关键词:冬小麦; 形态结构; 生物量; 植株地上部; 模型 Aboveground Architecture Model Based on Biomass of Winter Wheat before Overwintering CHEN Yu-Li1, YANG Ping1, ZHANG Wen-Yu2, ZHANG Wei-Xin2, ZHU Ye-Ping3, LI Shi-Juan3, GONG Fa-Jiang1, BI Hai-Bin1, YUE Ting1, CAO Hong-Xin2,* 1Zibo Academy of Agricultural Sciences, Zibo 255033, China
2 Institute of Agricultural Economics and Information / Engineering Research Center for Digital Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
3 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Fund:This study was supported by the National High Technology Research and Development Program of China (2013AA102305-1) AbstractThe aboveground morphogenesis is an important basis of plant morphological construction and visualization for winter wheat before overwintering. For quantitatively analyzing the relationship between the aboveground architectural parameters and organ biomass of winter wheat before overwintering, field experiments with different varieties (Jimai 22, Tainong 18, and Luyuan 502) and nitrogen levels were carried out in 2013-2014 and 2014-2015 wheat growth seasons. Simulation models for aboveground architectural of winter wheat before overwintering were built with the 2013-2014 dataset of aboveground architectural parameters before overwintering and organ biomass and validated by the 2014-2015 dataset, showing the models exhibited satisfactory predictions for leaf blade length, leaf maximum blade width, leaf blade tangent angle, and leaf blade bowstring angle, except for leaf sheath length and leaf bowstring length. The models built in this study are suitable to simulate the aboveground architecture of winter wheat varieties before overwintering under different nitrogen levels.
Keyword:Winter wheat; Morphological structure; Biomass; Aboveground plant; Model Show Figures Show Figures
合理株型结构是小麦高产、稳产、优质的有效保证, 地上部形态结构是小麦生长发育过程与株型结构的全面展现, 而小麦生长模型与形态结构模型则是小麦生长发育过程与株型结构的定量表达。因此, 将小麦生长模型与形态模型有机结合, 建立基于生物量的小麦植株形态结构参数模型是功能-结构小麦模型研究的重要内容, 对小麦株型设计与栽培调控具有重要参考意义。 目前, 关于小麦形态结构模型的研究, 主要集中在小麦形态与环境因素的定量关系和小麦植株可视化方面。Evers等[1, 2]通过分析群体密度和遮阴对春小麦生长发育的影响, 构建了春小麦形态参数模型, 并对小麦发育的三维结构模型ADEL-wheat参数进行了量化; Fournier等[3]在ADEL-wheat模型基础上, 分析了冬、春小麦初始参数的差异。张文宇等[4, 5]利用系统分析方法和动态建模技术, 以生长度• 日为尺度, 构建了小麦主茎叶片及茎鞘夹角动态模拟模型; 并通过分析小麦主茎叶型和茎型指标与环境因素的定量关系, 模拟分层叶面积、叶向值等株型指标动态变化规律。陈国庆等[6]通过分析小麦茎鞘生长过程与环境因素的关系, 构建了小麦叶鞘和节间生长过程的动态模拟模型。Mabille等[7]构建了小麦籽粒形态参数模型。伍艳莲等[8]借助于OpenGL图形平台, 实现了小麦器官-个体-群体三层次的形态可视化; 谈峰等[9]在构建基于形态特征参数的小麦根系三维形态模型基础上, 实现了根系生长可视化。雷晓俊等[10]通过对小麦穗形态结构观测分析, 提出了基于形态特征参数的麦穗几何模型及可视化实现方法。上述研究中, 所建小麦形态模型大多未考虑同化物分配与小麦植株形态模型的定量关系, 缺乏冬小麦生长模型和形态模型的有效结合。 随着作物形态结构模型不断发展, 功能-结构小麦模型已成为小麦形态模型与可视化研究的一个重要方向[11]。目前, 基于生物量的作物功能-结构模型已有研究, 主要是通过确定作物器官生物量与形态参数的定量关系和作物形态参数之间的内在联系, 进而建立形态结构参数模型和实现植株可视化[12, 13, 14, 15, 16], 而基于生物量的小麦植株地上部形态结构参数模型报道较少。本文在前人研究基础上, 以器官生物量为尺度, 通过分析冬小麦越冬前地上部植株形态参数与器官生物量的定量关系, 将冬小麦生长模型和形态模型结合, 建立冬小麦越冬前地上部植株形态结构模型。为冬小麦生长模型与植株地上部形态结构模型结合, 进而为建立功能— 结构小麦模型奠定基础。 1 材料与方法1.1 供试材料选取3个代表性小麦品种, 即济麦22 (株型紧凑, 山东省农业科学院作物研究所育成)、泰农18 (中间型, 泰安市泰山区瑞丰作物育种研究所、山东农业大学农学院育成)和鲁原502 (株型松散, 山东省农业科学院原子能农业应用研究所、中国农业科学院作物科学研究所育成)。 1.2 试验设计于2013年10月至2015年6月在山东省淄博市农业科学研究院试验农场开展品种与施氮试验, 设3个品种, 5个氮肥处理, 3次重复, 共计45个小区。土壤为褐土, 0~30 cm耕层含有机碳32.14g kg-1、全氮1.62 g kg-1、速效磷14.40 mg kg-1、速效钾150.32 mg kg-1、pH 8.16。采用裂区设计, 主区为品种(V), 即V1 (济麦22)、V2 (泰农18)和V3 (鲁原502), 副区为施氮水平(N)。小区面积10.0 m × 1.5 m = 15.0 m2, 行道宽0.5 m。基施有机肥15 000 kg hm-2、P2O5 112.5 kg hm-2、K2O 112.5 kg hm-2。其他管理同大田高产栽培管理。 2013年10月至2014年6月, 设N1 (0 kg hm-2)、N2 (84.375 kg hm-2)、N3 (168.75 kg hm-2)、N4 (253.125 kg hm-2)和N5 (337.5 kg hm-2) 5个施氮水平。50%作基肥, 在播种前施入; 50%作追肥, 在拔节期施入。2013年10月7日播种, 基本苗225万hm-2。2014年10月至2015年6月, 根据上年度试验结果, 为了更切合生产实际, 设N1 (0 kg hm-2)、N2 (75 kg hm-2)、N3 (150 kg hm-2)、N4 (225 kg hm-2)和N5 (300 kg hm-2) 5个施氮水平。50%作基肥, 在播种前施入; 50%作追肥, 在拔节期施入。2014年10月12日播种, 基本苗225万 hm-2。第1年试验数据用于建立模型, 第2年试验数据用于模型检验。 1.3 植株形态参数采集与分析自三叶期标记叶位, 每隔10 d选取每处理长势一致的植株5株, 用直尺、游标卡尺等测定主茎叶片长度、叶片最大宽度、叶鞘长、叶弦长、茎叶夹角(叶切角、叶弦角)(图1)等形态指标。然后, 分不同叶位将叶片、叶鞘等分装, 105℃下杀青30 min, 再80℃烘至恒重后称重。 图1 Fig. 1
图1 叶片角度结构示意图OP代表主茎, L1、L2和L3代表主茎第一、第二和第三叶位叶片。Fig. 1 Schematic diagram of leaf blade anglesLine OP stands for the main stem and L1, L2, and L3 stand for the 1st, 2nd, and 3rd leaf, respectively.
图2 2013-2014年不同处理叶片长度随叶片干重的变化趋势Fig. 2 Changes in the average single blade length by the average single blade dry weight for different treatments in 2013-2014
图3 叶片长度与地上部干生物量比值(A)和叶片干生物量与单株地上部干生物量比值(B)随叶位的变化趋势(2013-2014)V1、V2和V3分别表示品种济麦22、泰农18和鲁原502。Fig. 3 Changes in RLW(A) and CPLB (B) with the leaf rank on main stem (2013-2014)V1, V2, and V3 represent varieties Jimai 22, Tainong 18, and Luyuan 502, respectively. RLW: ratio of blade length to leaf dry biomass; CPLB: ratio of leaf dry biomass to shoot dry biomass.
表1 Table 1 表1(Table 1)
表1 各模型参数值及其统计检验 Table 1 Parameters of various models and their statistical test
模型 Model
参数 Parameter
n
参数值 Value
t
F
叶片长度与地上部干物重比值 Ratio of blade length to leaf dry weight (RLW)
RL0
18
1119.059
22.788* *
247.340* *
RL1
0.229
14.202* *
叶片干物重与单株地上部干物重比值 Ratio of leaf dry weight to shoot dry weight (CPLB)
CP0
18
0.001
0.102
83.924* *
CP1
0.095
12.351* *
CP2
-0.014
-12.889* *
最大叶宽 Maximum leaf blade width (LW)
LW0
18
0.285
4.292* *
11.121* *
LW1
0.020
3.335* *
叶鞘长 Leaf sheath length (LS)
LS0
14
0.991
1.707
20.796* *
LS1
0.220
4.560* *
叶弦长 Leaf blade bowstring length (LBBL)
LB0
18
0.217
0.745
1272.799* *
LB1
0.919
35.676* *
叶片叶切角与叶片干物重的比值 Ratio of blade tangent angle to leaf dry weight (RTW)
V1, V2
RT0
12
6098.942
11.803* *
259.484* *
RT1
0.534
10.967* *
V3
RT0
6
6443.036
6.305* *
50.537* *
RT1
0.408
5.274* *
叶片叶弦角与叶片干物重的比值 Ratio of blade bowstring angle to leaf dry weight (RBW)
V1, V2
BT0
12
8851.004
13.536* *
364.711* *
BT1
0.561
12.819* *
V3
BT0
6
10190.833
8.949* *
112.039* *
BT1
0.445
7.752* *
V1, V2, and V3 represent varieties Jimai 22, Tainong 18, and Luyuan 502, respectively. * and * * indicate significance at P< 0.05 and P< 0.01, respectively. V1、V2和V3分别表示品种济麦22、泰农18和鲁原502。* 和* * 分别表示在P< 0.05和P< 0.01水平显著。
表1 各模型参数值及其统计检验 Table 1 Parameters of various models and their statistical test
图4 最大叶宽(A)、叶鞘长(B)和叶弦长(C)随叶长的变化趋势(2013-2014)V1、V2和V3分别表示品种济麦22、泰农18和鲁原502。Fig. 4 Changes in the maximum single blade width (A), single sheath length (B), and single bowstring length (C) with the leaf blade length (2013-2014)V1, V2, and V3 represent varieties Jimai 22, Tainong 18, and Luyuan 502, respectively.
图5 叶片叶切角与叶片干生物量比值(A)和叶弦角与叶片干生物量比值(B)随叶位的变化趋势(2013-2014)V1、V2和V3分别表示品种济麦22、泰农18和鲁原502。Fig. 5 Changes in RTW (A) and RBW (B)with the leaf rank on main stem (2013-2014)V1, V2, and V3 represent varieties Jimai 22, Tainong 18, and Luyuan 502, respectively. RTW: ratio of blade tangent angle to leaf dry biomass; RBW: ratio ofblade bowstring angle to leaf dry biomass.
表2 冬小麦越冬前植株地上部形态结构模型观察值与模拟值比较的统计参数 Table 2 Comparison of statistical parameters of simulation and observation in winter wheat aboveground architectural parameter models before overwintering
结构参数 Architectural parameter
RMSE
R2
da
dap(%)
n
r
叶长 Leaf blade length
2.162
0.520
1.861
19.650
46
0.721* * *
最大叶宽 Leaf blade width
0.127
0.575
0.099
18.652
46
0.758* * *
叶鞘长 Leaf sheath length
0.823
0.715
0.690
24.102
46
0.846* * *
叶弦长 Leaf blade bowstring length
1.860
0.551
1.582
17.300
46
0.742* * *
叶切角 Leaf blade tangent angle
6.269
0.875
5.108
18.409
46
0.937* * *
叶弦角 Leaf blade bowstring angle
10.990
0.997
8.183
21.980
46
0.998* * *
r0.001, 44= 0.469. * * * represent significantly different at P < 0.001. r0.001, 44= 0.469, * * * 表示在0.001水平上差异显著。
表2 冬小麦越冬前植株地上部形态结构模型观察值与模拟值比较的统计参数 Table 2 Comparison of statistical parameters of simulation and observation in winter wheat aboveground architectural parameter models before overwintering
Evers JB, VosJ, FournierC, AndrieuB, ChelleM, Struik PC. An architectural model of spring wheat: evaluation of the effects of population density and shading on model parameterization and performance. Ecol Model, 2007, 200: 308-320[本文引用:1]
[2]
Evers JB, VosJ, FournierC, AndrieuB, ChelleM, Struik PC. Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum). New Phytol, 2005, 166: 801-812[本文引用:1]
张文宇, 汤亮, 朱相成, 杨月, 曹卫星, 朱艳. 基于过程的小麦茎鞘夹角动态模拟. 应用生态学报, 2011, 22: 1765-1770Zhang WY, TangL, Zhu XC, YangY, Cao WX, ZhuY. Dynamic simulation of wheat stem-sheath angle based on process. Chin J Appl Ecol, 2011, 22: 1765-1770 (in Chinese with English abstract)[本文引用:2]
[5]
张文宇, 汤亮, 姚鑫锋, 杨月, 曹卫星, 朱艳. 基于过程的小麦株型指标动态模拟. 中国农业科学, 2012, 45: 2364-2374Zhang WY, TangL, Yao XF, YangY, Cao WX, ZhuY. Process-based simulation model for growth dynamics of plant type index in wheat. Sci Agric Sin, 2012, 45: 2364-2374 (in Chinese with English abstract)[本文引用:1]
[6]
陈国庆, 朱艳, 曹卫星. 小麦叶鞘和节间生长过程的模拟研究. 麦类作物学报, 2005, 25: 71-74Chen GQ, ZhuY, Cao WX. Modeling leaf sheath and internode growth dynamics in wheat. J Triticeae Crops, 2005, 25: 71-74 (in Chinese with English abstract)[本文引用:1]
[7]
MabilleF, AbecassisJ. Parametric modelling of wheat grain morphology: a new perspective. J Cereal Sci, 2003, 37: 43-53[本文引用:1]
[8]
伍艳莲, 曹卫星, 汤亮, 朱艳, 刘慧. 基于OpenGL的小麦形态可视化技术. 农业工程学报, 2009, 25(1): 121-126Wu YL, Cao WX, TangL, ZhuY, LiuH. OpenGL-based visual technology for wheat morphology. Trans CSAE, 2009, 25(1): 121-126 (in Chinese with English abstract)[本文引用:1]
[9]
谈峰, 汤亮, 胡军成, 姜海燕, 曹卫星, 朱艳. 小麦根系三维形态建模及可视化. , 2011, 22: 137-143TanF, TangL, Hu JC, Jiang HY, Cao WX, ZhuY. Three-dimensional morphological modeling and visualization of wheat root system. , 2011, 22: 137-143 (in Chinese with English abstract)[本文引用:1]
[10]
雷晓俊, 汤亮, 张永会, 姜海燕, 曹卫星, 朱艳. 小麦麦穗几何模型构建与可视化. 农业工程学报, 2011, 27(3): 179-184Lei XJ, TangL, Zhang YH, Jiang HY, Cao WX, ZhuY. Geometric model and visualization of wheat spike. Trans CSAE, 2011, 27(3): 179-184 (in Chinese with English abstract)[本文引用:2]
[11]
曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优, 陈昱利. 作物模型发展探讨. 中国农业科学, 2011, 44: 3520-3528Cao HX, Zhao SL, Ge DK, Liu YX, LiuY, Sun JY, Yue YB, Zhang ZY, Chen YL. Discussion on development of crop models. Sci Agric Sin, 2011, 44: 3520-3528 (in Chinese with English abstract)[本文引用:2]
[12]
Cao HX, LiuY, Liu YX, Hanan JS, Yue YB, Zhu DW, Lu JF, Sun JY, Shi CL, Ge DK, Wei XF, Yao AQ, Tian PP, Bao TL. Biomass-based rice (Oryza sativa L. ) aboveground architectural parameter models. J Integr Agric, 2012, 11: 1621-1632[本文引用:2]
[13]
刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42: 4093-4099LiuY, Lu JF, Cao HX, Shi CL, Liu YX, Zhu DW, Sun JY, Yue YB, Wei XF, Tian PP, Bao TL. Main geometrical parameter models of rice blade Based on biomass. Sci Agric Sin, 2009, 42: 4093-4099 (in Chinese with English abstract)[本文引用:1]
[14]
宋有洪, 郭焱, 李保国, de Reffye P. 基于器官生物量构建植株形态的玉米虚拟模型. 生态学报, 2003, 23: 2579-2586Song YH, GuoY, Li B G, de Reffye P. Virtual maize model: II. Plant morphological constructing based on organ biomass accumulation. Acta Ecol Sin, 2003, 23: 2579-2586 (in Chinese with English abstract)[本文引用:1]
[15]
刘永霞, 岳延滨, 刘岩, 曹宏鑫, 葛道阔, 魏秀芳. 不同品种和氮肥条件下水稻根系主要几何参数动态的量化研究. 中国农业科学, 2010, 43: 1782-1790Liu YX, Yue YB, LiuY, Cao HX, Ge DK, Wei XF. Quantitative research of dynamic models of the main geometric parameters of rice root system of different varieties under different nitrogen conditions. Sci Agric Sin, 2010, 43: 1782-1790 (in Chinese with English abstract)[本文引用:1]
[16]
陈超, 潘学标, 张立祯, 庞艳梅. 棉花地上部生长的功能—结构模型研究. 作物学报, 2012, 38: 2237-2245ChenC, Pan XB, Zhang LZ, Pang YM. Functional and structural model for above-ground growth in cotton. Acta Agron Sin, 2012, 38: 2237-2245 (in Chinese with English abstract)[本文引用:1]
[17]
曹宏鑫, 石春林, 金之庆. 植物形态结构模拟与可视化研究进展. 中国农业科学, 2008, 41: 669-677Cao HX, Shi CL, Jin ZQ. Advances in researches on plant morphological structure simulation and visualization. Sci Agric Sin, 2008, 41: 669-677 (in Chinese with English abstract)[本文引用:1]
刘炳成, 刘伟, 刘俐华, 金弋. 冬小麦根系生长的三维仿真模拟. 华中科技大学学报(自然科学版), 2005, 33(9): 65-67Liu BC, LiuW, Liu LH, JinG. Three-dimensional visual simulation of wheat root system growing. J Huazhong Univ Sci Technol (Nat Sci Edn), 2005, 33(9): 65-67 (in Chinese with English abstract)[本文引用:1]
[21]
赵春江, 王纪华, 吴华瑞, 黄文江, 郑文刚. 小麦叶形空间分布的模拟模型及推理系统. 农业工程学报, 2002, 18(5): 221-225Zhao CJ, Wang JH, Wu HR, Huang WJ, Zheng WG. Simulation models and deduction system for interspace description of wheat leaf shape. Trans CSAE, 2002, 18(5): 221-225 (in Chinese with English abstract)[本文引用:1]
[22]
田梦雨, 李丹丹, 戴廷波, 姜东, 荆奇, 曹卫星. 水分胁迫下不同基因型小麦苗期的形态生理差异. 应用生态学报, 2010 , 21: 41-47Tian MY, Li DD, Dai TB, JiangD, JingQ, Cao WX. Morphological and physiological differences of wheat genotypes at seedling stage under water stress. Chin J Appl Ecol, 2010, 21: 41-47 (in Chinese with English abstract)[本文引用:1]
[23]
李存东, 曹卫星, 戴廷波, 严美春. 小麦不同品种和播期对发育阶段的效应. 应用生态学报, 2001, 12: 218-222Li CD, Cao WX, Dai TB, Yan MC. Effects of different varieties and sowing dates on development stages of wheat. Chin J Appl Ecol, 2001, 12: 218-222 (in Chinese with English abstract)[本文引用:1]
[24]
赵志范. 冬小麦分蘖缺位产生原因及其控制的研究. 北京农业科学, 1984, (3): 34-40Zhao ZF. Reason for tiller deficiency in winter wheat and its management. Beijing Agric Sci, 1984, (3): 34-40 (in Chinese)[本文引用:1]
[25]
郑文刚, 郭新宇, 赵春江, 王纪华. 玉米叶片几何造型研究. 农业工程学报, 2004, 20(1): 152-154Zheng WG, Guo XY, Zhao CJ, Wang JH. Geometry modeling of the maize leaf canopy. Trans CSAE, 2004, 20(1): 152-154 (in Chinese with English abstract)[本文引用:1]
[26]
孟军, 郭新宇, 赵春江. 小麦地上部器官几何造型与可视化研究. 麦类作物学报, 2009, 29: 106-109MengJ, Guo XY, Zhao CJ. Geometry modeling and visualization of above-ground organs of wheat. J Triticeae Crops, 2009, 29: 106-109 (in Chinese with English abstract)[本文引用:1]
[27]
赵春江, 郑文刚, 郭新宇, 王纪华. 玉米叶片三维形态的数学模拟研究. 生物数学学报, 2004, 19(4): 493-496Zhao CJ, Zheng WG, Guo XY, Wang JH. The computer simulation of maize leaf. J Biomath, 2004, 19(4): 493-496 (in Chinese with English abstract)[本文引用:1]
[28]
邓旭阳, 郭新宇, 周淑秋, 郑文刚. 玉米叶片形态的几何造型研究. 中国图象图形学报, 2005, 10: 637-641Deng XY, Guo XY, Zhou SQ, Zheng WG. Study on the geometry modeling of corn leaf morphological formation. J Image & Graphics, 2005, 10: 637-641 (in Chinese with English abstract)[本文引用:1]
[29]
石春林, 朱艳, 曹卫星. 水稻叶曲线特征的机理模型. 作物学报, 2006, 32: 656-660Shi CL, ZhuY, Cao WX. A quantitative analysis on leaf curvature characteristics in rice. Acta Agron Sin, 2006, 32: 656-660 (in Chinese with English abstract)[本文引用:1]