关键词:耕作方式; 砂姜黑土; 土壤养分; 有机碳; 籽粒产量 Effect of Annual Tillage Practices on Soil Nutrient and Crop Yield in Lime Concretion Black Soil Farmland XIE Ying-Xin1, JIN Hai-Yang1, LI Meng-Da1, ZHAI Yu-Xue1, WANG Yong-Hua1, XIE Yao-Li2, LI Xiang-Dong3, XIA Lai-Kun3, WANG Chen-Yang1, GUO Tian-Cai1, HE De-Xian1,* 1 College of Agronomy, Henan Agricultural University / Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
2 Center of Xiping Agricultural Technology Extension, Zhumadian 463900, China
3 Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
Fund:This study was supported by the National Science & Technology Pillar Program during the 12th Five-year Plan Period (2015BAD26B01), the Henan-topic of the National Grain Bumper Science and Technology Project (2013BAD07B07), and the Special Fund for Scientific Research in the Public Interest of the Ministry of Agriculture AbstractIn order to select the appropriate tillage practices, improving soil nutrient and grain yield of crop grown in lime concretion black soil farmland, the effects of five year winter wheat-summer maize annual tillage practices (no tillage-rotary tillage, no tillage-deep tillage, subsoiling tillage-rotary tillage, subsoiling tillage-no tillage, no tillage-no tillage) on soil organic carbon content, soil nutrient and crop yield were studied in the fourth year. Under the condition of returning total straw to field, compared with the beginning of the experiment, the content of soil organic carbon, total nitrogen and available potassium in 0-20 cm soil layer were increased. Compared with no tillage-rotary tillage, other year treatments increased annual soil organic carbon and total nitrogen contents in 0-20 cm soil layer during the whole growth period. No tillage-deep tillage, subsoiling tillage-rotary tillage, and no tillage-no tillage significantly increase soil available phosphorus contents in 0-20 cm soil layer during the whole growth period, and subsoiling tillage-no tillage significantly increased 0-20 cm soil layer available phosphorus in anthesis and harvest period of winter wheat. In 20-40 cm soil layer, soil available phosphorus content of no tillage-rotary tillage was the lowest during the whole growth period. Subsoiling tillage-no tillage increased annual soil available potassium content in 0-20 cm soil layer during the whole growth period. In 20-40 cm soil layer, subsoiling tillage-no tillage and no tillage-no tillage significantly increased soil available potassium content in seedling, trumpeting, anthesis and filling stages of summer maize season. Subsoiling tillage-rotary tillage and subsoiling tillage-no tillage significantly increase annual grain yield by 7.67% and 10.21% respectively. To sum up, subsoiling tillage-rotary tillage and subsoiling tillage-no tillage could improve contents of soil organic carbon and nutrient, and increase grain yield of summer maize and winter wheat under the condition of returning total straw to field. Therefore, subsoiling tillage-rotary tillage and subsoiling tillage-no tillage should be selected as two appropriate tillage practices in lime concretion black soil farmland.
Keyword:Tillage practice; Lime concretion black soil; Soil nutrient; Organic carbon; Grain yield Show Figures Show Figures
表1 不同耕作方式0~40 cm土壤有机碳含量 Table 1 Soil organic carbon content in 0-40 cm soil layer under different tillage practices (g kg-1)
处理 Treatment
取样时间Sampling time (month/day)
夏玉米 Summer maize
冬小麦 Winter wheat
6/27
7/21
8/1
8/22
9/26
11/4
12/30
3/5
4/28
6/5
0-20 cm
NRT
11.36 b
10.59 b
11.03 c
10.77 b
10.80 b
10.82 b
12.05 b
12.04 c
12.15 b
11.35 b
NDT
12.20 ab
11.62 a
11.59 bc
11.39 ab
12.16 a
12.27 a
12.28 b
12.37 bc
12.57 ab
12.59 a
SRT
12.29 ab
12.46 a
11.73 b
11.97 a
12.08 ab
12.02 a
12.31 b
12.25 bc
12.29 b
12.15 ab
SNT
12.46 a
12.44 a
12.47 a
12.46 a
12.14 a
12.44 a
12.72 ab
12.80 b
12.82 ab
12.88 a
NNT
12.43 ab
12.03 a
12.13 ab
12.47 a
11.88 ab
12.29 a
13.68 a
13.81 a
13.56 a
12.67 a
20-40 cm
NRT
5.60 b
5.21 b
4.96 b
5.61 ab
5.40 b
5.25 b
5.65 b
5.24 c
5.44 b
5.19 b
NDT
5.71 b
5.49 ab
5.40 b
5.46 ab
5.66 ab
6.93 a
7.11 a
6.93 a
5.84 ab
5.69 a
SRT
6.88 a
6.41 a
6.45 a
6.10 a
6.18 a
6.11 ab
7.04 a
6.39 ab
6.34 a
5.93 a
SNT
5.89 b
5.45 ab
5.48 b
5.36 b
5.14 b
5.67 b
5.37 b
5.36 bc
5.34 b
5.14 b
NNT
5.90 b
5.66 ab
5.41 b
5.79 ab
5.36 b
5.47 b
5.78 b
5.76 bc
5.25 b
5.13 b
Value followed by different letters in the same sampling time and also the same soil layer are significantly different among treatments at the 0.05 probability level. NRT: treatment of no tillage-rotary tillage; NDT: treatment of no tillage-deep tillage; SRT: treatment of subsoiling tillage-rotary tillage; SNT: treatment of subsoiling tillage-no tillage; NNT: treatment of no tillage-no tillage. 同一取样时间同一土层处理间标有不同字母的值表示差异达显著水平(P< 0.05)。NRT: 免耕-旋耕处理; NDT: 免耕-深耕处理; SRT: 深松-旋耕处理; SNT: 深松-免耕处理; NNT: 免耕-免耕处理。
表1 不同耕作方式0~40 cm土壤有机碳含量 Table 1 Soil organic carbon content in 0-40 cm soil layer under different tillage practices (g kg-1)
表2 不同耕作方式0~40 cm土壤全氮含量 Table 2 Soil total nitrogen content in 0-40 cm soil layer under different tillage practices (g kg-1)
处理 Treatment
取样时间Sampling time (month/day)
夏玉米 Summer maize
冬小麦 Winter wheat
6/27
7/21
8/1
8/22
9/26
11/4
12/30
3/5
4/28
6/5
0-20 cm
NRT
1.22 b
1.15 b
1.18 b
1.19 b
1.18 b
1.19 a
1.23 b
1.23 b
1.26 b
1.14 c
NDT
1.27 ab
1.25 ab
1.24 ab
1.22 ab
1.28 a
1.27 a
1.26 b
1.25 b
1.28 b
1.27 ab
SRT
1.31 a
1.27 a
1.25 a
1.28 ab
1.27 a
1.31 a
1.26 b
1.24 b
1.26 b
1.21 bc
SNT
1.29 a
1.30 a
1.30 a
1.32 a
1.28 a
1.25 a
1.31 ab
1.36 a
1.33 ab
1.32 a
NNT
1.34 a
1.26 a
1.28 a
1.32 a
1.29 a
1.25 a
1.39 a
1.45 a
1.44 a
1.30 a
20-40 cm
NRT
0.68 b
0.63 b
0.63 c
0.72 a
0.67 b
0.67 b
0.72 bc
0.68 cd
0.66 bc
0.62 c
NDT
0.68 b
0.68 ab
0.70 b
0.69 a
0.70 b
0.81 a
0.86 a
0.82 a
0.71 ab
0.69 ab
SRT
0.81 a
0.75 a
0.81 a
0.73 a
0.75 a
0.73 b
0.83 a
0.76 b
0.74 a
0.70 a
SNT
0.68 b
0.66 b
0.72 b
0.67 a
0.66 b
0.69 b
0.69 c
0.65 d
0.64 c
0.63 bc
NNT
0.68 b
0.64 b
0.68 bc
0.73 a
0.68 b
0.68 b
0.74 b
0.74 bc
0.67 bc
0.64 abc
Value followed by different letters in the same sampling time and also the same soil layer are significantly different among treatments at the 0.05 probability level. Abbreviations of treatments are the same as those given in Table 1. 同一取样时间同一土层处理间标有不同字母的值表示差异达显著水平(P< 0.05)。处理的缩写同表1。
表2 不同耕作方式0~40 cm土壤全氮含量 Table 2 Soil total nitrogen content in 0-40 cm soil layer under different tillage practices (g kg-1)
表3 不同耕作方式0~40 cm土壤有效磷含量 Table 3 Soil available phosphorus content in 0-40 cm soil layer under different tillage practices (mg kg-1)
处理 Treatment
取样时间Sampling time (month/day)
夏玉米 Summer maize
冬小麦 Winter wheat
6/27
7/21
8/1
8/22
9/26
11/4
12/30
3/5
4/28
6/5
0-20 cm
NRT
9.02 c
6.81 d
7.67 d
7.44 d
8.34 d
9.09 c
9.66 d
9.44 d
8.05 e
6.48 e
NDT
12.54 b
13.04 b
12.71 b
11.66 b
15.54 b
14.09 b
15.05 b
14.45 b
13.35 b
14.06 b
SRT
11.63 b
10.19 c
9.25 c
9.20 c
11.25 c
12.85 b
13.77 c
11.57 c
10.87 c
11.37 c
SNT
8.62 c
7.10 d
7.46 d
7.21 d
9.28 d
9.82 c
10.68 d
10.63 cd
9.52 d
9.01 d
NNT
19.91 a
17.42 a
16.30 a
13.77 a
17.71 a
18.16 a
19.59 a
21.46 a
17.37 a
16.24 a
20-40 cm
NRT
1.03 d
1.00 d
0.98 e
1.12 c
1.00 e
1.79 e
2.03 e
1.52 e
1.57 c
1.26 d
NDT
2.19 b
2.05 b
2.72 b
1.99 b
3.44 b
4.11 b
5.57 a
4.54 a
3.57 a
3.46 a
SRT
2.30 b
1.91 b
2.45 c
2.06 b
2.78 c
3.29 c
3.51 c
3.32 c
2.48 b
2.45 b
SNT
1.59 c
1.44 c
1.75 d
1.29 c
2.31 d
2.16 d
2.24 d
1.94 d
1.71 c
1.65 c
NNT
3.30 a
2.93 a
3.20 a
2.63 a
4.19 a
4.55 a
4.81 b
4.13 b
2.83 b
2.34 b
Value followed by different letters in the same sampling time and also the same soil layer are significantly different among treatments at the 0.05 probability level. Abbreviations of treatments are the same as those given in Table 1. 同一取样时间同一土层处理间标有不同字母的值表示差异达显著水平(P< 0.05)。处理的缩写同表1。
表3 不同耕作方式0~40 cm土壤有效磷含量 Table 3 Soil available phosphorus content in 0-40 cm soil layer under different tillage practices (mg kg-1)
表4 Table 4 表4(Table 4)
表4 不同耕作方式0~40 cm土壤速效钾含量 Table 4 Soil available potassium content in 0-40 cm soil layer under different tillage practices (mg kg-1)
处理 Treatment
取样时间Sampling time (month/day)
夏玉米 Summer maize
冬小麦 Winter wheat
6/27
7/21
8/1
8/22
9/26
11/4
12/30
3/5
4/28
6/5
0-20 cm
NRT
156.32 a
118.18 b
143.44 bc
139.35 b
147.28 b
193.11 b
192.70 b
176.98 b
145.75 b
160.37 bc
NDT
162.94 a
123.85 ab
141.30 cd
131.07 c
147.22 b
186.45 b
169.07 d
151.10 d
145.15 b
157.10 c
SRT
160.19 a
127.80 a
134.71 d
126.10 c
147.23 b
189.49 b
185.43 c
164.54 c
134.25 c
157.01 c
SNT
160.11 a
127.06 a
158.76 a
148.80 a
155.36 a
204.20 a
194.52 b
179.67 b
150.86 b
167.12 b
NNT
160.12 a
129.98 a
150.55 b
142.84 ab
154.21 a
191.85 b
209.39 a
214.28 a
205.14 a
182.12 a
20-40 cm
NRT
110.29 b
113.38 b
116.89 b
108.53 b
110.29 b
126.83 a
154.99 a
120.73 bc
106.48 b
133.35 ab
NDT
115.46 ab
115.86 b
117.00 b
113.21 b
115.46 ab
133.37 a
152.37 ab
121.47 bc
105.01 b
130.26 b
SRT
117.77 a
116.19 b
119.20 b
109.85 b
117.77 a
132.08 a
146.99 b
117.74 c
107.64 b
129.00 b
SNT
119.99 a
127.69 a
125.93 a
124.16 a
119.99 a
127.72 a
156.42 a
131.33 a
116.98 a
136.28 a
NNT
120.62 a
126.78 a
126.19 a
125.19 a
120.62 a
127.36 a
147.29 b
124.30 b
114.74 a
130.51 b
Value followed by different letters in the same sampling time and also the same soil layer are significantly different among treatments at the 0.05 probability level. Abbreviations of treatments are the same as those given in Table 1. 同一取样时间同一土层处理间标有不同字母的值表示差异达显著水平(P< 0.05)。处理的缩写同表1。
表4 不同耕作方式0~40 cm土壤速效钾含量 Table 4 Soil available potassium content in 0-40 cm soil layer under different tillage practices (mg kg-1)
表5 不同耕作方式夏玉米-冬小麦籽粒产量 Table 5 Grain yield of summer maize and winter wheat under different tillage practices
处理Treatment
夏玉米 Summer maize
冬小麦 Winter wheat
周年产量 Annual yield (t hm-2)
增产率 Yield increase (%)
成穗数 Spikes (hm-2)
穗粒数 Grains per spike
百粒重 100-grain weight (g)
籽粒产量 Grain yield (t hm-2)
成穗数 Spikes (× 104 hm-2)
穗粒数 Grains per spike
千粒重 1000-grain weight (g)
籽粒产量 Grain yield (t hm-2)
NRT
66 003 a
466 bc
28.24 a
8.68 bc
635 a
35 a
46.35 b
8.26 c
16.94 c
—
NDT
64 958 a
454 c
27.10 a
8.00 d
624 a
35 a
48.62 a
8.87 b
16.86 c
-0.44
SRT
66 777 a
487 ab
27.29 a
8.87 ab
655 a
36 a
48.26 a
9.37 a
18.24 b
7.67
SNT
64 800 a
512 a
27.39 a
9.08 a
649 a
37 a
49.18 a
9.59 a
18.66 a
10.21
NNT
64 902 a
473 b
27.47 a
8.43 c
628 a
36 a
45.23 b
8.14 c
16.56 c
-2.19
Value followed by different letters after the values in the same sampling time and also the same soil layer are significantly different among treatments at the 0.05 probability level. Abbreviations of treatments are the same as those given in Table 1. 同一取样时间同一土层处理间标有不同字母的值表示差异达显著水平(P< 0.05)。处理的缩写同表1。
表5 不同耕作方式夏玉米-冬小麦籽粒产量 Table 5 Grain yield of summer maize and winter wheat under different tillage practices
全国土壤普查办公室. . 北京: 中国农业出版社, 1998. pp 601-617The National Soil Survey Office. Beijing: China Agriculture Press, 1998. pp 601-617(in Chinese)[本文引用:1]
[2]
谢迎新, 靳海洋, 孟庆阳, 王永华, 王晨阳, 贺德先, 郭天财. 深耕改善砂姜黑土理化性状提高小麦产量. 农业工程学报, 2015, 31(10): 167-173Xie YX, Jin HY, Meng QY, Wang YH, Wang CY, He DX, Guo TC. Deep tillage improving physical and chemical properties of soil and increasing grain yield of winter wheat in lime concretion black soil farmland . Trans CSAE, 2015, 31(10): 167-173 (in Chinese with English abstract)[本文引用:2]
[3]
陈尚洪, 朱钟麟, 刘定辉, 舒丽, 王昌全. 秸秆还田和免耕对土壤养分及碳库管理指数的影响研究. 植物营养与肥料学报, 2008, 14: 806-809Chen SH, Zhu ZL, Liu DH, ShuL, Wang CQ. Influence of straw mulching with no-till on soil nutrients and carbon pool management index. Plant Nutr Fert Sci, 2008, 14: 806-809 (in Chinese with English abstract)[本文引用:1]
[4]
Zhang SX, Chen XW, Jia SX, Liang AZ, Zhang XP, Yang XM, Wei SC, Sun BJ, Huang DD, Zhou GY. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China. Soil Tillage Res, 2015, 154: 84-90. [本文引用:1]
[5]
张恒恒, 严昌荣, 张燕卿, 王健波, 何文清, 陈保青, 刘恩科. 北方旱区免耕对农田生态系统固碳与碳平衡的影响. 农业工程学报, 2015, 31(4): 240-247Zhang HH, Yan CR, Zhang YQ, Wang JB, He WQ, Chen BQ, Liu EK. Effect of no tillage on carbon sequestration and carbon balance in farming ecosystem in dryland area of northern China. Trans CSAE, 2015, 31(4): 240-247 (in Chinese with English abstract)[本文引用:1]
[6]
张瑞富, 杨恒山, 高聚林, 张玉芹, 王志刚, 范秀艳, 毕文波. 深松对春玉米根系形态特征和生理特性的影响. 农业工程学报, 2015, 31(5): 78-84Zhang RF, Yang HS, Gao JL, Zhang YQ, Wang ZG, Fan XY, Bi WB. Effect of subsoiling on root morphological and physiological characteristics of spring maize. Trans CSAE, 2015, 31(5): 78-84 (in Chinese with English abstract)[本文引用:1]
[7]
齐华, 刘明, 张卫建, 张振平, 李雪霏, 宋振伟, 于吉琳, 吴亚男. 深松方式对土壤物理性状及玉米根系分布的影响. 华北农学报, 2012, 27(4): 191-196QiH, LiuM, Zhang WJ, Zhang ZP, Li XF, Song ZW, Yu JL, Wu YN. Effect of deep loosening mode on soil physical characteristics and maize root distribution. Acta Agric Boreali-Sin, 2012, 27(4): 191-196 (in Chinese with English abstract)[本文引用:1]
[8]
梁爱珍, 杨学明, 张晓平, 申艳, 时秀焕, 范如芹, 方华军. 免耕对东北黑土水稳性团聚体中有机碳分配的短期效应. 中国农业科学, 2009, 42: 2801-2808Liang AZ, Yang XM, Zhang XP, ShenY, Shi XH, Fan RQ, Fang HJ. Short-term impacts of no tillage on soil organic carbon associated with water-stable aggregates in black soil of Northeast China. Sci Agric Sin, 2009, 42: 2801-2808 (in Chinese with English abstract)[本文引用:1]
[9]
刘义国, 林琪, 房清龙. 旱地秸秆还田对小麦花后光合特性及产量的影响. 华北农学报, 2013, 28(4): 110-114Liu YG, LinQ, Fang QL. Effects of dryland with straw return on photosynthetic characteristics and yield of wheat after flowering stage. Acta Agric Boreali-Sin, 2013, 28(4): 110-114 (in Chinese with English abstract)[本文引用:3]
[10]
李素娟, 陈继康, 陈阜, 李琳, 张海林. 华北平原免耕冬小麦生长发育特征研究. 作物学报, 2008, 34: 290-296Li SJ, Chen JK, ChenF, LiL, Zhang HL. Characteristics of growth and development of winter wheat under zero-tillage in North China Plain. Acta Agron Sin, 2008, 34: 290-296 (in Chinese with English abstract)[本文引用:2]
[11]
ArvidssonJ, EtanaA, TomasR. Crop yield in Swedish experiments with shallow tillage and no-tillage 1983-2012. Eur J Agron, 2014, 52(B): 307-315[本文引用:1]
[12]
王玉玲, 李军. 利于小麦-玉米轮作田土壤理化性状和作物产量的耕作方式研究. 植物营养与肥料学报, 2014, 20: 1139-1150Wang YL, LiJ. Study of tillage patterns suitable for soil physicochemical properties and crop yields in wheat/maize fields. Plant Nutr Fert Sci, 2014, 20: 1139-1150 (in Chinese with English abstract)[本文引用:2]
[13]
王丽, 李军, 李娟, 柏炜霞. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响. 应用生态学报, 2014, 25: 759-768WangL, LiJ, LiJ, Bai HX. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland . Chin J Appl Ecol, 2014, 25: 759-768 (in Chinese with English abstract)[本文引用:1]
[14]
李霞, 张吉旺, 任佰朝, 范霞, 董树亭, 刘鹏, 赵斌. 小麦玉米周年生产中耕作对夏玉米产量及抗倒伏能力的影响. 作物学报, 2014, 40: 1093-1101LiX, Zhang JW, Ren BZ, FanX, Dong ST, LiuP, ZhaoB. Yield and lodging resistance of summer maize under different winter wheat-summer maize tillage systems. Acta Agron Sin, 2014, 40: 1093-1101 (in Chinese with English abstract)[本文引用:1]
黄昌勇, 徐建明. . 北京: 中国农业出版社, 2010. pp 29-43Huang CY, Xu J M. Beijing: China Agriculture Press, 2010. pp 29-43(in Chinese)[本文引用:1]
[17]
ValboaG, LagomarsinoA, Brand iG, Agnelli AE, SimonciniS, PapiniR, VignozziN, PellegriniS. Long-term variations in soil organic matter under different tillage intensities. Soil Tillage Res, 2015, 154: 126-135[本文引用:1]
[18]
南雄雄, 游东海, 田霄鸿, 李锦, 王淑娟, 崔娟, 刘廷. 关中平原农田作物秸秆还田对土壤有机碳和作物产量的影响. 华北农学报, 2011, 26(5): 222-229Nan XX, You DH, Tian XH, LiJ, Wang SJ, CuiJ, LiuT. Effect of returning of cropland straw to field on soil organic carbon and grain yield in Guanzhong Plain. Acta Agric Boreali-Sin, 2011, 26(5): 222-229 (in Chinese with English abstract)[本文引用:1]
[19]
田慎重, 宁堂原, 王瑜, 李洪杰, 仲惟磊, 李增嘉. 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响. 应用生态学报, 2010, 21: 373-378Tian SC, Ning TY, WangY, Li HJ, Zhong WL, Li ZJ. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field. Chin J Appl Ecol, 2010, 21: 373-378 (in Chinese with English abstract)[本文引用:2]
[20]
矫丽娜, 李志洪, 殷程程, 王晓飞, 辛士颖, 于磊. 高量秸秆不同深度还田对黑土有机质组成和酶活性的影响. , 2015, 52: 665-672Jiao LN, Li ZH, Yan CC, Wang XF, Xin SY, YuL. Effect of incorporation of crop straw on composition of soil organic matter and enzyme activity in black soil relative to depth and rate of the incorporation. , 2015, 52: 665-672 (in Chinese with English abstract)[本文引用:2]
[21]
冀保毅, 赵亚丽, 郭海斌, 李传保, 穆心愿, 李潮海. 深耕条件下秸秆还田对不同质地土壤肥力的影响. , 2015, 23(4): 104-109Ji BY, Zhao YL, Guo HB, Li CB, Mu XY, Li CH. The effect of straw retained on the fertility of deep tillaged soil. , 2015, 23(4): 104-109 (in Chinese with English abstract)[本文引用:1]
[22]
吕薇, 李军, 岳志芳, 陈宁宁, 王淑兰. 轮耕对渭北旱塬麦田土壤有机质和全氮含量的影响. , 2015, 48: 3186-3200. LüW, LiJ, Yue ZF, Chen NN, Wang SL. Effects of rotational tillage on soil organic matter and soil total nitrogen contents of continuous cropping wheat field in Weibei Highland . , 2015, 48: 3186-3200 (in Chinese with English abstract)[本文引用:1]
[23]
张俊丽, Tanveer SK, 温晓霞, 陈月星, 高明博, 刘杨, 廖允成. 不同耕作方式下旱作玉米田土壤呼吸及其影响因素. 农业工程学报, 2012, 28(18): 192-199Zhang JL, Tanveer SK, Wen XX, Chen YX, Gao MB, LiuY, Liao YC. Soil respiration and its affecting factors in dry-land maize field under different tillage systems. Trans CSAE, 2012, 28(18): 192-199 (in Chinese with English abstract)[本文引用:1]
[24]
罗珠珠, 黄高宝, Li GD, 张仁陟, 蔡立群. 保护性耕作对旱作农田耕层土壤肥力及酶活性的影响. 植物营养与肥料学报, 2009, 15: 1085-1092. Luo ZZ, Huang GB, Li GD, Zhang RZ, Cai LQ. Effects of conservation tillage on soil nutrients and enzyme activities in rainfed area. Plant Nutr Fert Sci, 2009, 15: 1085-1092 (in Chinese with English abstract)[本文引用:3]
[25]
王改玲, 郝明德, 许继光, 洪坚平. 保护性耕作对黄土高原南部地区小麦产量及土壤理化性质的影响. 植物营养与肥料学报, 2011, 17: 539-544Wang GL, Hao MD, Xu JG, Hong JP. Effect of conservation tillage on wheat yield and soil physicochemical properties in the South of Loess Plateau. Plant Nutr Fert Sci, 2011, 17: 539-544 (in Chinese with English abstract)[本文引用:1]
[26]
杨培培, 杨明欣, 董文旭, 陈素英, 胡春胜. 保护性耕作对土壤养分分布及冬小麦吸收与分配的影响. 中国生态农业学报, 2011, 19: 755-759Yang PP, Yang MX, Dong WX, Chen SY, Hu CS. Effect of conservation tillage on wheat and soil nutrient distribution and absorption. Chin J Eco-agric, 2011, 19: 755-759 (in Chinese with English abstract)[本文引用:1]
[27]
黄明, 吴金芝, 李友军, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对旱作冬小麦旗叶衰老和籽粒产量的影响. 应用生态学报, 2009, 20: 1355-1361HuangM, Wu JZ, Li YJ, Yao YQ, Zhang CJ, Cai DX, JinK. Effects of tillage pattern on the flag leaf senescence and grain yield of winter wheat under dry farming. Chin J Appl Ecol, 2009, 20: 1355-1361 (in Chinese with English abstract)[本文引用:2]
[28]
孔晓民, 韩成卫, 曾苏明, 吴秋平, 刘丽. 不同耕作方式对土壤物理性状及玉米产量的影响. , 2014, 22(1): 108-113Kong XM, Han CW, Zeng SM, Wu QP, LiuL. Effects of different tillage managements on soil physical properties and maize yield. , 2014, 22(1): 108-113 (in Chinese with English abstract)[本文引用:1]
[29]
王靖, 林琪, 倪永君, 刘义国, 王炳军. 旱地保护性耕作对冬小麦光合特性及产量的影响. , 2009, 29: 480-483WangJ, LinQ, Ni YJ, Liu YG, Wang BJ. Effect of conservation tillage on photosynthetic characteristics and yield of winter wheat in dry land . , 2009, 29: 480-483 (in Chinese with English abstract)[本文引用:1]
[30]
孔凡磊, 张海林, 翟云龙, 袁继超, 陈阜. 耕作方式对华北冬小麦-夏玉米周年产量和水分利用的影响. 中国生态农业学报, 2014, 22: 749-756Kong FL, Zhang HL, Zhai YL, Yuan JC, ChenF. Effects of tillage methods on crop yield and water use characteristics in winter-wheat/summer-maize rotation system in the North China Plain. Chin J Eco-agric, 2014, 22: 749-756 (in Chinese with English abstract)[本文引用:1]
[31]
蔡丽君, 边大红, 田晓东, 曹立燕, 崔彦宏. 耕作方式对土壤理化性状及夏玉米生长发育和产量的影响. 华北农学报, 2014, 29(5): 232-238Cai LJ, Bian DH, Tian XD, Cao LY, Cui YH. Effect of tillage methods on soil physical and chemical properties, growth and grain yield of summer maize. Acta Agric Boreali-Sin, 2014, 29(5): 232-238 (in Chinese with English abstract)[本文引用:1]
[32]
金亚征, 谢瑞芝, 冯聚凯, 李少昆, 高世菊, 丁丽梅. 保护性耕作方式下华北平原夏玉米产量效应的研究. , 2008, 16(4): 143-146Jin YZ, Xie RZ, Feng JK, Li SK, Gao SJ, Ding LM. Research on the effect of summer maize yield under conservation tillage pattern in North China Plain. , 2008, 16(4): 143-146 (in Chinese with English abstract)[本文引用:1]
[33]
李霞, 汤明军, 张东兴, 王维新, 崔涛. 深松对土壤特性及玉米产量的影响. 农业工程学报, 2014, 30(23): 65-69LiX, Tang MJ, Zhang DX, Wang WX, CuiT. Effects of sub-soiling on soil physical quality and corn yield. Trans CSAE, 2014, 30(23): 65-69 (in English with Chinese abstract)[本文引用:1]
[34]
尹宝重, 甄文超, 冯悦. 海河低平原深松播种对夏玉米根系生理的影响及其节水增产效应. 作物学报, 2015, 41: 623-632Yin BC, Zhen WC, FengY. Effects of subsoiling-seeding on root physiological indices, water-saving and yield-increasing behaviors in summer maize (Zea mays L. ) in haihe lowland plain of China. Acta Agron Sin, 2015, 41: 623-632 (in Chinese with English abstract)[本文引用:1]
[35]
姬强, 孙汉印, Taraqqi AK, 王旭东. 不同耕作措施对冬小麦-夏玉米复种连作系统土壤有机碳和水分利用效率的影响. 应用生态学报, 2014, 25: 1029-1035JiJ, Sun HY, Taraqqi AK, Wang XD. Impact of different tillage practices on soil organic carbon and water use efficiency under continuous wheat-maize binary cropping system. Chin J Appl Ecol, 2014, 25: 1029-1035 (in Chinese with English abstract)[本文引用:1]
[36]
谢瑞芝, 李少昆, 金亚征, 李小君, 汤秋香, 王克如, 高世菊. 中国保护性耕作试验研究的产量效应分析. 中国农业科学, 2008, 41: 397-404Xie RZ, Li SK, Jin YZ, Li XJ, Tang QX, Wang KR, Gao SJ. The trends of crop yield responses to conservation tillage in China. Sci Agric Sin, 2008, 41: 397-404 (in Chinese with English abstract)[本文引用:1]