯施肥效应和经济效应分析. , 2014, (4): 42-47Li ST, DuanY, Chen ZQ, Guo TW, Li YH. Yield response and economic benefit of fertilizer application on potato in Northwest China. , 2014, (4): 42-47 (in Chinese with English abstract)[本文引用:2]
[2]
Guo JH, Liu XJ, ZhangY, Shen JL, Han WX, Zhang WF, ChristieP, Goulding K W T, Vitousek P W, Zhang F S. Significant acidification in major Chinese cropland s. , 2010, 327: 1008-1010[本文引用:1]
[3]
Ng Kee Kwong K F, BholahA, VolcyL, PyneeK. Nitrogen and phosphorus transport by surface from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius. , 2002, 91: 147-157[本文引用:1]
[4]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. , 2008, 45: 915-924Zhang FS, Wang JQ, Zhang WF, Cui ZL, Ma WQ, Chen XP, Jiang RF. Nutrient use efficiencies of major cereal crops in China and measures for improvement. , 2008, 45: 915-924 (in Chinese with English abstract)[本文引用:1]
[5]
张朝春, 江荣风, 张福锁, 王兴仁. 氮磷钾肥对马铃薯营养状况及块茎产量的影响. , 2005, 21(9): 279-283Zhang CC, Jiang RF, Zhang FS, Wang XR. Effect of different N, P5O2, KO2 fertilization rate and ration on nutrient status and tuber yield of potato. , 2005, 21(9): 279-283 (in Chinese with English abstract)[本文引用:1]
[6]
李功轶, 吴凌娟, 梁杰, 张雅奎, 董传民, 白雅梅. 大兴安岭地区马铃薯测土配方施肥研究. , 2003, 17(2): 85-87Li GY, Wu LJ, LiangJ, Zhang YK, Dong CM, Bai YM. Effect of balanced fertilization on potato in Daxinanling district. , 2003, 17(2): 85-87 (in Chinese)[本文引用:1]
[7]
靳颖, 肖继梅. 马铃薯平衡施肥试验初报. , 2003, (1): 59-60JinY, Xiao JM. Effect of balanced fertilization on potato. , 2003, (1): 59-60 (in Chinese with English abstract). [本文引用:1]
[8]
王惠珠. 马铃薯免耕优质高产高效栽培技术. , 2005, (1): 71-72Wang HZ. Technology on Soil Virginzation of High Quality Yield on Potato. , 2005, (1): 71-72 (in Chinese)[本文引用:1]
[9]
苏亚拉其其格, 秦永林, 贾立国, 樊明寿. 氮素形态及供应时期对马铃薯生长发育与产量的影响. , 2016, 42: 619-623Suyala QQ, Qin YL, Jia LG, Fan MS. Effects of nitrogen form and its application time on plant growth and tuberyield of potato. , 2016, 42: 619-623 (in Chinese with English abstract)[本文引用:1]
[10]
Fan FL, Zhang FS, Song YN, Sun JH, Bao XG, Gao TW, LiL. Nitrogen fixation of faba bean (Vicia faba L. ) interacting with a non-legume in two contrasting intercropping systems. , 2006, 283: 275-286[本文引用:1]
[11]
Al-Dalain SA. Effect of intercropping of Zea maize with potato Solanum tuberosum L. on potato growth and on the productivity and land equivalent ratio of potato and Zea maize. , 2009, 4: 164-170[本文引用:1]
[12]
VosJ. Nitrogen responses and nitrogen management in potato. , 2009, 52: 305-317[本文引用:1]
[13]
Moinuddin, SinghK, Bansal S K. Growth, yield, and economics of potato in relation to progressive application of potassium fertilizer. , 2005, 28: 183-200[本文引用:1]
[14]
Allison MF, Fowler JH, Allen EJ. Responses of potato (solanum tuber of sum) to potassium fertilizers. , 2001, 136: 407[本文引用:1]
[15]
马文娟, 同延安, 高鹏程. 平衡施肥对马铃薯产量和品质的影响. , 2012, (10): 48-52Ma WJ, Tong YA, Gao PC. Effect of balanced fertilization on the yield and quality of potato. , 2012, (10): 48-52 (in Chinese with English abstract)[本文引用:2]
[16]
PaniqueE, Kelang KA, Schulte EE. Potassium rate and source effects on potato yield, quality, and disease interaction. , 1997, 74: 379-398[本文引用:2]
[17]
吴开贤, 安曈昕, 范志伟, 周锋, 薛国峰, 吴伯志. 根间相互作用对玉米与马铃薯响应异质氮的调控. , 2015, 35: 508-516Wu KX, An TX, Fan ZW, ZhouF, Xue GF, Wu BZ. Effects of root interactions on the response of maize and potato to heterogeneous nitrogen. , 2015, 35: 508-516 (in Chinese with English abstract)[本文引用:1]
[18]
贾云玲, 郭天文, 王成宝. 马铃薯平衡施肥及钾肥效应研究. , 2006, 20: 332-335Jia YL, Guo TW, Wang CB. Balanced fertilization and K effect on potato. , 2006, 20: 332-335 (in Chinese with English abstract)[本文引用:1]
[19]
张新明, 伍尤国, 徐鹏举, 官利兰, 陈洪, 曹先维. 平衡施肥与常规施肥对冬作马铃薯肥效的比较. , 2013, 34: 475-479Zhang XM, Wu YG, Xu PJ, Guan LL, ChenH, Cao XW. A Comparison of fertilizer effects between balanced and conventional fertilization on winter potato. , 2013, 34: 475-479 (in Chinese with English abstract)[本文引用:1]
[20]
周涛, 徐开未, 王科, 黄蔚, 张朝春, 陈远学. 麦-豆和麦-玉/豆体系中大豆的磷肥增产增效作用研究. , 2015, 21: 336-345ZhouT, Xu KW, WangK, HuangW, Zhang CC, Chen YX. Effect of phosphate fertilizer on the improvement of yield and nutrient use efficiency of soybean in wheat-soybean and wheat /maize/soybean systems. , 2015, 21: 336-345 (in Chinese with English abstract)[本文引用:1]
[21]
陈百翠. 氮磷钾配比对不同马铃薯品种产量及品质的影响. , 2014Chen BC. Effects of NPK Ratio on Yield and Quality of Potato Varieties. MS Thesis of Northeast Agricultural University, Harbin, , 2014 (in Chinese with English abstract)[本文引用:1]
[22]
黄立梅, 黄绍文, 韩宝文. 冬小麦-夏玉米适宜氮磷用量和平衡施肥效应. , 2010, (5): 38-44Huang LM, Huang SW, Han BW. Winter white-summer corn response to nitrogen and phosphorus application and balanced fertilization. , 2010, (5): 38-44 (in Chinese with English abstract)[本文引用:1]
[23]
HartmutK, Sabine SB. Development, growth and chemical composition of the potato crop (Solanum tuberosum L. ): I. Leaf and stem. , 1997, 40: 111[本文引用:1]
[24]
展哓莹, 任意, 张淑香, 康日峰. 中国主要土壤有效磷演变及其与磷平衡的响应关系. , 2015, 48: 4728-4737Zhan XY, RenY, Zhang SX, Kang RF. Changes in olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China. , 2015, 48: 4728-4737 (in Chinese with English abstract)[本文引用:1]
[25]
SarkarD, Naik PS. Effect of inorganic nitrogen nutrition on cytokine in induced potato micro tuber production in vitro. , 1998, 41: 211-217[本文引用:1]
[26]
芶久兰. 马铃薯不同间作模式的氮肥营养效应研究. , 2010Gou JL. Nutritional Effect of Nitrogen on Different Intercropping Patterns of Potato. , 2010 (in Chinese with English abstract)[本文引用:1]
[27]
郭忠富, 冯荔, 陈玢. 马铃薯套作大豆效应研究. , 2012, (13): 53-55Guo ZF, FenL, ChenF. Study on effect in potato and soybean intercropping system. , 2012, (13): 53-55 (in Chinese with English abstract)[本文引用:1]
[28]
李萍, 张永成, 田丰. 马铃薯蚕豆间套作边行效应对马铃薯块茎品质影响研究. , 2012, 26: 471-473LiP, Zhang YC, TianF. Study on effect of marginal effect on quality of potato tuber in potato and faba bean intercropping system. , 2012, 26: 471-473 (in Chinese with English abstract)[本文引用:2]
[29]
Arnon DI. Copper enzymes in isolated chloroplast: polyphenol oxidase in Beta vulgaris. , 1949, 24: 1-15[本文引用:1]
[30]
王海燕, 王哓玲. 马铃薯间作蚕豆效益评价与栽培研究. , 2007, (3): 37-39Wang HY, Wang XL. Effect of potato and soybean intercropping system. , 2007, (3): 37-39 (in Chinese with English abstract)[本文引用:2]
[31]
Hauggaard-NielsenH, AmbusP, Jensen ES. Interspecific competition, N use and interference with weeds in pea-barley intercropping. , 2001, 70: 101-109[本文引用:1]
[32]
Khan ZR, Pickett JA, Wadhams LJ. Combined control of Striga hermonthica and stemborers by maize-Desmodium spp. intercrops. , 2006, 25: 989-995[本文引用:1]
[33]
Sarkar RK, Pal PK. Effect of intercropping rice (Oryza sativa) with groundnut (Arachis hypogaea) and pigeonpea (Cajanus cajan) under different row orientations on rainfed upland s. , 2004, 49: 147-150[本文引用:1]
[34]
Ghosh PK, MohantyM, Band yopadhyay KK. Growth, competition, yield advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India: I. Effect of subsoiling. , 2006, 96: 80-89[本文引用:1]
[35]
LiL, Li SM, Sun JH. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. , 2007, 104: 11192-11196[本文引用:2]
[36]
LiL, Sun JH, Zhang FS. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. , 2001, 71: 123-137[本文引用:3]
[37]
LiL, Sun, JH, Zhang F S. Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages. , 2011, 57: 61-67[本文引用:2]
[38]
陈光荣, 杨文钰, 张国宏, 王立明, 杨如萍, 雍太文, 刘卫国. 薯豆套作模式下不同熟期大豆品种生长补偿效应. , 2016, 49: 455-467Chen GR, Yang WY, Zhang GH, Wang LM, Yang RP, Yong TW, Liu WG. Compensation effect of different soybean varieties in potato/soybean intercropping systems. , 2016, 49: 455-467 (in Chinese with English abstract)[本文引用:2]
[39]
吴开贤, 安瞳昕, 范志伟, 贺佳, 周峰, 薛国锋, 吴伯志. 玉米与马铃薯的间作优势和种间关系对氮投入的响应. , 2012, 18: 31006-31012Wu BZ, An TX, Fan ZW, HeJ, ZhouF, Xue GF, Wu BZ. Effects of nitrogen input on yields advantage and interaction of the maize and potato intercropping. , 2012, 18: 31006-31012 (in Chinese with English abstract)[本文引用:1]
[40]
王丽霞, 陈源泉, 李超, 师江涛, 陶志强, 聂紫谨, 张建省, 隋鹏. 不同滴灌制度对棉花/马铃薯模式中马铃薯产量和WUE的影响. , 2013, 39: 1864-1870Wang LX, Chen YQ, LiC, Shi JT, Tao ZQ, Nie ZJ, Zhang JS, SuiP. Effects of different drip irrigation systems on yield and water use efficiency of potato in intercropping system of cotton and potato. , 2013, 39: 1864-1870 (in Chinese with English abstract)[本文引用:1]
[41]
Sharaiha RK, BattikhiA. A study on potato/corn intercropping microclimate modification and yield advantages. , 2002, 29: 97-108[本文引用:1]
[42]
Midmore DJ, BerriosD, RocaJ. Potato (Solanum spp. ) in the hot tropics: V. Intercropping with maize and the influence of shade on tuber yields. , 1988, 18: 159-176[本文引用:1]
[43]
He XH, Zhu SS, Wang HN. Crop diversity for ecological disease control in potato and maize. , 2010, 1: 45-51[本文引用:1]
[44]
Garcia PalaciosP, Maestre FT, GallardoA. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups. , 2011, 99: 551-562[本文引用:1]
[45]
Tylianakis JM, Rand TA, KahmenA, Klein AM, BuchmannN, PernerJ, TscharntkeT. Resource heterogeneity moderates the biodiversity function relationship in real world ecosystems. , 2008, 6: e122[本文引用:1]
[46]
吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 玉米/大豆间作系统的作物资源竞争. , 2014, 25: 139-146LyuY, Wu PT, Chen XL, Wang YB, Zhao XN. Resource competition in maize /soybean intercropping system. , 2014, 25: 139-146 (in Chinese with English abstract)[本文引用:1]
[47]
张衍华, 毕建杰, 张兴强, 于成献. 平衡施肥对棉麦套作中小麦生长发育的影响. , 2008, 31(3): 16-19Zhang YH, Bi JJ, Zhang XQ, Yu CX. Study on the effects of balanced fertilization on wheat growth and development in cotton and wheat intercropping. , 2008, 31(3): 16-19 (in Chinese with English abstract)[本文引用:1]
[48]
段玉, 张君, 李焕春, 赵沛义, 妥德宝, 姚俊卿, 安昊, 贾有余. 马铃薯氮磷钾养分吸收规律及施肥肥效的研究. , 2014, 46: 212-217DuanY, ZhangJ, Li HC, Zhao PY, Tuo DB, Yao JQ, AnH, Jia YY. Fertilization effect and nutrition use efficiency of potato in Inner Mongolia. , 2014, 46: 212-217 (in Chinese with English abstract)[本文引用:1]
[49]
刘小明, 雍太文, 苏本营, 刘文钰, 周丽, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作系统中作物产量的影响. , 2014, 40: 1629-1638Liu XM, Yong TW, Su BY, Liu WY, ZhouL, SongC, YangF, Wang XC, Yang WY. Effect of reduced n application on crop yield in maize-soybean intercropping system. , 2014, 40: 1629-1638 (in Chinese with English abstract)[本文引用:1]
[50]
唐明明, 董楠, 包兴国, 卢秉林, 张炜平, 张美俊, 章芳芳, 李隆. 西北地区不同间套作模式养分吸收利用及其对产量优势的影响. , 2015, 20(5): 48-56Tang MM, DongN, Bao XG, Lu BL, Zhang MJ, Zhang FF, LiL. Effect of nutrient uptake and utilization on yield of intercropping system in Northwest China. , 2015, 20: 48-56 (in Chinese with English abstract)[本文引用:1]