关键词:燕麦; 大豆; 花生; 间作; 光合特性; 产量 Effects of Legumes Intercropping with Oat on Photosynthesis Characteristics of and Grain Yield FENG Xiao-Min1,**, YANG Yong1,2,**, REN Chang-Zhong3, HU Yue-Gao1, ZENG Zhao-Hai1,* 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
2Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
3Baicheng Academy of Agricultural Sciences in Jilin, Baicheng 137000, China
AbstractIntercropping, a commonly used agronomic management by farmers in China for centuries can improve light, heat, water and nitrogen utilization efficiencies and significantly enhance crop yield. To reveal the mechanism of photosynthesis in soybean-oat and peanut-oat intercropping systems, we conducted a two-year (2011, 2012) field experiment in Baicheng, Jilin province. Under the nitrogen-free condition, crop yield, yield components and photosynthesis and relative chlorophyll content (SPAD) of functional leaves in crops were investigated during growth stage. The results showed that land equivalent ratio (LER) was from 1.41 to 1.63 and from 1.31 to 1.52 for soybean-oat and peanut-oat intercropping, respectively. Also, most yield components from oat (plant height, spike length and spikelet, grain number per spike) under intercropping with soybean were higher than those from mono-cropping oat, except for grain weight per plant and thousand seed weight. Under intercropping with peanut, all yield components of oat increased in comparison with those under mono-cropping oat and spikelet, grain number per spike and grain weight per plant showed significant difference. Moreover, all yield components of soybean intercropping with oat improved, whereas decreased peanut pod number and grain weight per plant. As for photosynthesis, intercropping enhanced chlorophyll content and net photosynthetic rate of oat and altered chlorophyll composition which contributed to the slower process of oat aging. With regard to peanut, chlorophyll content slightly increased when intercropped with oat and net photosynthetic rate significantly improved during the late booting stage to heading stage of oat. In conclusion, under the condition of nitrogen-free, intercropping is demonstrably superior to monoculture. The peanut-oat intercropping system notably promotes the growth of oat, while the oat and soybean are both benefit from the soybean-oat intercropping system.
Keyword:Oat; Soybean; Peanut; Intercropping; Photosynthesis characteristics; Yield Show Figures Show Figures
表1 间作对各作物籽粒产量和土地当量比的影响 Table 1 Effect of intercropping on yield and land equivalent ratios
种植方式 Cropping pattern
燕麦产量 Oat yield (kg hm-2)
燕麦的相对 土地当量比 La
大豆产量 Soybean yield (kg hm-2)
大豆的相对 土地当量比 Lb1
花生产量 Groundnut yield (kg hm-2)
花生的相对 土地当量比 Lb2
土地当量比 LER
2011
单作 Monoculture
1708 a
—
3263 a
—
3071 a
—
—
大豆-燕麦 Soybean-oat
832 b
0.49
3017 b
0.92
—
—
1.41
花生-燕麦 Peanut-oat
1208 b
0.71
—
—
1851 b
0.60
1.31
2012
单作 Monoculture
1685 a
—
2688 a
—
3277 a
—
—
大豆-燕麦 Soybean-oat
963 b
0.57
2857 a
1.06
—
—
1.63
花生-燕麦 Peanut-oat
1737 a
1.03
—
—
1575 b
0.49
1.52
Values with in a column followed by different letters are significantly different at the 0.05 probability level according to Fisher test. La: the relative land equivalent ratio of oat; Lb1: the relative land equivalent ratio of soybean; Lb2: the relative land equivalent ratio of peanut; LER: land equivalent ratio. 括号中的数值表示基于豆科-燕麦间作中, 作物占间作总面积的产量。同一列不同字母表示在0.05显著差异(Fisher test)。
表1 间作对各作物籽粒产量和土地当量比的影响 Table 1 Effect of intercropping on yield and land equivalent ratios
图1 间作对作物收获指数的影响图柱上的小写字母的不同表示在0.05水平上显著差异。TS: 单作大豆; TOS-S: 间作大豆; TG: 单作花生; TOG-G: 间作花生; TO: 单作燕麦; TOS-O: 与大豆间作的燕麦; TOG-O: 与花生间作的燕麦。Fig. 1 Effect of intercropping on harvest indexBars superscripted by different letters are significantly different at the 0.05 probability level. TO, TS, and TG mean monoculture oat, soybean, and peanut; TOS-S and TOG-G mean the soybean and the peanut in the intercropping system; TOG-O and TOS-O mean the oat in the intercropping system of oat-groundnut and oat-soybean.
表2 间作对燕麦各产量因子的影响 Table 2 Effect of intercropping on oat yield components
年份 Year
处理 Treatment
株高 Plant height
穗长 Panicle length
小穗数 Spikelet number
穗粒数 Grains per spike
单株粒重 Grain weight per plant (g)
千粒重 1000-seed weight (g)
2011
TOG-O
93.0 a
19.7 a
24.6 a
55.0 a
1.4 a
25.0 a
TOS-O
90.0 ab
18.3 b
18.2 b
39.0 b
0.9 b
24.6 a
TO
86.0 b
17.3 b
17.1 b
36.0 b
1.0 b
24.9 a
2012
TOG-O
104.8 a
24.1 a
38.2 a
76.5 a
2.2 a
26.8 a
TOS-O
104.3 a
23.2 a
35.0 b
66.5 b
1.4 b
19.2 c
TO
102.9 a
22.8 a
28.1 c
54.5 c
1.5 b
25.5 b
TOG-O and TOS-O mean the oat in the intercropping system of oat-groundnut and oat -soybean, respectively. TO: mono-cropping oat. Values followed by different small letters for the same cropping and the same row are significantly different at the 0.05 probability level according to Fisher test. TOS-O: 与大豆间作的燕麦; TOG-O: 与花生间作的燕麦; TO: 单作燕麦。表中数据后的小写字母的不同表示在0.05水平上显著差异。
表2 间作对燕麦各产量因子的影响 Table 2 Effect of intercropping on oat yield components
表3 间作对大豆、花生产量构成因子的影响 Table 3 Effect of intercropping on yield components of soybean and peanut
年份 Year
处理 Treatment
株高 Plant height
有效荚数 Available pod
单荚粒数 Grains per pod
单荚粒重 Grains weight per pod (g)
单株粒重 Grain weight per plant (g)
百粒重 100-seed weight (g)
2011
TS
—
50 a
3.0 b
0.60 b
23.4 a
19.1 d
TOS-S
—
51 a
3.0 b
0.65 b
23.8 a
20.3 c
TG
—
17 b
3.4 a
1.38 a
11.0 a
40.8 b
TOG-G
—
10 c
3.4 a
1.47 a
7.0 b
42.5 a
2012
TS
98.3 b
26 a
3.0 b
0.66 b
13.5 ab
21.3 b
TOS-S
107.6 a
28 a
3.0 ab
0.70 b
15.8 a
21.3 b
TG
52.3 c
11 b
3.2 a
1.60 a
12.9 b
44.4 a
TOG-G
52.8 c
6 c
3.1 ab
1.54 a
6.4 c
44.3 a
TS: mono-cropping soybean; TG: mono-cropping groundnut; TOS-S and TOG-G mean the soybean and the peanut in the intercropping system. Values followed by different small letters for the same cropping and the same row are significantly different at the 0.05 probability level according to Fisher test. TS: 单作大豆; TG: 单作花生; TOS-S: 间作大豆; TOG-G: 间作花生。表中数据后的小写字母的不同表示在0.05水平上显著差异。
表3 间作对大豆、花生产量构成因子的影响 Table 3 Effect of intercropping on yield components of soybean and peanut
图2 间作对各作物相对叶绿素含量的影响(2011)图中数据的小写字母的不同表示其差异在0.05水平上显著(Fisher test)。TS: 单作大豆; TOS-S: 间作大豆; TG: 单作花生; TOG-G: 间作花生; TO: 单作燕麦; TOS-O: 与大豆间作的燕麦; TOG-O: 与花生间作的燕麦。Fig. 2 Effect of intercropping on relative chlorophyll contents of crops in 2011Relative chlorophyll content values with different small letters for the crops in the same stage are significantly different at the 0.05 probability level according to Fisher test. TO, TS, and TG mean monoculture oat, soybean, and peanut; TOS-S and TOG-G mean the soybean and the peanut in the intercropping system; TOG-O and TOS-O mean the oat in the intercropping system of oat-groundnut and oat-soybean.
图3 间作对各作物相对叶绿素含量的影响(2012)图中数据的小写字母的不同表示其差异在0.05水平上显著(Fisher test)。TS: 单作大豆; TOS-S: 间作大豆; TG: 单作花生; TOG-G: 间作花生; TO: 单作燕麦; TOS-O: 与大豆间作的燕麦; TOG-O: 与花生间作的燕麦。Fig. 3 Effect of intercropping on crops relative chlorophyll content in 2012Relative chlorophyll content values with different small letters for the crops in the same stage are significant different at the 0.05 probability level according to Fisher test. TO, TS, and TG mean monoculture oat, soybean, and peanut; TOS-S and TOG-G mean the soybean and the peanut in the intercropping system; TOG-O and TOS-O mean the oat in the intercropping system of oat-groundnut and oat-soybean.
杨峰, 娄莹, 廖东平, 高仁才, 雍太文, 王小春, 刘卫国. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. , 2015, 41: 1-10YangF, LouY, Liao DP, Gao RC, Yong TW, Wang XC, Liu WG. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. , 2015, 41: 1-10 (in Chinese with English abstract)[本文引用:2][CJCR: 1.681]
[2]
焦念元, 赵春, 宁堂原, 侯连涛, 付国占, 李增嘉, 陈明灿. 玉米花生间作对作物产量和光合作用光响应的影响. , 2008, 19: 981-985Jiao NY, ZhaoC, Ning TY, Hou LT, Fu GZ, Li ZJ, Chen MC. Effect of maize-peanut intercropping on economic yield and light response of photosynthesis. , 2008, 19: 981-985 (in Chinese with English abstract)[本文引用:3][CJCR: 1.904]
[3]
李隆, 李晓林, 张福锁, 孙建好, 杨思存, 芦满济. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. , 2000, 6: 140-146LiL, Li XL, Zhang FS, Sun JH, Yang SC, Lu MJ. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in wheat/soybean intercropping. , 2000, 6: 140-146 (in Chinese with English abstract)[本文引用:2][CJCR: 1.707]
[4]
王晓丽. 地膜覆盖、带覆及根系相互作用对间作优势及氮磷养分高效利用的影响. , 2002Wang XL. Effect of Plastic Film Mulching, Strip Width and Rhizosphere Interation on Intercropping Benefit and Use Efficiency of Nitrogen and Phosphorus In Intercropping System. , 2002[本文引用:1]
[5]
肖焱波, 李隆, 张福锁. 小麦-蚕豆间作体系中的种间相互作用及氮转移研究. , 2005, 38: 965-973Xiao YB, LiL, Zhang FS. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and faba bean. , 2005, 38: 965-973 (in Chinese with English abstract)[本文引用:1][CJCR: 1.4]
[6]
肖焱波, 段宗颜, 金航, 胡万里, 陈拾华, 魏朝富. 小麦-蚕豆间作体系中的氮节约效应及产量优势. , 2007, 13: 267-271Xiao YB, Duan ZY, JinH, Hu WL, Chen SH, Wei CF. Spared N response and yields advantage of intercropped wheat and faba bean. , 2007, 13: 267-271 (in Chinese with English abstract)[本文引用:1][CJCR: 1.707]
[7]
李植, 秦向阳, 王晓光, 李兴涛, 王建辉, 曹敏建. 大豆-玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响. , 2010, 29: 808-811LiZ, Qin XY, Wang XG, Li XT, Wang JH, Cao MJ. Effect of intercropping with maize on photosynthesis and chlorophyll fluorescence parameters of soybean. , 2010, 29: 808-811 (in Chinese with English abstract)[本文引用:1][CJCR: 0.567]
[8]
宁堂原, 焦念元, 安艳艳, 赵春, 申加祥, 李增嘉. 间套作资源集约利用及对产量品质影响研究进展. , 2007, 23(4): 159-162Ning TY, Jiao NY, An YY, ZhaoC, Shen JX, Li ZJ. Advances in resources intensive utilization, yield and quality in intercropping or relay cropping systems. , 2007, 23(4): 159-162 (in Chinese with English abstract)[本文引用:1]
[9]
黄进勇, 李新平, 孙敦立. 黄淮海平原冬小麦-春玉米-夏玉米复合种植模式生理生态效应研究. , 2003, 14: 51-56Huang JY, Li XP, Sun DL. Ecophysiological effect of multiple cropping of winter wheat spring corn summer corn in Huanghuaihai Plain. , 2003, 14: 51-56 (in Chinese with English abstract)[本文引用:1][CJCR: 1.904]
[10]
张建华, 马义勇, 王振南, 齐晶. 间作模式中玉米光合作用指标改善的研究. , 2006, 14(4): 104-106Zhang JH, Ma YY, Wang ZN, QIJ. Research on the improvement of photosynthesis indices of maize in the intercropping system. , 2006, 14(4): 104-106[本文引用:1][CJCR: 1.125]
[11]
李植, 秦向阳, 王晓光, 李兴涛, 王建辉, 曹敏建. 大豆/玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响. , 2010, 29: 808-811LiZ, Qin XY, Wang XG, Li XT, Wang JH, Cao MJ. Effect of intercropping with maize on photosynthesis and chlorophyll fluorescence parameters of soybean. , 2010, 29: 808-811 (in Chinese with English abstract)[本文引用:1][CJCR: 0.567]
[12]
焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东. 玉米花生间作复合体系光合特性的研究. , 2006, 32: 917-923Jiao NY, Ning TY, ZhaoC, WangY, Shi ZQ, Hou LT, Fu GZ, Jiang XD. Characters of photosynthesis in intercropping system of maize and peanut. , 2006, 32: 917-923 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[13]
任长忠. 不同熟期裸燕麦品种光温气候特性研究. , 2010Ren CZ. Photothermal Characterization of Naked Oat Genotypes with Different Maturity. , 2010 (in Chinese with English abstract)[本文引用:1]
[14]
Dhima KV, Lithourgidis AS, Vasilakoglou IB, Dordas CA. Competition indices of common vetch and cereal intercrops in two seeding ratio. , 2007, 100: 249-256[本文引用:1][JCR: 2.608]
[15]
焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. , 2013, 37: 1010-1017Jiao NY, Yang MK, Ning TY, YinF, Xu GW, Fu GZ, Li YJ. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. , 2013, 37: 1010-1017 (in Chinese with English abstract)[本文引用:3]
[16]
王凯, 朱教君, 于立忠, 孙一荣, 陈光华. 遮荫对黄波罗幼苗的光合特性及光能利用效率的影响. , 2009, 33: 1003-1012WangK, Zhu JJ, Yu LZ, Sun YR, Chen GH. Effect of shading on the photosynthetic characteristics and light use efficiency of phellodendron Amurense seedings. , 2009, 33: 1003-1012 (in Chinese with English abstract)[本文引用:1]
[17]
沈其荣, 褚贵新, 曹金留, 曹云, 殷晓燕. 从氮素营养的角度分析旱作水稻与花生间作模式的产量优势. , 2004, 37: 1177-1182Shen QR, Chu GX, Cao JL, CaoY, Yin XY. Yield advantage of groundnut intercropped with rice cultivated in Aerobic soil in the viewpoint of plant nitrogen nutrition. , 2004, 37: 1177-1182 (in Chinese with English abstract)[本文引用:1][CJCR: 1.4]
[18]
左元梅, 李晓林, 王永歧, 曹一平, 张福锁. 玉米花生间作对花生铁营养的影响. , 1997, 3: 153-159Zuo YM, Li XL, Wang YQ, Cao YP, Zhang FS. Effect of maize /peanut intercropping on iron nutrition of peanut. , 1997, 3: 153-159 (in Chinese with English abstract)[本文引用:1][CJCR: 1.707]
[19]
唐秀梅, 钟瑞春, 揭红科, 刘超, 王泽平, 韩柱强, 蒋菁, 贺梁琼, 李忠, 唐荣华. 间作遮荫对花生光合作用及叶绿素荧光特性的影响. , 2011, 24: 1703-1707Tang XM, Zhong RC, Jie HK, LiuC, Wang ZP, Han ZQ, JiangQ, He LQ, LiZ, Tang RH. Effect of shading on photosynthesis and chlorophyll fluorescence characteristic of peanut under different inter-row space in Cassava-peanut intercropping. , 2011, 24: 1703-1707 (in Chinese with English abstract)[本文引用:1][CJCR: 0.978]
[20]
KumarS, Rawat CR, Melkania NP. Forage production potential and economic of maize (Zea mays) and cowpea (Vigna unguiculata) intercropping rained conditions. , 2005, 50: 134-148[本文引用:1][JCR: 0.036]
[21]
朱文旭, 张会慧, 许楠, 王鹏, 王师丹, 牟世南, 梁明, 孙广玉. 间作对桑树和谷子生长和光合日变化的影响. , 2012, 23: 1817-1824Zhu WX, Zhang HH, XuN, WangP, Wang SD, Mou SN, LiangM, Sun GY. Effects of Morus alba and Setaria italica intercropping on their plant growth and diurnal variation of photosynthesis. , 2012, 23: 1817-1824 (in Chinese with English abstract)[本文引用:1][CJCR: 1.904]
[22]
蒋海亮, 张清平, 沈禹颖. 黄土高原旱塬区间作比例对燕麦/箭筈豌豆模式的影响. , 2014, 31: 272-277Jiang HL, Zhang QP, Shen YY. Effect of intercropping ratio on autumn-sowing oats/common vetch system on the Loss Plateau. , 2014, 31: 272-277 (in Chinese with English abstract)[本文引用:1]